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Mega-scale experimental analysis of protein 
folding stability in biology and design

   
Kotaro Tsuboyama1,2,3,11, Justas Dauparas4,5, Jonathan Chen1,2,6, Elodie Laine7,  
Yasser Mohseni Behbahani7, Jonathan J. Weinstein8, Niall M. Mangan2,9,  
Sergey Ovchinnikov10 & Gabriel J. Rocklin1,2 ✉

Advances in DNA sequencing and machine learning are providing insights into  
protein sequences and structures on an enormous scale1. However, the energetics 
driving folding are invisible in these structures and remain largely unknown2. The 
hidden thermodynamics of folding can drive disease3,4, shape protein evolution5–7  
and guide protein engineering8–10, and new approaches are needed to reveal these 
thermodynamics for every sequence and structure. Here we present cDNA display 
proteolysis, a method for measuring thermodynamic folding stability for up to 
900,000 protein domains in a one-week experiment. From 1.8 million measurements 
in total, we curated a set of around 776,000 high-quality folding stabilities covering  
all single amino acid variants and selected double mutants of 331 natural and 148 
de novo designed protein domains 40–72 amino acids in length. Using this extensive 
dataset, we quantified (1) environmental factors influencing amino acid fitness,  
(2) thermodynamic couplings (including unexpected interactions) between protein 
sites, and (3) the global divergence between evolutionary amino acid usage and 
protein folding stability. We also examined how our approach could identify stability 
determinants in designed proteins and evaluate design methods. The cDNA display 
proteolysis method is fast, accurate and uniquely scalable, and promises to reveal the 
quantitative rules for how amino acid sequences encode folding stability.

Protein sequences vary by more than ten orders of magnitude in ther-
modynamic folding stability2 (the ratio of unfolded to folded molecules 
at equilibrium). Even single point mutations that alter stability can have 
profound effects on health and disease3,4, pharmaceutical develop-
ment8–10 and protein evolution5–7. Thousands of point mutants have 
been individually studied over decades to quantify the determinants of 
stability11, but these studies highlight a challenge: similar mutations can 
have widely varying effects in different protein contexts, and these sub-
tleties remain difficult to predict despite substantial effort12,13. In fact, 
even as deep learning models have achieved transformative accuracy 
at protein structure prediction1, progress in modelling folding stabil-
ity has arguably stalled14,15. New high-throughput experiments have 
the potential to transform our understanding of stability by quantify-
ing the effects of mutations across a vast number of protein contexts, 
revealing new biophysical insights and empowering modern machine 
learning methods.

Here we introduce cDNA display proteolysis, a powerful high- 
throughput stability assay, and use it to produce a large dataset of 
776,298 folding stability measurements. This method combines the 
strengths of cell-free molecular biology and next-generation sequenc-
ing and requires no on-site equipment larger than a quantitative PCR 

(qPCR) instrument. Assaying one library (up to 900,000 sequences 
in our experiments) requires one week and reagents costing about 
US$2,000, excluding the cost of DNA synthesis and sequencing. 
Compared with mass spectrometry-based high-throughput stability 
assays16,17, cDNA display proteolysis achieves a 100-fold larger scale and 
can easily be applied to study mutational libraries that pose difficulties 
for proteomics. Compared with the previous yeast display proteolysis 
method18, cDNA display proteolysis resolves a wider dynamic range of 
stability and is more reproducible even at a 50-fold larger experimental 
scale. Large-scale proteolysis data have already had a key role in the 
development of machine learning methods for protein design and 
protein biophysics19,20. The cDNA display proteolysis method massively 
expands this capability and has the potential to expand our knowledge 
of stability to the scale of all known small domains.

The dataset of 776,298 absolute folding stabilities is unique in size 
and character. Current thermodynamic databases contain a skewed 
assortment of mutations measured under many varied conditions11. 
By contrast, this new dataset comprehensively measures all single 
mutants for 331 natural domains and 148 designed proteins—including 
single deletions and two insertions at each position—all under identical 
conditions. Our dataset also includes comprehensive double mutations 
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at 559 site pairs spread across 190 domains (a total of 210,118 double 
mutants). We used this unique dataset to investigate how individual 
amino acids and pairs of amino acids contribute to folding stability as 
well as how selection for stability interacts with other selective pres-
sures in natural protein domains. We also explored how our unique 
scale of data can be applied in protein design.

The cDNA display proteolysis method
Proteases typically cleave unfolded proteins more quickly than folded 
ones, and proteolysis assays have long been used to measure folding 
stability21 and select for proteins with high stability22,23. We developed 
cDNA display proteolysis to efficiently measure folding stability using 
next-generation sequencing, following similar principles to the yeast 
display proteolysis method18. Each experiment begins with a DNA 
library. We used synthetic DNA oligonucleotide pools in which each 
oligonucleotide encodes one test protein. The DNA library is tran-
scribed and translated using cell-free cDNA display24, which is based on 
mRNA display25,26, resulting in proteins that are covalently attached to 
their cDNA at the C terminus. We then incubate the protein–cDNA com-
plexes with different concentrations of protease, quench the reactions, 
and pull down the proteins using an N-terminal PA tag (Fig. 1a). Intact 
(protease-resistant) proteins remain attached to their C-terminal cDNA. 
We then determine the relative amounts of all proteins in the surviving 
pool at each protease concentration by deep sequencing (Fig. 1c). To 
control for effects of protease specificity, we perform separate experi-
ments with two orthogonal proteases: trypsin (targeting basic amino 
acids) and chymotrypsin (targeting aromatic amino acids).

