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Archaeogenetic studies have described two main genetic turnover eventsin
prehistoric western Eurasia: one associated with the spread of farming and a sedentary
lifestyle starting around 7000-6000 Bc (refs.1-3) and a second with the expansion
of pastoralist groups from the Eurasian steppes starting around 3300 BC (refs. 4,5).
The period between these events saw new economies emerging on the basis of key
innovations, including metallurgy, wheel and wagon and horse domestication®™.
However, what happened between the demise of the Copper Age settlements around
4250 BC and the expansion of pastoralists remains poorly understood. To address this
question, we analysed genome-wide data from 135 ancient individuals from the contact
zone between southeastern Europe and the northwestern Black Sea region spanning
this critical time period. While we observe genetic continuity between Neolithic and
Copper Age groups from major sites in the same region, fromaround 4500 BC on,
groups from the northwestern Black Sea region carried varying amounts of mixed
ancestries derived from Copper Age groups and those from the forest/steppe zones,
indicating genetic and cultural contact over a period of around 1,000 years earlier than
anticipated. We propose that the transfer of critical innovations between farmers and
transitional foragers/herders from different ecogeographic zones during this early
contact was integral to the formation, rise and expansion of pastoralist groups around
3300 BC.

During the fifth and fourth millennia BC, key technological and social
changes took place in southeastern Europe (SEE) which profoundly
transformed prehistoric societies. Metal production was among the
mostimportantinnovations; copper was mined, smelted and used to
make axes, jewellery and small tools. The discovery of the necropolis of
Varna (4600-4300 BC) on the Black Sea coast led to areassessment of
socialinequality inhuman prehistory, with large quantities of gold and
other symbols of power and wealth suggesting unprecedented levels
of social stratification'®*?. The many tell settlements that emerged
during the Copper Age (CA,4900-3800 BC) in SEE, involved in the
proto-industrial exploitation of copper®, gold and salt, highlight this
advanced social organization and the blossoming of social, political,
economic and artisanal activities. Eminent tell sites include Mound

Migura Gorgana near Pietrele on the Lower Danube in Romania™,
associated with the Gumelnita culture and Tell Yunatsite in Bulgaria,
associated with the Karanovo culture (Fig.1and Extended DataFig.1),
which were occupied for several centuries®. From around 4600 BC,
the similarity and continuous development of material culture and
exchange of raw materials in the so-called Gumelnita-Kodzadermen-
Karanovo VIcomplexacross southern Romania (Gumelnita), northern
Bulgaria (KodZadermen) and Thrace (Karanovo) indicate transregional
connectedness and suggest arelatively stable sociopolitical network.
Consequently, the roughly simultaneous abandonment of the numer-
oustell settlements and cemeteries around 4250/4200 BC appears enig-
matic (Fig.1a,c). The underlying circumstances are unclear and might
haveinvolved the depletion of resources, the deterioration of soilsand
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Fig.1| Geographicallocations, genetic analyses and chronology of newly
reported ancient Copper Age, Eneolithicand Early Bronze Age individuals.
a, Map of sitesand relevant archaeological cultures discussed in the text.
Maps were made with Natural Earth (https://naturalearthdata.com). b, PCA of
newly reportedindividuals (coloured symbols with black outline) and relevant
published groups (coloured symbols, no outline) projected onto the West
Eurasian genetic variation of 1,253 individuals from 77 populations. c, Mean

possibly also violent conflicts, as evidenced by the destruction horizon
at Tell Yunatsite'®”. Historically, this demise was associated with the
arrival of new groups from the steppe’® but this proposal has lacked
sufficient evidence. However, settlement activity over the following
centuries was scarcein the entire western Black Searegion, indicating a
‘dark’ millenniumwith, for example, Yunatsite not being resettled until
about 1,000 years later during the Early Bronze Age (EBA)".
Following theend of the CA, the centre of settlement activity shifted
further northeast towards the forest-steppe region, where huge
settlements, with thousands of houses, the so-called megasites of the
Cucuteni-Trypillia complex (around 4100-3800 BC), emerged**?.
This northwestern Black Sea region represents an interaction zone
between late CA farming-associated groups and those of the adjacent
steppe region with different ecogeographic conditions. Continued
innovations increased human mobility and the exploration of lands
hitherto notamenable to agrarianlifestyles, as practised in the regions
in SEE and south of the Caucasus for many millennia before. From the
contact zones in the northwestern Black Sea region and the Cauca-
sus, a gradual transition from foraging to semi-nomadic pastoralism
also followed in the North Pontic region during the sixth and fourth
millennium B¢, triggered by continued innovations®, transfer of

radiocarbon dates of relevant published and newly reported individuals
fromsoutheastern Europe plotted according to the regional chronology.
Thesuffixesinthe group labels present archaeological time periods and
geographical regions: N, Neolithic; EN, MN, LN, Early, Middle, Late Neolithic,
respectively; CA, Copper Age; EBA, Early Bronze Age; SEE, southeastern
Europe; WHG, EHG, WSHG, CHG, oHG, Western, Eastern, West Siberian,
Caucasus, outlier Hunter-Gatherers, respectively.

livestock and advancesin herd management, food processing, dairying
practices®®" and the development of arsenical-copper alloys?. The
North Pontic region played a centralrole inthe development of the old-
estwheeled vehicles?, while the North Caucasian Maykop culture was
criticalinthe further development of metal alloys, aswell as early horse
domestication®® and a sheep-wool economy combined with extensive
dairy production’. The Maykop culture had extremely rich burials with
metal weapons indicating ‘high status’ individuals, attesting to social
inequality and upheaval during this time?, as such social elites were also
found in southern Romania and Bulgaria*. The Cernavodal (around
4000-3200 BC) and Usatove cultures (3600/3500-3200/3100 BC) in
the northwestern Black Searegion played a chiefrolein the east-west
exchange between the Danube and the lower Dniepr® and these forma-
tions, while presumably indigenous, received strong contributions
from the Trypillian tradition®.

Similar to the SEE CA tell sites, the megasites and cultural phenomena
of the northwestern Pontic region suddenly disappeared and were
succeeded around 3300 BC by fully established pastoralists associated
with the Yamnaya cultural complex. The expansion of North Pontic
pastoralists to the west has been studied in many regions of Europe
in recent years”, whereas their emergence and impact on societies in
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SEEisbarely understood. Thisis relevantinsofar as the archaeological
record for the subsequent EBA (around 3200-2500 BC), indicates acon-
comitant rise in settlement activity for the first time since the demise
of the CA settlements in the eastern Balkan region?. Burial mounds,
associated with the Yamnaya cultural complex, appear frequently and
extend along the Danube valley into the Carpathian Basin during the
third millennium BC (refs. 4,29). By contrast, the resettlement of sites
like Tell Yunatsite involved groups with burial rites not associated with
the incoming steppe groups® (Extended Data Fig. 1c,h).

Archaeogenomic studies have shown that SEE CA individuals carry
genetic profiles that resemble those of Neolithic farmers expanding
from western Anatolia into Europe®, distinct from both the earlier
pre-agropastoralist (Western and Eastern Hunter-Gatherers; WHG/
EHG) and later EBA pastoralist groups****, who carried ‘steppe” ances-
try. Individuals from well-known, contemporaneous CA settlements
(Pietrele and Yunatsite) and outstanding burial sites (Varna) provide
a unique opportunity to study the genetic variation in and between
sites at their peak settlement densities. However, the developments
following early interactions, which had later given rise to the expan-
sion of pastoralists and their genetic ancestry across Europe, remain
unknown. Critically, individuals from the key period of the fifth and
fourth millennium BC from the contact zone between SEE, the Trypil-
lian megasites and the steppes have not been analysed genetically.
Here, we address this spatial and temporal sampling gap by studying
individuals associated with the Cernavodaland Usatove cultures from
the northwestern Black Sea region in today’s Ukraine. Additionally,
we analyse EBA individuals from the tell sites Yunatsite and Pietrele,
following a possible resettlement of the sites after several centuries of
abandonment. We compare these to Yamnaya-associated individuals
fromeastern Bulgaria, who were buried in mounds typically associated
with steppe pastoralists during the third millennium BC and to individu-
alspostdating the Usatove horizonin the northwestern Black Sea area.

Intotal, we report genome-wide data for 135 (out of 216 attempted)
individuals from eight distinct sites (Fig. 1) ranging from around
5400 to 2400 BC: Neolithic (n =1), CA (n=95), Eneolithic (n =18) and
EBA (n=21). All samples were enriched for a panel of 1.24 million
single-nucleotide polymorphisms (1,240,000 SNP panel®), ranging
from 61,000 to 947,000 SNPs with an average SNP coverage between
0.01x and 3.4x. We used a cut-off of 400,000 SNPs for hapROH and
imputation and filtered for >550,000 SNPs for identity-by-descent
(IBD) analyses (Supplementary Table A; Methods). We also report 113
new radiocarbon dates (Fig.1cand Supplementary Table A). To assess
the genetic ancestry and variation of the newly typed individuals we
first performed principal componentanalysis (PCA) constructed from
1,253 modern-day West Eurasians from 77 different populations, onto
which data from the ancient individuals were projected (Fig. 1b and
Supplementary Table B; Methods).

Neolithic and Copper Age ancestries

Theearliest-dated individual in our dataset, PIEO39 from Pietrele, falls
inthe expected range of other SEE Neolithic individualsin PCA space,
with whom she also shares affinities according to outgroup f; statistics
(Fig.1b, Fig.2 and Supplementary Table C). We used f, statistics of the
form f, (test, PIE039; HGs, Mbuti), where ‘test’ are different Neolithic
groups, toidentify the genetically most similar Neolithic groups, which
were then used as local proxies for quantitative ancestry modelling.
We found Hungary_LN_Sopot and Malak Preslavets N to be most sym-
metrically related to PIEQ39 with respect to allHG comparisons (|Z]| < 1)
and thus combined themintolocal group SEE 1, which could be used as
asingle source for proximal qpAdm modelling (P = 0.41), confirming
shared local ancestry (Extended Data Fig. 2, Fig. 3d, Supplementary
Tables D, E, H and Supplementary Information 5).

InPCA space, the chronologically younger SEE CA individuals from
the emblematic sites of Yunatsite (YUN), Varna (VAR), Pietrele (PIE)
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and the multiple burial from Tell Petko Karavelovo (PTK), forma tight
cluster that also overlaps with published Neolithic individuals from
Anatolia and SEE® (Fig. 1b). Moreover, outgroup f; statistics suggest
local genetic homogeneity throughout the CAinthis region (Fig.2and
Supplementary Table C). However, all SEE CA groups are slightly shifted
towards the EHG/WHG cline in both PC1 and PC2 compared to most
published Neolithic individuals. Distal qpAdm modelling (Fig. 3a and
Supplementary Table G) confirmed minimal amounts of EHG-, CHG-
and WHG-like ancestry, in addition to predominantly Turkey_N-like
ancestry. This ancestry composition is already present during the
Neolithic® and confirmed by the test f, (test, CA; HGs, Mbuti) inwhich
Neolithic groups form a clade with SEE CA with respect to HG groups
(Extended DataFig. 2, Supplementary Tables D and Eand Supplemen-
tary Information 5). This allows us to identify the best local Neolithic
proxy for each SEE CA group and to account for the subtle differences
inancestries. Using the respective, locally preceding, Neolithic groups
for proximal gpAdm modelling, we could model all SEE CA groups asa
single-source model (Fig.3d and Supplementary Table H), suggesting
genetic continuity at the local scale.

The outlier individual PIEO60 is shifted further towards the WHG/
EHG cluster in PCA, suggesting an excess of this type of ancestry, which
could be confirmed by f;, statistics of the form f,(SEEN, PIEO60; HGs,
Mbuti) ((|Z| = 3); Supplementary Table F). Ancestry modelling with
qpAdmsupportsatwo-way model (Fig. 3d) with SEEN (around 65%) and
Iron Gates HG or KO1 (around 35%) as the best proxies. Using DATES*
to determine the time of admixture between SEE N and Iron Gates HG
asalocalHG ancestry, we obtained an admixture estimate of 16.3 +13.4
generations (Z=1.213), which corresponds to around 81-832 years
before the mean™C date of PIE060, when a generation time of 28 years
is assumed™*. A flat decay curve (Extended Data Fig. 3a) supports the
interpretation of arecent admixture date, which suggests that PIEO60
came from acommunity outside Pietrele with recent contact with HGs.
Indeed, individuals with similarly high amounts of HG ancestry have
beenreported from nearby sites in Malak Preslavets (around 70 km)
and Dzhulyunitsa (around 140 km)®,