We inferred the protease stability of all sequences from our sequenc-
ing counts using a Bayesian model of the experimental procedure. We 
modelled protease cleavage using single turnover kinetics27,28 (Fig. 1b, 
equations (1) to (3)) because we assume that the enzyme is in excess 
over all substrates (up to about 20 pM of substrate24 versus at least 
141 pM of protease). To parameterize the model, we used a universal 
kmax (maximum cleavage rate) for all sequences (Extended Data Fig. 1) 
and used our sequencing data to infer a unique K50 (the protease con-
centration at which the cleavage rate is half of kmax; Fig. 1d and Methods) 
for each sequence. The inferred K50 values were consistent between 2 
replicates of the proteolysis procedure (R = 0.97 for trypsin and 0.99 
for chymotrypsin for around 84% of sequences in a pool of 806,640 
sequences after filtering based on confidence and dynamic range).

To infer each sequence’s thermodynamic folding stability (for unfold-
ing at pH 7.4 and 298 K (room temperature); hereafter referred to as 
ΔG), we used a kinetic model that separately considers idealized folded 
(F) and unfolded (U) states (Fig. 1b, equation (4)). We model both states 
using the same single-turnover equations as before (Fig. 1b, equation 
(3)) with separate K50 protease concentrations for each state (K50,F and 
K50,U) and a universal, shared kmax. We assume that cleavage in the folded 
state occurs exclusively in the constant regions of the construct such 
as the N-terminal PA tag, so we use an identical K50,F for all sequences. 
By contrast, K50,U reflects an individual sequence’s unique protease 
susceptibility in the unfolded state, which depends on its potential 
cleavage sites (Fig. 1e). We inferred K50,U for each sequence using a 
position-specific scoring matrix model parameterized using meas-
urements from 64,238 scrambled sequences that are likely to be fully 
unfolded (Extended Data Fig. 2 and Methods). Inferring a unique K50,U for 
each sequence accounts for differences in unfolded state susceptibility 
between sequences, but any cleavage from folded or partially-folded 
states cannot be corrected by this model. Finally, we assume that fold-
ing, unfolding and enzyme binding are all in rapid equilibrium relative 
to cleavage, implying that K50,U, K50,F and the overall K50 can be approxi-
mated by the enzyme–substrate equilibrium dissociation constants 
(Fig. 1b, equation (6)). Although these approximations will not be uni-
versally accurate, they are often valid for small domains and facilitate 
consistent analysis of all sequences. With these approximations, we 

can determine the ΔG for a sequence from its experimentally measured 
K50, its inferred K50,U, and the universal K50,F (Fig. 1b, equations (5) and 
(7) and Fig. 1e; derivation in Supplementary information).

Our model has notable limitations. First, stability (ΔG) will be under-
estimated if significant cleavage occurs inside the test domain from 
folded or partially folded states (that is, without global unfolding). 
Second, stability can be over- or under-estimated depending on the 
accuracy of K50,U (independent measurements with trypsin and chy-
motrypsin help correct this). Third, ΔG values become unreliable if 
K50 approaches K50,F or K50,U (Fig. 1e). Owing to these limitations, we 
developed data quality filters to remove unreliable ΔG estimates (see 
below). After filtering, the ΔG values inferred by the model were con-
sistent between our independent experiments with trypsin and chy-
motrypsin (R = 0.94; Fig. 1f). For most analyses, we combined trypsin 
and chymotrypsin data into a single overall ΔG estimate (Methods).

High-throughput data are accurate
Our cDNA display proteolysis measurements are highly consistent with 
published studies using purified protein samples for 1,188 variants of 
10 proteins (Fig. 1g and Supplementary Fig. 1 for more details on GB129). 
All Pearson correlations are above 0.75. Our measurements for these 
sequences were all performed in libraries of 244,000–900,000 total 
sequences. Several sets of mutants show systematic offsets (y-intercept 
values) between literature values and our measurements. We attrib-
ute these offsets to temperature differences between our conditions 
and the published experiments, and the offsets are correlated with 
temperature (except for NTL9 (Protein Data Bank (PDB) ID: 2HBB); 
Extended Data Fig. 3; see Supplementary Table 1 for all experimental 
conditions and references). The consistency between our cDNA display 
proteolysis results and traditional experiments establishes that (1) small 
domains like these are cleaved mainly in the globally unfolded state, 
(2) our method can reliably measure these cleavage rates on a massive 
scale, and (3) our unfolded state model can remove protease-specific 
effects to infer accurate quantitative folding stabilities.

Mutational scanning of diverse domains
To systematically examine how individual residues influence folding 
stability, we used cDNA display proteolysis to measure stability for all 
single substitutions, deletions and Gly and Ala insertions in 983 natural 
and designed domains (wild-type sequences). We selected our natural 
domains to cover nearly all the small (less than 72 amino acids) mono-
meric domains in the PDB that were suitable for our assay (Methods). To 
minimize any cleavage from the folded state, we used AlphaFold mod-
els of each domain to remove unstructured terminal segments from 
each sequence. Our designed domains included (1) previous Rosetta 
designs with ααα, αββα, βαββ, and ββαββ topologies18,30 (40 to 43 
amino acids), (2) new ββαα proteins designed using Rosetta (47 amino 
acids), and (3) new domains designed by trRosetta hallucination31,32 
(46 to 69 amino acids). Note that the structures of these designs have 
not been validated experimentally. Our 983 wild-type sequences also 
include 121 ‘destabilized wild-type backgrounds’ designed to resolve 
the effects of mutants on highly stable domains (Extended Data Fig. 4). 
We collected these data using four giant synthetic DNA oligonucleotide 
libraries and obtained K50 values for 2,520,337 sequences; 1,841,285 of 
these measurements are included here. K50 values were reproducible 
across libraries (Extended Data Fig. 5).

Deep mutational scanning of hundreds of domains revealed several 
overall patterns. The largest fraction of these domains showed clear, 
biophysically reasonable sequence–stability relationships that were 
consistent between independent experiments with trypsin and chymo-
trypsin. However, other domains were completely unfolded, too stable 
to resolve or produced inconsistent results between the proteases 
(Fig. 2b). To construct a reliable dataset of ΔG and ΔΔG measurements 
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Fig. 1 | cDNA display enables massively parallel measurement of protein 
folding stability. a, A DNA oligonucleotide (oligo) library is expressed using 
cell-free cDNA display, producing proteins with an N-terminal 14-amino-acid PA 
tag and C-terminal covalent linkage to cDNA. After protease challenge, magnetic 
beads with anti-PA antibodies pull down proteins by their N termini. Sequencing 
the cDNA that is pulled down with the intact proteins enables quantification of 
the distribution of intact proteins. b, A thermodynamic model of proteolysis. 
(1) Protease enzymes (E) and protein substrates (S) form an ES complex to 
produce cleaved protein products (P). We model the cleavage as a first-order 
reaction (2) according to single-turnover kinetics (3). (4) Proteins are normally 
cleaved in the unfolded (U) state but can also be cleaved in the folded (F) state 
by cleaving the PA tag. We determine ΔG using each sequence’s measured K50,  
a predicted sequence-specific K50 for the unfolded state (K50,U), and a universal 
K50 for the folded state (K50,F) (5–7). Kd, dissociation constant. kobs, observed rate 
constant. c, Each human FYN SH3 variant sequence is shown as a grey line 
tracking its sequencing counts (fraction of the total library) relative to the 

pre-selection library. Four variants are highlighted in colour. WT, wild type.  
d, Inferred survival of uncleaved protein for four sequences from c at different 
protease concentrations (dots); lines show the global fit from the kinetic model. 
Vertical lines show inferred K50 concentrations (one-half maximal cleavage 
rate, not 50% total cleavage). e, Relationship between K50 and ΔG for different 
values of K50,U. SH3 variants (coloured circles) all have similar K50,U and fall on 
nearly the same ΔG versus K50 line (black). Sequences with more cut sites have 
lower K50,U and higher ΔG estimates for any K50 (grey line). f, Consistency of  
ΔG estimates between independent trypsin and chymotrypsin experiments 
after quality filters (dataset 2), highlighting proteins shown in c. g, Our high- 
throughput ΔG measurements agree with published data from purified 
samples for mutants of the indicated domains (PDB IDs are in parentheses). 
Dashed lines show y = x + b (intercept). Grey points indicate missing reference 
data for the B1 domain of protein G29. Plots indicate number of points (n), Pearson 
correlation (r), y-intercept (b) and the temperatures used for purified protein 
experiments (Supplementary Table 1). Insets show structural models.
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Fig. 2 | Comprehensive mutational analysis of stability in designed and 
natural proteins. a, The size of existing datasets compared with our datasets 1, 
2 and 3. Datasets 1, 2 and 3 are defined in Extended Data Table 1. ML, machine 
learning. b, Classification of mutational scanning results for each wild-type 
(WT) sequence. Each wild type sequence is included in only one group even 
when that wild-type meets multiple criteria (for example, both a poor slope  
and inconsistent intercept between trypsin and chymotrypsin (T–C)). c, Wild- 
type structures classified as G0 in b grouped into domain families. The 11  
most common domain types are shown; additional classification shown in 
Supplementary Fig. 3. d, Mutational scanning results for the U-box domain of 
human E4B ubiquitin ligase (PDB ID: 3L1X) (top) and chromo domain of the 
chromobox protein homologue 7 (PDB ID: 2K1B) (bottom). Left, domain 
structures coloured by the average ΔΔG at each position; darker blue indicates 
that mutants are more destabilizing. Middle, heat maps show ΔG for 
substitutions, deletions and Gly and Ala insertions at each residue, with PDB 
numbering at top and our one-indexed numbering at bottom. White indicates 