Inline with the autosomal data, the Y-chromosomal and mitochon-
drial DNA lineages are common in nearly all Neolithic and CA groups
studied until now, albeit with several males also carrying typical Meso-
lithic (ClaandI2a) Y lineages®, including individual PIEO60 (Extended
DataFig. 3b and Supplementary Table A). With seven different main
lineages among 29 males in Pietrele (12al, Cla, G2a, H2, T1a,J2a and
R1b-V88), six among 15 males in Varna (12al, 12a2, G2a, T1a, E1bl and
R1b-V88) and four among six males at Yunatsite (Cla, G2a, H2, J2a),
the Y-chromosomal diversity during the SEE CA was higher thanin
central/western Europe®* 3,

Whentesting for geneticrelatednessin each of the SEE CAsites using
READ, we detected only three first-degree and two second-degree
relationships in total (Supplementary Table I; Methods). To specifi-
cally test for links between the contemporaneous SEE CA sites and for
more distant genetic relatedness we explored signals of IBD sharing
between individuals in and between all sites (Methods). We found no
evidence for between-site links up to the fourth to fifth degree and
only two pairs of individuals (PIEO03-VARO10 and YUNOO5-VAR030)
shared at least two blocks greater than 20 cM indicative of a fifth to
seventh degree relationship (Extended Data Fig. 4a and Supplemen-
tary Table)). Integrating the normalized sum and number of shared
blocks we find higher background relatedness at the intrasite level at
Yunatsite and Varna compared to Pietrele, which can be explained by
the structure of the sites (a destruction horizon of households and a
burial ground with shorter use, respectively, versus telland settlement
burials spanning 350-400 years) (Fig. 1c and Extended Data Fig. 4b).
However, analysis of the runs of homozygosity (ROH) per individual
using hapROH indicates low levels of parental background related-
ness suggesting relatively large effective population sizes, consistent
with previous observation across early farming societies (Methods;
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Extended DataFig.5). These findings reflect the settlement density and
the wide-spread cultural, rather than close genetic, connectedness of
the Gumelnita-KodzZadermen-Karanovo VI comple, in line with the
cross-regional significance of SEE tell sites.

Early contacts during the Eneolithic

Eneolithic individuals from Ukraine (Ukraine Eneolithic), dated from
around 4500-3500 BC, associated with the Cernavoda I and Usatove
cultures, formagenetic clinein PCA space (Fig. 1b) between Neolithic/
SEE CA individuals and published Eneolithic steppe individuals from
the North Caucasus® and Khvalynsk in western Russia®. This indicates
possible admixture between CA farmer-related groups and Eneolithic
steppe groups, as in line with cultural interactions described in the
archaeological record**™*2, The observed genetic cline reflects develop-
ments over a wide chronological range of around 1,000 years (Fig. 1c
and Supplementary Table A). Some of the newly reported C dates
couldbe affected by a freshwater reservoir effect*?, commonin Steppe
Eneolithic sites**** and could therefore be several centuries younger
thantheir reported dates. However, accounting for this possibility, an
offset of around 500 years would still date most of the Ukraine Eneo-
lithic individuals to the fourth millennium BC and thus considerably
earlier than the Yamnaya-associated steppe pastoralist expansion.
Individuals from Kartal (around 4150-3400 BC), associated with
the Cernavoda I culture, are genetically highly heterogeneous,
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circles with black outlines. Higher f; statistics (red colours) indicate more
shared drift with the respective group in Test1. All f; statistics, including
outlierindividuals and published ancient populations further west, can be
foundin Supplementary Table C. The maps were made in R¥ and the tile sets
are copyright of Stamen Design, under a Creative Commons Attribution
(CCBY3.0) licence.

with five individuals (Kartal A) forming a cline between ‘Steppe
Eneolithic’/‘Steppe Maykop’ individuals and Early Neolithic groups,
while three otherindividuals (Kartal B) fall closer to the latter (Supple-
mentary Tables Land M). The five contemporaneous individuals from
Majaky (MA)J), are genetically more homogeneous and fall together
with the four individuals from the late Eneolithic Usatove type-site
(USV/UBK; Supplementary Table A) in the middle of the ‘Kartal cline’.
We tested for acorrelation between positions of the Ukraine Eneolithic
individuals in PC2 and their **C dates and found none (Spearman’s
p=0.113,P=0.6656). The broadscale shift in genetic affinities between
the CA and the Eneolithic, from SEE to the steppe zone, is also clearly
visible in outgroup f; statistics when mapped geographically (Fig. 2
and Supplementary Table C).

To formally characterize the Ukraine Eneolithic individuals, we
tested for excess shared ancestry with four Holocene ‘cornerstone’
populations (Turkey N, WHG, EHG/WSHG and CHG) (Supplemen-
tary Information 1.2), using f,-symmetry statistics of the form f,(test,
Ukraine Eneolithic; cornerstone, Mbuti) and conditioning on three
test populations (Extended DataFig. 6, Supplementary Tables E, Mand
N and Supplementary Information 6). First, compared to Turkey_N,
Ukraine Eneolithicindividuals show excess affinity to allHG groups, as
indicated by significantly negative f, statistics (|Z| > 3) (Extended Data
Fig. 6a). Second, conditioning on Steppe Eneolithic (Extended Data
Fig. 6b), we observe excess affinity of Ukraine Eneolithic to Turkey_N,
asymmetrical relatedness to CHG and WHG, while Steppe Eneolithic
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groups carry more EHG/WSHG ancestry. On the basis of cultural influ-
ences which also link the northern Black Sea through the steppe belt
to the North Caucasus region*®*2, we also test for potential influence
of North Caucasian groups. Using Caucasus Eneolithic/Maykop as test
(Extended Data Fig. 6¢) we find excess affinity of Ukraine Eneolithic to
EHG and WHG and Turkey_N, while Caucasus Eneolithic/Maykop share
more drift with CHG.

The archaeological record identifies the northwestern Black Sea
region as an interaction zone between late CA farming and groups
from the steppe region'®*. Such an early interaction has been postu-
lated by Immel et al.*®, who have reported Yamnaya-related ancestry
inindividuals associated with the Cucuteni-Trypillia complex from
today’s Moldova. However, on re-analysis of these data we find that
this signal can be explained solely by anincrease in especially EHG-rich
ancestry (Supplementary Information 4 and Supplementary Table O).

To characterize the role of Cernavoda I and Usatove-associated
individuals from the postulated interaction zone, who show a clear
signal of admixture, we formally tested the contribution of diverse
ancestry sources using f,(Steppe Eneolithic/Caucasus Eneolithic/

362 | Nature | Vol 620 | 10 August 2023

Caucasus Eneolithic/Maykop outgroup
usv (P = 0.002)| =R
MAJ (P = 0.05)
KTLOOG (P = 0.05]

KTL001 (= 0.35]
I N B E

Rotating model approach

VAR CA outgroup

usv(p=089)
WAL P = 033
L e |
0 25 50 75 100
Ancestry

25 50

Ancestry

75 100

Q,Vand W). Allresults shown here were run with the parameter ‘allSNPs: NO’
(Supplementary Information 6). * Indicates non-supported/rejected/failed
models when applying a Pvalue cut-off of less than 0.05 (showninitalics).
Ancestry proportions are shown with one standard error. Standard errors
were computed with the default block jackknife approach.

Maykop, Ukraine Eneolithic; test, Mbuti), where test represents SEE
and Anatolian CA farmer groups (Supplementary Table P). With respect
to Steppe Eneolithic, all Ukraine Eneolithic individuals show excess
affinity to all tested CA groups. With respect to Caucasus Eneolithic/
Maykop, USV, MAJ, KTL_B, KTLOO3 and KTLOO8 show excess affinity to
all SEE CA farmer groups, while KTLOO6 and KTLOO7 only share drift
with Ukraine Trypillia (Supplementary Table P).

Of note, all f,-symmetry tests with Caucasus Eneolithic/Maykop and
SEE CAindicate an additional attraction of Ukraine Eneolithic to WHG/
EHG (Supplementary Table N), with Iron Gates HG or Ukraine N show-
ing the highest affinity (Supplementary Table Q). This affinity towards
WHG/EHG is absent when Steppe Eneolithic is used (Supplementary
TableN), implying thatscenariosinvolving potential gene flow fromthe
Caucasus would require an additional source carrying WHG-/EHG-like
ancestry as this ancestry is not sufficiently represented by SEE CA or
Caucasus Maykop groups.

Using distal gpAdm modelling we find support for a four-way admix-
ture of Turkey_N, EHG, CHG and WHG for KTLOO1, KTLOO7, MAJ and
USV (Fig. 3b and Supplementary Table R), while individuals KTLOO3,



KTLOO6 and KTLOOS8 can be modelled alternatively with three sources
(Turkey_ N+EHG+CHG) and KTL_B individuals only with Turkey_N
(around 60%), CHG (around 28%) and WHG (around 12%) ancestry.
Following up with proximal qpAdm models to explore potential
contribution(s) of temporally and geographically closer groups (Fig. 3e
and Supplementary Tables E and S), we find that all Ukraine Eneolithic
individuals can be modelled as a two-way model of either VAR_CA
or Ukraine Trypillia as farmer-related ancestry source and Steppe
Eneolithic as a source of mixed EHG+CHG ancestry.

Since archaeological research suggests a cultural contribution
of Steppe Eneolithic and Maykop groups (Supplementary Informa-
tion2.2), we specifically tested for alternative scenarios which involved
admixture betweenboth groups north of the Caucasus and subsequent
spread westwards. Using both associated ancestries and different HGs
and SEE CA-related groups as sourcesin qpAdm modelling (Fig. 3e and
Supplementary Table S), we find that KTLOO1 canindeed be modelled
as a three-way mixture of Steppe Eneolithic (around 32%), Caucasus
Eneolithic/Maykop (around 46%) and Ukraine N foragers (around 22%),
to the exclusion of a SEE CA source. By contrast, MAJ and USV can be
modelled as VAR_CA or Ukraine Trypillia (around 50%), Steppe Eneo-
lithic (around 35%) and Caucasus Eneolithic/Maykop (around 15%) as
minor third component. KTL_B results in the same model but with a
higher VAR_CA component (around 73%) and a minor contribution
of Steppe Eneolithic (around10%) ancestry (Supplementary Table S).

Exploring an alternative scenario which excludes Steppe Eneolithic
asasource, we find a well-fit model for KTLOO8 with YUN_CA (around
17%), Caucasus Eneolithic/Maykop (around 60%) and KO1 (around 23%).
Further,KTL_B canbe modelled with Ukraine Trypillia (around 82%) and
Caucasus Eneolithic/Maykop (around 18%) as second source, which
is consistent with the omission of EHG ancestry in the distal gpAdm
results for KTL_B (Fig. 3e and Supplementary Table S).

Finally, totest whether we can distinguishbetween the farmer-related
ancestry contributed by SEE CA- or Maykop-associated groups from the
Caucasus, or by both, we rotated each source to the outgroups, alter-
natingly, keeping Steppe Eneolithic as a constant. Here, we find strong
support for a genetic contribution from SEE CA rather than Caucasus
Eneolithic/Maykop for most KTL individuals (except KTL_B), which
can be modelled as Steppe Eneolithic and VAR_CA (Fig. 3e and Sup-
plementary Table S). The same model is supported for MAJ (P=0.05)
butrejected for USV, whichindicates that Maykop-associated ancestry
isneeded for thelatter.Indeed, the competing model, with Maykop as
an additional source and VAR_CA as an outgroup, results in a well-fit
four-way mixture model for USV (P= 0.93) and improved model fit for
MAJ (P=0.33), whereas the models for the remaining KTL individuals
arerejected (Supplementary TableS). This provides strong support for
an alternative admixture history for USV and MAJ, involving local SEE
CA, Steppe Eneolithic, Caucasus Eneolithic/Maykop and aHG-related
source, acombination thatis distinct from KTL individuals.

The similarities in genetic ancestry presented for MAJ and USV are
also observed in the results from the IBD analysis (Extended Data
Fig. 4a and Supplementary Table]) in which we find a fourth to sixth
degree relationship between MAJ023 and USV006, which reflects the
close geographical vicinity of the two sites. The normalized sum and
number of shared blocks for Ukraine Eneolithic show a higher back-
ground relatedness in USV compared to the other sites (Extended
DataFig.4b) butalso between USV and MAJ and USV and KTL, respec-
tively, which matches the relative chronological overlap of the three
sites (Fig. 1c and Supplementary Table A). However, in comparison to
the preceding CA and heterogenous KTL individuals, ROH indicate a
slightly elevated parental background relatedness for MAJ and USV
(Extended Data Fig. 5), suggesting smaller effective population sizes
in Usatove-associated groups.