wild-type stability, and red and blue indicate stabilizing and destabilizing 
mutations, respectively. Black dots indicate wild-type amino acids, red slashes 
indicate missing data and corner slashes indicate lower confidence ΔG estimates 
(95% confidence interval > 0.5 kcal mol−1), including ΔG estimates near the 
edges of the dynamic range. Red boxes highlight the S23–D42 hydrogen bond 
in the U-box domain of human E4B ubiquitin ligase and the R10–W32 cation–π 
interaction in the chromo domain of the chromobox protein homologue 7.  
ΔG values were fitted to trypsin and chymotrypsin data together (Methods). 
Right, ΔG values independently determined using assays with trypsin (x axis) 
and chymotrypsin ( y axis). Multiple codon variants of the wild-type sequence 
are shown in red, reliable ΔG values are in blue, and less reliable ΔG estimates 
are in grey. The black dashed line shows y = x. Plots show the number of reliable 
points and the Pearson r value for the blue (reliable) points. e, Structures of five 
other domains in our datasets, presented as in d. The two designed structures 
are AlphaFold models.
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from folded domains, we filtered the mutational scans on the basis of 
the consistency of the trypsin and chymotrypsin ΔG estimates and 
other criteria designed to remove domains showing cleavage from 
folded or partially folded states (Supplementary Fig. 2 and Methods). 
Many domains that showed evidence of cleavage from folded states 
had cleavable sites near the termini or in flexible loop regions. Indeed, 
four of our deep mutational scans use modified wild-type backgrounds 
in which folded state cleavage sites (identified in earlier mutational 
scans) had been removed (Extended Data Fig. 6a–c). However, other 
domains with long loops appeared fully cooperative, without evidence 
of cleavage of the folded state (Extended Data Fig. 6d). Along with 
susceptibility to cleavage of folded or partially-folded states, other 
domains taken from the PDB failed in our assay for a variety of rea-
sons, including poor cell-free expression (category G2), structures 
that were probably stabilized by crystal contacts (PDB ID: 2CUW and 
2FGG), missing N–C cyclization incompatible with cDNA display (PDB 
ID: 1E68 and 2MP8), poor stability at room temperature (PDB ID: 2C0S 
and 2LGN), and large numbers of cysteine residues (category G9). Our 
final quality-filtered datasets are shown in Extended Data Table 1 and 
Supplementary Fig. 3.

Mutational scanning results are shown for seven  domains in 
Fig. 2d,e. Like all mutational scans that passed filtering, these exam-
ples show a strong consistency between independent ΔG measure-
ments with trypsin and chymotrypsin (Pearson correlation 0.94 ± 0.04 
(median ± s.d.) for 478 domains in dataset 2). The most critical sites 
(those where mutations are highly destabilizing) are located in the 
hydrophobic core. However, our data also reveal many other critical 
interactions, such as a side chain hydrogen bond between S23 and D42 
in the U-box domain of human E4B ubiquitin ligase and a cation–π 
interaction between R10 and W32 in the chromodomain of human chro-
mobox protein homologue 7 (residues have been renumbered based 
on the exact sequence included in our experiments). These unique 
stabilizing interactions reveal the rich biophysical diversity found in 
our systematic exploration of stability across hundreds of domains.

Global trends in amino acid fitness
We first sought to define the major sources of variation between protein 
sites that influence the relative stabilities of all 20 amino acids at that 
site. To this end, we performed principal component analysis using 
325,132 ΔG measurements at 17,093 sites in 365 domains (dataset 3). 
Each principal component expresses specific properties of a site that 
determine which amino acids are stabilizing or destabilizing. Based 
on the loadings of the amino acids onto each principal component 
(Fig. 3a), we interpreted the first four components to reflect whether 
a site is stabilized by hydrophobic amino acids (principal component 1 
(PC1); 31% of the total variance explained by this principal component), 
helix-favouring amino acids (PC2; 15%), aliphatic versus aromatic amino 
acids (PC3; 12%), and positive versus negative charges (PC4; 7%). The 
fifth principal component (6%) was more complex: at one extreme were 
small amino acids that could be buried in dense environments, along 
with basic amino acids that can ‘snorkel’ their charged moieties to the 
surface even when partially buried. At the other extreme were acidic 
amino acids that are energetically costly to bury. We interpreted this 
component to reflect volumetric properties of buried sites that are 
orthogonal to the properties captured by PC1. These interpretations are 
also consistent with the structural environments at each site (Fig. 3b). 
Figure 3c illustrates the first five principal components at all sites in 
the C-terminal domain of the transcription factor NusG. Sites with 
positive principal component values (pink) are stabilized by amino 
acids with positive loadings on that component (Fig. 3a). Visualizing 
these principal components on this NusG domain highlights the hydro-
phobic core (PC1), differing regions of the core that favour aromatic or 
aliphatic residues (PC3), sites stabilized by acidic or basic residues (PC4) 
and a critical location for a small amino acid (PC5). These structural 

characteristics (and the meanings of the principal components) can 
also be seen by directly comparing the principal component values to 
the mutational scanning stability data (Fig. 3d).