Y-chromosomal evidence from the six Ukraine Eneolithic males
reflects lineages from each of the contributing sources (Extended
Data Fig. 3b): G2ais probably a Neolithic legacy, while three males

carrying 12al could be attributed to the local Ukrainian Neolithic or
HG groups in general. KTLOO5 and MAJOO9 carry haplotypes R1b/
M343(xP297) and R1b1/L754(xM269), respectively, which are ancestral
for the pre-M269 branch (P297) and the M269 branch. Importantly, we
donotobserve R1b-Z2103 orimmediate R1b-M269 precursor lineages,
which originated in the steppe and are later linked with expansion of
steppe-related ancestry.

Genetic ancestries during the Bronze Age

The EBAindividualsin this study are characterized by two contrasting
clusters of genetic ancestry in PCA space (Fig.1b) and different genetic
affinities in outgroup f; statistics (Fig. 2 and Supplementary Table C).
Individuals from YUN and individual PIEO78, who date to the first half of
the third millennium BC, resemble the SEE CA groups, whereas BOY_EBA
and MAJ_EBA individuals fall within the ‘steppe ancestry’ cluster, com-
monly associated with the Yamnaya cultural complex. Two outlier
individuals, BOY019 and YUNO41, fall in the space between. Intrigu-
ingly, the males from YUN_EBA/PIEQO78 carried Y-chromosome lineages
12a, suggestive of a HG legacy, while the males from BOY/MAJ_EBA
carried R1b-Z2103 or derived lineages, a characteristic hallmark of
Yamnaya-associated ancestry (Extended Data Fig. 3b).

Onthebasis of these observations we tested for additional attraction
towards HG-related groups in YUN_EBA and PIEO78 compared to their
CA predecessors by using f,(CA, EBA; HGs, Mbuti) and confirmed the
excess HG ancestry in EBA individuals from YUN and PIE with signifi-
cant negative results (|Z] < 3) (Extended Data Fig. 7 and Supplementary
Table T). By contrast, for MAJ_EBA, BOY_EBA, BOY019 and YUNO41,
we tested for additional attraction towards farmer-related groups
represented by VAR_CA when compared to Yamnaya-associated groups
(test) using f,(test, EBA, VAR_CA, Mbuti) (Supplementary Table E). Here,
only the outlier individual YUNO41 has a higher affinity to VAR_CA
than to other EBA groups (Extended Data Fig. 8 and Supplementary
Table U). Distal gpAdm modelling with cornerstone populations con-
firms the contrasting ancestries of the two main EBA clusters. PIEO78
and YUN_EBA can be modelled with Turkey N, CHG and WHG (Fig. 3¢
and Supplementary Table X), whereas MAJ_EBA, BOY_EBA, BOY019
and YUNO41require EHG ancestry as an additional source (Fig. 3¢).

We then explored the apparenthomogeneity of Yamnaya-associated
EBA steppe pastoralist groups, by testing for possible contribution(s)
from four sources: Ukraine Eneolithic as a proxy for mixed Turkey_N/
CHG/EHG ancestry, Ukraine Nas an HG-related group, Steppe Eneolithic
as pre-Yamnayagenetic substrate and Caucasus Eneolithic/Maykop as
a proxy for mixed Turkey_N/CHG-related South Caucasus ancestry,
as suggested by ref. ¥ and directly supported by our results for the
preceding Eneolithic period. First, we formally tested for shared drift
between all EBA Yamnaya-associated individuals and Steppe Eneolithic/
Caucasus Eneolithic/Maykop with respect to cornerstone populations
by using f,(Steppe Eneolithic/Caucasus Eneolithic/Maykop, EBA; cor-
nerstones, Mbuti). With the exception of Yamnaya Caucasus, all EBA
individuals show an excess affinity to Turkey_N when compared to
Steppe Eneolithic (Extended Data Fig. 9 and Supplementary Table V).
Further, when compared to Caucasus Eneolithic/Maykop all EBA indi-
viduals share drift with WHG and EHG/WSHG and only YUNO41is also
significant for Turkey N (Extended Data Fig. 9 and Supplementary
TableV).Second, we used f,-symmetry statistics of the form f,(steppel,
steppe2; test, Mbuti) where testincludes Ukraine N, Ukraine Eneolithic,
Caucasus Eneolithic/Maykop and Steppe Eneolithic. Here, with the
exception of outlier individual Ukraine_Ozera_EBA_Yamnaya, all f,
statistics are non-significant (|Z] < 3) (Supplementary Table W), which
indicates that all Yamnaya-associated individuals including those from
Ukraine and Bulgaria are genetically highly similar.

Applying the same rationale and sources to proximal qpAdm model-
ling to uncover subtle signals (Fig. 3f and Supplementary Table Y), we
find that BOY_EBA and Yamnaya Samara canbe modelled as athree-way
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mixture of Steppe Eneolithic, Caucasus Eneolithic/Maykop and
Ukraine N. We note that the same three sources contributed to the
preceding Ukraine Eneolithic individuals from USV and MAJ (inaddition
to SEE CA ancestry), which suggests that similar processes had led to
thetripartite ancestry formationin the steppe zone during the fourth
millenniumBC. Indeed, we find that BOY_EBA, MAY_EBA and Yamnaya
Samara canalsobe modelled as atwo-way mixture of Steppe Eneolithic
and KTLOO1 (wholacked SEE_CA ancestry). For Ukraine_EBA_Yamnaya,
we find support for athree-way model (P = 0.07) with Steppe Eneolithic
(around 75%), Caucasus Eneolithic/Maykop (around 14%) and Globular
Amphora (around 11%) as awestern source but also improved model fit
(P=0.5) for atwo-way mixture of Steppe Eneolithic (around 65%) and
USV (around 35%) (Supplementary Table Y), which suggests a possible
direct contribution of Ukraine Eneolithic groups to steppe pastoralists
in the third millennium BC. By contrast, Yamnaya Caucasus individu-
als from the southern steppe can be modelled as a two-way model of
around 76% Steppe Eneolithic and 26% Caucasus Eneolithic/Maykop,
confirming the findings of Lazaridis and colleagues*. This two-way mix
(40% + 60%, respectively) also provides a well-fit model (P= 0.09) for
the Ozera outlier individual, consistent with the position in PCA and
corroborating aninfluence from the Caucasus. Despite the overlap in
PCA, these results suggest subtle geographical structure, involving
localgeneticstrataand influences fromneighbouring groups in western
and southern contact zones, respectively. Individual BOY019 can be
modelled successfully with around 63% USV and around 37% Steppe
Eneolithic ancestry or around 40% Ukraine Trypillia and around 60%
Steppe Eneolithic, suggesting interaction between these two neigh-
bouring groups in the western contact zone or alternatively direct
descent from admixed groups (forexample, KTLOO1). Finally, individual
YUNO41 can be modelled as around 50% local YUN_EBA ancestry and
50% of either BOY_EBA or another Yamnaya-associated source.

Discussion

The genetic homogeneity observed in and across the four CA sites
(PIE, YUN, PTK and VAR) of the fifth millennium BC matches the cul-
tural homogeneity of the archaeological records and suggests an
extended period of arelative stable sociopolitical network and absence
oflarge-scale cultural and genetic transformations. Shared shorter IBD
tracts betweensites are consistent with the transregional connectivity
visiblein the material culture. We can only speculate about the reasons
that led to decreasing settlement densities at the end of the CA. Con-
flict arising from an early expansion of supposedly ‘Indo-European’
groups fromthe steppe, anidea that was put forward by M. Gimbutas'®,
is possible but internal competition and strife between CA groups is
equally likely. Infact, given the near-identical genetic ancestry profiles
of SEE CA groups, we caution that genetic analyses would be blind to
internal conflicts, causing the replacement of one CA group by another.
Long-lasting droughts and forest fires™ or infectious diseases and ensu-
ing epidemics are other factors that could deplete lands. Indeed, evi-
dence for early forms of Yersinia pestis as old as 5,000 years has been
reported*®** and even further back in time for Salmonella enterica®
forindividuals associated with transitional foraging and pastoralism.
Despite the systematic screening of teeth, we found no evidence for
pathogens among the CA individuals of the fifth and fourth millen-
niumBC, apart fromtwo individuals (YUNO48 and VARO21), who were
positive for the Hepatitis B virus (HBV)®, while individual VARO21 was
also positive for Salmonella enterica.

A principal finding from our study indicates early contact and admix-
ture between CA farming groups from SEE and Eneolithic groups from
the steppe zone in today’s southern Ukraine, possibly starting in the
middle of the fifth millennium BC when settlement densities shifted
further north, connecting the lower Danube region with the coastal
steppe and Cucuteni-Trypillia groups of the forest-steppe. Archaeo-
logical evidence shows that the early CA Gumelnita groups had already
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settled deep into the steppe zone by the mid-fifth millennium B¢, intro-
ducing elements of a farming lifestyle but also carrying cultural influ-
ences fromlocal HG groups®. The succeeding Cernavoda l and Usatove
archaeological cultures were heavily influenced by local CA cultures
and surrounds. During the fourth millennium BC, the northwestern
Ponticregion experienced intensified contact with Steppe Eneolithic
groups, while these in turn also had contact with groups in the North
Caucasus, such as Maykop, all of which are mirrored by the genomic
data presented here. Moreover, despite the close geographical prox-
imity of the Ukrainian sites studied, we were able to trace different
admixture histories. Here, the heterogeneity of the individuals from
the site Kartal stands out, which is located on the Danube delta at the
northernend of the former distribution of the Chalcolithic Gumelnita-
Kodzadermen-Karanovo VI complex and thus represents the trans-
formative nature and dynamics of the fourth millennium BCinaction.
By contrast, the more homogenous Majaky and Usatove groups, located
north of the Dniester River, show that such assimilation processes
had already occurred, suggesting that contact and exchange between
transitional foragers and early pastoralist groups from the forest—
steppe zone and non-local SEE farmer-associated groups had started
already in the late fifth millennium BC. Moreover, variable cultural
influences attested by the archaeological record*“*"*are also traceable
genetically. We argue that livestock, innovations and technological
advances were exchanged through these zones of interaction, which
then led to the establishment of fully developed pastoralismin the
steppe by the end of the fourth millennium BC. Gene flow from both
contact zones into the steppe could also explain the small amounts
of farmer-related ancestry in the emerging Yamnaya pastoralists,
which differentiates them from the Steppe Eneolithic substrate and
accounts for subtle geographical structure in the vastly expanding
territory/range.

The early admixture during the Eneolithic presented in this study
appearstobelocaltothe northwesternBlack Searegion of the fourth
millennium B¢ and did not affect the hinterland in SEE. In fact, EBA
individuals from the fourth and third millennia BC from YUN and PIE
donotshow traces of steppe-like ancestry but instead a resurgence of
HG ancestry observed widely in Europe during the fourth millennium
BC (refs.4,29,54,55). This indicates the presence of remnant HG groups
invarious non-farmed regions, for example, highlands and uplands or
densely forested zones and wetlands and amosaic of ancestries rather
than a genetically uniform CA and EBA Europe.

While only afew tell sites have beenresettled by local and/orincom-
ing groups who did not originate in the North Pontic region, we can
trace the appearance of migrants from the steppe, clearly attributed to
Yamnaya culturally and genetically, in the local time transect at Majaky
but also at Boyanovo in the Bulgarian lowlands of the Thracian Plain.
The subtle differences in genetic ancestries between these two when
compared to different Yamnaya-associated groups account for their
geographical locations and different stages of genetic and perhaps,
cultural assimilation. Two outlier individuals from EBA YUN and BOY
bear witness to occasional admixture between inhabitants of EBA tells
andincoming steppe pastoralists. Ultimately, the third millenniumBC
form of ‘steppe’-ancestry is expected to have reached the Great Hun-
garian plain, from where it diversified and spread further west. The
interaction between local and incoming groups in SEE did not result in
archaeologically visible conflicts or anear-complete autosomal genetic
turnover as observed in Britain or areplacement of the Y-chromosome
lineages in the Iberian Peninsula®®,

Further integrated archaeogenomic studies are needed to disen-
tangle the dynamics at play around the Black Sea during the forma-
tive periods of the admixture clines demonstrated in this study.
High-quality genome-wide data from the fifth and fourth millennia
BC that allow the direct tracing of IBD blocks shared by contributing
groups will hold the key to understanding the population history of
West Eurasia.
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Methods

Permission statement

Permissiontowork onthe archaeological samples was granted by the
respective excavators, archaeologist and curators and museum direc-
tors of the sites, who are co-authoring the study.