Whereas the first principal components capture the main sources 
of variation between sites, the other components capture more subtle 
factors that still influence stability. We found that these later principal 
components capture a greater amount of the total variance for natural 
protein domains compared to designed proteins, although the differ-
ence between natural domains and Rosetta designs is slight (Fig. 3e). 
This indicates that the amino acid environments in natural domains are 
on average more complex than those in our set of designed proteins; 
more subtle contributions to stability have a larger role. Sites in natural 
domains also have greater total variance in stability between differ-
ent amino acids (Fig. 3f), although we note that our natural domains 
are larger on average than our designed domains: 57 ± 10 amino acids 
versus 44 ± 3 amino acids. Finally, we found that the subtle effects cap-
tured by the later principal components still stabilize wild-type amino 
acids. Across all sites, the median ΔΔG is −0.59 kcal mol−1, indicating 
that the wild type is typically more stable than an alternative amino 
acid. However, the first five principal components can only explain 
0.36 kcal mol−1 (approximately 61%) of this stability difference; the 
remainder is attributable to the other components (Extended Data 
Fig. 7a). This indicates that the remaining components capture addi-
tional biophysical effects that contribute to the compatibility between 
wild-type amino acids and their environments, especially for natural 
domains (Extended Data Fig. 7b).

Large-scale thermodynamic coupling data
Next, we examined how side chain interactions between amino acid 
pairs affect stability. We constructed comprehensive substitutions 
(20 × 20 amino acids) of 559 amino acid pairs from 190 natural domains 
and designs and measured stability for all sequences by cDNA display 
proteolysis. We selected pairs that were suggested to form energetically 
important hydrogen bonds in our mutational scanning data as well 
as other pairs forming close contacts (Fig. 4a; Methods). To quantify 
the interactions between side chains, we built an additive model for 
each amino acid pair with 40 parameters that capture the independ-
ent stability contributions of each amino acid in each position. The 
deviations from these models quantify the ‘thermodynamic coupling’ 
between specific amino acids33. Among our curated set of wild-type 
pairs, couplings were typically 0.5–1.0 kcal mol−1 in magnitude, with 
some greater than 2 kcal mol−1 (Fig. 4b). Among all sequences tested 
(wild-type or mutant pairs), pairs with opposite charges and cysteine 
pairs tended to have positive (favourable) couplings, whereas pairs 
with the same charge and acidic-aromatic–aliphatic pairs tended to 
have negative couplings (Fig. 4c). Average couplings are lower than 
wild-type couplings because the side chain orientations and environ-
ment surrounding wild-type pairs will typically be optimized for that 
pair. Still, our data recapitulate expected patterns of side chain interac-
tions, provide a wealth of data for training machine learning models, 
and identify a wide range of noteworthy interactions for further study.

Several notable pairs are highlighted in Fig. 4d–f. In an OB-fold 
domain from Shewanella oneidensis, we found strong thermodynamic 
coupling between two unrelated pairs of amino acids: the wild-type 
Tyr–Glu pair and a mutant Lys–Trp pair that may form a cation–π inter-
action (thermodynamic couplings of 1.6 ± 0.2 and 1.4 ± 0.2 kcal mol−1, 
respectively (mean ± s.d. from calculating the coupling using boot-
strap resampling of the around 400 amino acid combinations); Fig. 4d 
and Supplementary Fig. 4a). In the α-spectrin SH3 domain, our com-
prehensive double mutant scanning of Y10 and Y52 uncovered the 
highly stable, tightly coupled double mutant Y10H/Y52K (coupling 
of 2.5 ± 0.4 kcal mol−1 for His–Lys versus 1.0 ± 0.2 kcal mol−1 for the 
wild-type pair; Fig. 4e and Supplementary Fig. 4b). AlphaFold mod-
elling predicts that this double mutant introduces a new hydrogen 
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bonding network to replace the original Tyr–Tyr interaction. We also 
identified an unexpected thermodynamic coupling between an amino 
acid pair lacking a direct side chain interaction. In the SH3 domain of 
Myo3, mutations at K24 are destabilizing even though the side chain 
makes no clear interactions. To investigate interactions of K24, we 
quantified thermodynamic couplings to nearby Y9 (0.0 ± 0.1 kcal mol−1) 
and D10 (1.0 ± 0.2 kcal mol−1) (Fig. 4f and Supplementary Fig. 4c). The 

unexpected K24–D10 coupling—between two side chains that appear 
to not interact—highlights the difficulty of inferring energetic interac-
tions from structural data alone and suggests a possible longer-ranged 
ionic interaction.

We also investigated thermodynamic couplings within 36 different 
3-residue networks. For each triplet, we measured stability for all pos-
sible single and double substitutions in both the wild-type background 
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(a) and thermodynamic couplings of wild-type amino acid pairs according to 
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interquartile range (n = 559 in total). c, Average thermodynamic couplings (left) 
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d,e, Thermodynamic coupling for N-terminal OB-domain of SO1732 (PDB ID: 
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in the PDB structure) (e). Left, domain structures showing the two mutated 
positions. Second from left, stabilities (ΔG) of all pairs at the two mutated 
positions. Second from right, agreement between stabilities from the additive 
model (x axis) and the observed stabilities ( y axis, wild-type pair shown in red). 
Right, structural models of mutant pairs with strong couplings. Couplings 