Radiocarbon dating

Ofthe 135 individuals reported in this study we obtained new direct
C dates for 113 individuals. Radiocarbon dating was carried out using
accelerated mass spectrometry at the Curt-Engelhorn-Zentrum Archéo-
metrie gGmbH in Mannheim, Germany (Fig. 1c and Supplementary
Table A). Allsamples were calibrated on the basis of the IntCal20 data-
base and using OxCal v.4.4.2. All *C dates in this study are consistent
with the archaeological chronology based on stratigraphy and grave
goods. We also included 11 published, direct **C dates for individuals
from Varna®*° (Fig. 1c and Supplementary Table A).

Ancient DNA laboratory procedures

Ancient DNA work was carried out in dedicated clean room facili-
ties of the Max Planck Institute for Evolutionary Anthropology
(MPI-EVA), Leipzig and Jena, Germany. We processed 168 petrous
bones and 129 teeth in total. Petrous bones were sampled with a
minimal invasive method® and, for the sampling of the teeth, the
crown was separated from the root and the inner pulp chamber was
drilled out®’. DNA was extracted from all samples following a modi-
fied protocol refs. 63,64. DNA double-stranded libraries were built
using a partial uracil-DNA-glycosylase (UDG-half) treatment®. For
samples that did not meet the threshold for further analysis, we
attempted to increase the DNA yield by using an automated protocol
for producing single-stranded, non-UDG libraries®®*’. All libraries were
double-indexed with a unique pair of indices®.

First, all indexed libraries were screened by means of shotgun
sequencing of 5 millionreads on anlllumina HiSeq4000 or NextSeq500
sequencing platform using a single end (1 x 75 base pair (bp) reads)
kit, followed by an assessment of human DNA content and DNA dam-
age profiles (initial quality criteria). Libraries above the threshold of
0.1% endogenous DNA were enriched for around 1.2 million SNPs in
atargeted in-solution capture (1,240,000 SNP capture)®. Enriched
libraries were sequenced on HiSeq4000 and NextSeq500 Illumina
platforms using a single-read (SR 75) kit and sequencing 40 million
reads for libraries between 0.1% and 2% or 20 million reads for librar-
ies above 2%, resulting in a mean coverage of 0.7x (Supplementary
Table A). An additional mitochondrial capture**® was performed
for individuals for which enough reads could not be obtained as
by-catch of the 1,240,000 capture, resulting in an average coverage
of 64x. For selected male individuals we also performed aninhouse
capture assay for the Y chromosome (YMCA)” which targets around
10.445 kB on the non-combining region of the Y chromosome and
which resulted in a mean coverage of 0.08x. Together, a total of
135 individuals yielded sufficient genomic data for downstream
analysis.

Sequence data processing

After demultiplexing, EAGER v.1.92.56 (ref. 71) was used to process raw
ancient DNA sequence data. Raw reads were trimmed for [llumina adap-
tor sequences using AdapterRemoval v.2.3.0 (ref. 72). Subsequently,
reads were mapped to the human reference genome hs37d5 using BWA
v.0.7.12 (ref. 73) and duplicates were removed using DeDup v.0.12.1
(ref. 71). To analyse characteristic DNA damage in the form of Gto A
and C to T substitutions, mapDamage v.2.0.9 (ref. 74) was used. The
effect of postmortem DNA damage on genotyping was minimized by
removing 2 bp from the 3’ and 5" ends of reads from double-stranded
UDG-half-treated libraries (n =131) using the trimbam function
included in bamUtils v.1.0.13 (ref. 75). The resulting filtered bam files

were genotyped with pileupCaller v.1.4.0.2 (ref. 76) by randomly
calling one allele per position considering the human genome as a
pseudohaploid genome (-randomHaploid). Only for quality controls
10 bp were removed from the 3’ and the 5 ends for non-UDG treated
single-stranded libraries, whereas the untrimmed bam files were treated
with the-singleStrandMode in pileupCaller for genotyping. Coverage
statistics calculations and bam filtering were done using samtools
(v.1.3; ref. 77).

Ancient DNA authentication

All libraries, except PTK0O01, yielded damage patterns characteristic
ofancient DNA, whichincludes short DNA fragment lengths (45-65 bp
onaverage) and postmortem deamination at the end of the molecules
(6-17% for partial UDG treatment, 30-38% for non-UDG treatment).
We merged Shotgun, 1,240,000 and mitochondrial capture data for
eachindividual, mapped this against the revised Cambridge Refer-
ence Sequence for the complete human mitochondrial genome
(NC 012920.1) and estimated contamination for both sexes on the
mitochondrium using ContamMix”® (Supplementary Table A), rang-
ing from 0.086% to —9.2%. The nuclear contamination for males was
estimated using ANGSD”® and ranged from 0.2% to 2%. PTK0O1 yielded
a contamination estimate of around 18% and therefore was excluded
from all further analysis. We estimated the genetic sex by calculating
the coverage on the X, Y and the autosomal chromosomes, for which
the XandY coverage is normalized by the autosomal coverage and the
relative length of each sex chromosome®®.

DNA reference datasets

Thenew genotype datawererestricted to two sets of reference panels,
the Affymetrix Axiom Genome-wide Human Originslarray (HO; 593,124
autosomal SNPs)?®! and the 1,240,000 panel (1.233,013 autosomal
SNPs including all of the HO SNPs)'. The number of SNPs covered at
least once foreach of these reference panelsis givenin Supplementary
Table A.

Genetic relatedness analysis

Geneticrelatedness was estimated using READ®, using default param-
eter settings. Background relatedness was estimated using the median
value, across all sites per temporal group (Supplementary Informa-
tion 7). From pairs of first-degree relatives, the individual with lower
number of SNPs on the 1,240,000 target region was excluded from
downstream analysis. Three individuals from PIE were identified as
identical and were therefore merged for downstream analysis. Two
pairs of the newly published samples from YUN CA had to be merged as
they were revealed to be the sameindividuals. Oneindividual from VAR
and one from YUN were merged with previously published individuals
from each site because they were sampled from the same individual
and therefore identical® (Supplementary Tablel).

Assignment of uniparentally inherited haplogroups

Trimmed Shotgun, 1,240,000 and mitochondrial capture reads were
aligned to the revised Cambridge Reference Sequence for the com-
plete human mitochondrial genome (NC 012920.1) and a consensus
sequence for each individual was retrieved using Geneious v.2019.2.3
(ref. 83). HaploGrep2 (v.2.4.0; ref. 84) was used to assign each consen-
sus sequence to aspecific mitochondrial haplogroup (Supplementary
Table A). Y-chromosome haplogroups for all male individuals were
assigned using the manual assignment method of Y-haplogroup calling
asdescribedinref.70 (Supplementary Table A). In the case of non-UDG
treated sequence, YMCA datawerefiltered toexcludeCtoTandGto A
transitions on the forward and reverse strands, respectively.

Population genetic analysis
For genome-wide analyses the new data from this study were merged
with published ancient and modern data from the Allen Ancient DNA



Resource (AADR) v.44.3 (https://reich.hms.harvard.edu/allen-ancient-
dna-resource-aadr-downloadable-genotypespresent-day-and-ancient-
dna-data). Dataonthe HO panel (around 600,000 SNPs) were used for
PCA using the program ‘smartpca’ v.16000 (EIGENSOFT®). Principal
components were computed for 1,253 present-day western Eurasians
from 77 different populations (Supplementary Table B) on which
ancientindividuals were projected, using the options ‘Isqproject: YES’
and ‘shrinkmode: YES'. Individuals with fewer than 30,000 SNPs on
the HO-dataset covered were excluded from the PCA. All other analy-
ses were performed on the above merged dataset on the 1,240,000
SNP panel (around 1.24 million SNPs). Outgroup f; statistics® were
calculated using qp3Pop to obtain the genetic relatedness of a target
populationto aset of ancient Eurasian populations since the divergence
froman African outgroup. The f, and f; statistics were calculated using
gpDstatand the f4mode: YES function. Standard errors were computed
with the default block jackknife approach and 3 s.e. are reported and
plotted. The f; and f, statistics were calculated using the ADMIXTOOLS®
package.

Genetic admixture modelling

Ancestry modelling and ancestry proportion estimation on the
1,240,000 SNP dataset was performed using qpAdm in ADMIX-
TOOLS (v.5.1; ref. 4). The following groups were used as a basic set
of outgroups for distal modelling: Mbuti.DG, Turkey_Epipaleolithic,
Iran_GanjDareh_N, Russia_MA1_HG.SG, Russia_Kostenkil4, Italy_North_
Villabruna_HG. Depending on the time period, the outgroup set was
adjusted accordingto the specific test. A detailed list of outgroups per
test can be found in Supplementary Tables G,H, R, S, Xand Y.

Admixture date estimation with DATES for PIE0O60

The software DATES (v.753)* was used to estimate the time of the
admixture events of ancient populations under the assumption that
gene flow occurred as a single event and that the generation time is
28 years**. DATES measures the decay of ancestry covariance to infer
theadmixture time and estimates the variance of this admixture using a
jackknife approach. The following parameters were used for every run:
binsize 0.001; maxdis 1; qbin 10; lovalfit 0.45. For PIE060, the two refer-
ence populations were chosen on the basis of the best-fitting ancestry
model from qpAdm.

Imputation

Samples wereimputed using GLIMPSE (v.1.0.1) with the default param-
eters®®8 Briefly, bam files were trimmed 2 bp to remove ancient DNA
damage. We then determined genotype likelihoods from trimmed
bam files using beftools®” with the 1,000G panel (The 1,000 Genomes
Project consortium®®) as a reference. We used GLIMPSE_impute on
genomic chunks 0f2,000,000 bp with the buffer size 0of 200,000 bp to
performimputation. We then ligated the chunks using GLIMPSE _ligate
and determined the most likely haplotypes using GLIMPSE_sample.
Samples with more than 0.5x coverage on the 1,240,000 positions
(around 550,000 SNPs) after imputation were included in IBD analysis.
No MAF filtering was performed, since only 1,240,000 positions were
retained after imputation.

Runs of homozygosity

The software package HapROH (v.0.64) was used to analyse ROH on
pseudohaploid1,240,000 SNP capture data®. Only samples with more
than 400,000 SNPs were included in the analysis to prevent potential
false positives (Supplementary Table K).

IBD sharing

IBD sharing analysis was done using ancIBD (v.0.4)°? on individuals
with more than 600,000 SNPs and genotype probabilities > 0.99
after imputation with GLIMPSE®"®8, We used HapBLOCK to perform
the IBD sharing estimation. Imputed samples were merged, then the

vef_to_1240K_hdf command was used to convert the vcffiles to the hdf5
format. The hapBLOCK_chroms command was used to perform the
IBD sharing analysis for each chromosome at a time using the default
parameters. Following that, only shared blocks of more than 220 SNPs
per centimorgan and shared blocks of more than 5 cM were kept for
data quality purposes and used for plotting (Supplementary Table ).

Metagenomic pathogen screening

Shotgunsequencing data were screened for the presence of pathogen
DNAwith the screening pipeline HOPS (v.0.2)*. First, adaptor-clipped
reads were mapped to a custom-made RefSeq database using MALT
v.0.4.0 (ref. 94) in BlastN mode and with semiglobal alignment type
and default pipeline settings. The used database included all available
complete bacterial and viral genomes as 0of 2017 in addition to selected
eukaryotic pathogen genomes and the human reference sequence
GRCh38. Theresults were filtered with a predefined list of pathogens
of interest and possible candidates authenticated on the basis of edit
distance distribution, ancient DNA damage pattern and read distribu-
tion along the reference genome.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The DNA sequences reported in this paper have been depositedinthe
European Nucleotide Archive under the accession number PRJEB62503.
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Extended DataFig.1| Tell settlements and burial sites in Southeastern
Europe. a, Aerial view of Tell Magura Gorgananear Pietrele, Romania (©
Konstantin Scheele, German Archaeological Institute, Eurasia Department).
b, Detailed view of the 11m stratigraphy at Pietrele (© Svend Hansen, German
Archaeological Institute, Eurasia Department). ¢, Aerial view of Tell Yunatsite,
Bulgaria (© Kamen Boyadzhiev). d, Map of the site Orlovka-Kartal, Ukraine.
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Thebase map was sourced from Google Earth https://www.google.com/earth/
index.html. e, Characteristic finds fromthe Eneolithic type-site Usatove.

f, Characteristic finds attributed to the Cernavodal phase. g, Burial in flexed
position from grave 10 at Kartal (© Igor Bruyako). h, Infant urn-burial fromthe
Early Bronze Age layer south of tell Yunatsite (© Kamen Boyadzhiev).
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Extended DataFig. 2| F,-statistics for CA groups to determine Neolithic
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