show the observed stability minus the expected stability from the additive 
model; uncertainties show the s.d. from computing the couplings using 1,000 
bootstrapped samples of the 400 double mutants. f, Thermodynamic coupling 
without a visible sidechain interaction in the MYO3 SH3 domain D10–K24 
(D1131–K1145 in PDB ID 2BTT). Sub-panels as in d, with the magnified view of the 
wild-type structure of Y9, D10 and K24 shown on the right. g, Thermodynamic 
coupling mediated by a third amino acid in the J domain of HSJ1a: Y3–R60–D64 
(Y5–R62–D66 in PDB ID 2LGW). Left, the AlphaFold-modelled structure of the 
HSJ1a J domain with three interacting amino acids. Scatter plots show the 
stabilities of double mutants in the additive model (x axis) and experimental 
data ( y axis) in the wild-type background (blue) and with the third residue 
replaced by Ala (orange). Right, the thermodynamic coupling for each pair of 
wild-type amino acids in the wild-type (blue) and the Ala-substituted (orange) 
backgrounds (error bars represent the s.d. from bootstrap resampling 
(n = 1,000) as in d). Substituting any of the three amino acids for Ala eliminates 
the coupling between the other two.
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and the background in which the third amino acid was replaced by 
alanine (400 mutants × 3 pairs × 2 backgrounds ≈ 2,400 mutants in 
total for each triplet). As before, we modelled each set of 400 mutants 
(that is, one residue pair in one background) using 40 single-amino-acid 
parameters (we did not globally model all 2,400 mutants together). 
One notable triplet is found in the J domain of HSJ1a, where R60 and 
D64 both interact with the hydroxyl group on Y3 (Fig. 4g, left). We 
observe strong couplings (more than 1.5 kcal mol−1) between each pair 
of 2 out of the 3 amino acids. However, when any of the 3 amino acids 
is mutated to alanine, the coupling between the remaining two amino 
acids becomes much weaker (less than 0.5 kcal mol−1; Fig. 4g, middle 
and right and Supplementary Fig. 4d). These results reveal a strong 
third-order coupling: the interaction between two amino acids is medi-
ated by a third amino acid.

This strong three-way coupling is noteworthy because the interac-
tions do not appear in the deposited NMR ensemble (PDB ID: 2LGW; 
Extended Data Fig. 8a,b). The NMR ensemble for 2LGW positions Y5  
(Y3 in our numbering) away from the helix containing R62 and D66, 
making the interaction network impossible. However, the AlphaFold- 
predicted structure shown in Fig. 4g (the highest confidence model 
out of five predictions) does include these interactions, which are also 
seen in other J-domain crystal structures from Caenorhabditis elegans 
(PDB ID: 2OCH) and Plasmodium falciparum (PDB ID: 6RZY). The strong 
couplings that we identify support the AlphaFold model and suggest 
the deposited ensemble is missing conserved interactions that form in 
HSJ1a, perhaps owing to the specific experimental conditions used. This 
example illustrates how large-scale folding stability measurements can 
reveal the thermodynamic effects of a critical interaction even when 
that interaction is not present in the deposited NMR structure. Notably, 
AlphaFold itself does not always predict this network either, depending 
on the specific linkers used (Extended Data Fig. 8d,e).

The scale of cDNA display proteolysis makes it straightforward to 
characterize unique cases such as these, which can serve as stringent 
tests for models of folding stability. Strong third-order couplings like 
this example also present a special challenge for computational models 
that calculate stabilities by summing interaction energies between pairs 
of residues using a single reference structure. Deep learning models 
that implicitly represent conformational landscapes31 may be more 
promising, but training these models using large-scale thermodynamic 
measurements will be essential to achieve their potential.

Influence of stability on evolution
Next, we examined how selection for stability influences protein 
sequence evolution in concert with other evolutionary mechanisms. 
It is well known that proteins contain specific functional residues that 
are commonly deleterious to stability34,35. However, the challenge of 
measuring stability has made it difficult to experimentally distinguish 
selection for stability from other selective pressures on a global level36–

38. To examine the strength of selection for stability, we created a simple 
classification model to predict the wild-type amino acid at any site in 
a natural protein based on the folding stabilities of all substitution 
variants at that site (excluding Cys) (Fig. 5a). The model contains two 
parts: (1) a shared weight function that converts absolute stabilities of 
protein variants into relative probabilities of those amino acids, and 
(2) amino-acid specific offsets that shift amino acid probabilities by a 
constant amount at all sites. We fit the parameters of the shared weight 
function (a flexible monotonically increasing function) and the offsets 
together using stability data for wild-type sequences and substitution 
variants at 5,214 sites in 90 non-redundant natural proteins (99,156 ΔG 
measurements in all; Fig. 5a). Our simple model fits the data well by 
three criteria: (1) it correctly produces the overall frequencies of the 
19 (non-Cys) amino acids (Fig. 5b), (2) the predicted amino acid prob-
abilities are correctly calibrated across the full range of probability 
(Supplementary Fig. 5), and (3) the model performs similarly well on 

the training set and on a held-out testing set consisting of 758 sites in 
11 domains with no similarity to the training set (Fig. 5e).

The model parameters reveal the strength of selection for stability 
across this diverse set of domains from many organisms. Within the 
main range of our data (folding stabilities from 1.5 to 4 kcal mol−1), 
amino acid probabilities increase approximately linearly with increased 
stability, with a 1 kcal mol−1 stability difference between protein vari-
ants indicating an approximately 9.2-fold difference in sequence 
likelihood (Fig. 5c). The slope is steeper in the low-stability region 
(ΔG < 1 kcal mol−1), indicating stronger selection for stability. How-
ever, our 90-protein training set includes only 2 wild-type sequences 
with ΔG < 1 kcal mol−1, and this may bias this result. The global offsets 
to each amino acid’s probability (Fig. 5d) are different from the empiri-
cal amino acid frequencies (Fig. 5b) and indicate the probabilities of 
each amino acid under conditions in which all sequence variants are 
equally stable. The offsets span a 32-fold range: the most likely amino 
acid (Glu) is 32-fold more likely to occur (21.5/2−3.5) than the least likely 
amino acid (Trp) when sequence variants with these amino acids at 
the same site are equally stable (Fig. 5d). This probability difference 
corresponds to a stability difference of ~1.6 kcal mol−1 (Fig. 5c); that 
is, Trp and Glu would be equally likely at a site if the Trp variant were 
1.6 kcal mol−1 more stable than the Glu variant. Assuming equal stabili-
ties, the most likely amino acids are the charged amino acids Glu, Asp, 
and Lys, suggesting selection for solubility, whereas the least likely 
amino acids are the nonpolar aromatic amino acids Trp, Phe and Tyr, 
along with Met. These offsets provide a quantitative ‘favourability’ 
metric incorporating all non-stability evolutionary influences on amino 
acid composition, including selection for amino acid synthesis cost39, 
codon usage40, avoiding oxidation-prone amino acids, net charge and 
function. These offsets also highlight that biophysical models and 
protein design methods trained to reproduce native protein sequences 
will not consistently optimize folding stability; Fig. 5d quantifies the 
amount by which specific amino acids are over- or underrepresented 
in small domains compared to their effects on stability. Notably, these 
offsets are similar to findings from an independent analysis of global 
discrepancies between variant effect data and sequence-likelihood 
modelling41.

Properties of functional residues
Selection for function also causes protein sequences to diverge from 
the variants with the highest stability sequence. Previous studies36,37 
used this principle to identify functional sites based on the difference 
between evolutionary conservation and predicted effects on stability. 
We expanded this strategy to use experimental stability measurements 
and examined the properties of functional sites on a large scale. We 
identified functional sites in 104 diverse protein domains by com-
paring each site’s average ΔΔG of substitutions with its normalized 
GEMME42 score, a measure of sensitivity to mutations inferred from 
multiple sequence alignments (Extended Data Fig. 9a and Methods). 
High sensitivity generally indicates high evolutionary conservation. 
Sites where wild-type amino acids are critical for stability (more nega-
tive average ΔΔG, rightward) tend to be more sensitive to mutation 
(upward) and vice versa. We defined all sites in the upper left region 
(where the site is sensitive to mutations yet unimportant for stability, 
9% in total) to be ‘functional’ sites. This classification correctly identi-
fies key binding residues in the chromodomain of HP1 and the SH3 
domain of BBC1 (Extended Data Fig. 9b,c, full data in Supplementary 
Fig. 6). Across all 104 domains, Gly, Asp and the bulky amino acids (Trp, 
Arg and Tyr) were frequently classified as functional (Extended Data 
Fig. 9d), and the fraction of functional sites ranged from 0 to approxi-
mately 25% (Extended Data Fig. 9e). The domains with the highest frac-
tion of functional sites were the nucleic acid binding domains Sso7d 
(PDB ID: 1JIC) and ribosomal protein S19 (PDB ID: 1QKH; Extended  
Data Fig. 9f).
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Our original criteria classify nearly all buried sites as non-functional; 
the mutational sensitivity at these sites is attributed to the destabiliz-
ing effects of hydrophilic substitutions. To identify buried functional 
sites, we modified our criteria by considering only substitutions to 
nonpolar amino acids (Extended Data Fig. 9g). With this approach, 
most functional sites are still on the surface, but some are found in 
the core (Extended Data Fig. 9h). In the DUF1471 domain of Salmonella 
typhimurium yahO, GEMME’s evolutionary model indicates that the 
buried A64 is sensitive to nonpolar substitutions, but our data show 
that substitutions to Tyr or Phe increase folding stability (Extended 
Data Fig. 9i). This suggests that A64 is important for function, perhaps 
by maintaining the overall protein shape. Similarly, in the N-terminal 
domain of human FK506-binding protein 3, GEMME’s model indicates 
that the buried L55 is sensitive to nonpolar substitutions, but our data 
show that substitutions to Ile, Val or Phe have no effect on stability 
(Extended Data Fig. 9j). Again, this suggests that L55 is important for 
function and that substitutions at L55 may allosterically modulate the 
domain’s DNA binding activity. This is consistent with NMR experi-
ments that show a chemical shift perturbation at L55 in response to 
DNA binding, even though the residue is buried beneath the surface43 
(Extended Data Fig. 9j). The other chemical shift perturbations are 
mainly found in the functional residues on the surface. These results 
highlight unusual cases where buried sites are conserved for function 
instead of stability.

Large-scale data to guide design
The unique scale of cDNA display proteolysis creates new opportunities 
for improving protein design. Here, we examined three applications: 
(1) characterizing the stability determinants of highly polar designs, 
(2) identifying stabilizing mutations, and (3) benchmarking the pro-
tein design tool PROSS44. The hydrophobic effect is considered the 
dominant force in protein folding2 and previous studies of designed 
miniproteins have emphasized the importance of nonpolar burial18,30. 
We hypothesized that mutational scanning of high-stability, highly 
polar designs could reveal alternative routes to high stability while 
minimizing hydrophobicity-induced aggregation. Although the muta-
tional scanning patterns for highly polar designs were not obviously 
different from other designs, we identified several designs that pos-
sessed exceptionally strong polar interactions (large dots in Extended 
Data Fig. 10a). In Extended Data Fig. 10b, we highlight stabilizing polar 
networks and a cation–π interaction in these unusual designs (see 
Supplementary Fig. 7 for full mutational scanning results). The aver-
age ΔΔG for substitutions at these polar sites ranged from −0.20 to 
−1.33 kcal mol−1, corresponding to the top 63 to 1.5 percentile for all 
3,694 polar sites in 145 designs. Our massive dataset made it possible to 
identify these rare highly stabilizing interactions. Notably, the second 
hydrogen bond network in EHEE_rd2_0152 is also found in two other 
more hydrophobic designs. However, the network is less sensitive to 
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substitution in those designs, highlighting how the overall protein 
environment mediates the effects of substitutions even on the protein 
surface (Extended Data Fig. 10c–e).

We next examined how our approach could identify stabilizing 
mutations. Predicting and designing stabilizing mutations is a major 
goal of protein modelling, but prediction accuracy remains low14. In 
part, this is because stabilizing mutants are rare in current databases11  
(outside of reverting a destabilizing mutant), limiting the data available 
for improving modelling. Our large-scale approach revealed 2,600 
mutations that increase folding stability by at least 1 kcal mol−1. The 
fraction of stabilizing mutations was approximately 0.2% to 0.6% for 
different protein types (Fig. 6a). Stabilizing mutations were enriched 
at functional sites (23% of the stabilizing mutations from 8% of sites 
classified as functional). Notably, our set includes 112 examples of 
stabilizing insertions and deletions. Figure 6b shows two exam-
ples of different classes of stabilizing mutations from our dataset  
(Supplementary Fig. 8).

Finally, we applied our method to evaluate PROSS44, an automated 
method for increasing folding stability using structural modelling 
and evolutionary data. We tested 727 PROSS designs for 172 protein 
domains with wild-type ΔG < 4 kcal mol−1. Unlike previous studies45, our 
mutational scanning data enabled us to examine the isolated effect of 
every individual substitution in each design. The average increase in 
stability from PROSS was 0.6 ± 1.0 kcal mol−1 (mean ± s.d.) (Fig. 6c). As 
intended, PROSS avoided mutations at functional positions: only 2% of 
PROSS-designed mutations were at functional sites, compared with 9% 
of sites classified as functional (defined in Extended Data Fig. 9a). Two 
example designs are shown in Fig. 6d. Larger numbers of mutations 

typically led to larger increases in stability (Extended Data Fig. 11a), as 
theorized previously14. Our mutational scanning data showed that the 
average effect of a single designed mutation was 0.2 ± 0.5 kcal mol−1 
(Extended Data Fig. 11b). On average, the stabilization from PROSS was 
comparable in size to the best single designed mutation, and smaller 
than the two best mutations added together (Extended Data Fig. 11c). 
Evaluating individual designed mutations by direct comparisons to 
mutational scanning data provides a novel approach for systematically 
improving design methods.

Discussion
The cDNA display proteolysis method massively expands the scale of 
folding stability experiments. Nonetheless, the method currently has 
notable limitations. First, our assay is limited to proteins that express 
and fold in the cell-free environment and are compatible with cDNA 
display. Owing to the very low concentration of each library member, 
proteins that are stabilized in complexes are probably unsuitable for 
this assay. Second, because we digest proteins under native condi-
tions, our inferred thermodynamic stabilities are only accurate when 
(1) folding is fully cooperative (no segments get cleaved without global 
unfolding46), (2) folding is at equilibrium during the assay (no kinetic 
stability or spurious stability owing to aggregation), (3) K50,U is accu-
rately inferred (Fig. 1c), (4) cleavage leads to dissociation of the cDNA 
(minimal disulfide or other crosslinking that could retain the C terminus 
after proteolysis), and (5) cleavage rates fall within the measurable 
range of the assay, which currently limits the dynamic range to around 
5 kcal mol−1 (Fig. 1c). Many domains—particularly larger protein struc-
tures—do not satisfy these conditions. Our mutational scanning data 
often suggested cases of non-cooperativity or aggregation, but these 
potential artefacts can be invisible when assaying individual sequences 
without mutational scanning. Furthermore, cleavage from folded states 
may be undetectable even with mutational scanning data if both pro-
teases are equally affected and the cleavage is not overly sensitive to 
any individual mutation. Combining cDNA display proteolysis with 
chemical denaturation (pulse proteolysis21) may overcome some of 
these obstacles and enable mega-scale analysis of less cooperative 
and/or higher stability proteins. Advances in DNA synthesis47,48 will 
also make it possible to expand cDNA display proteolysis beyond the 
largest domains studied here (72 amino acids). Finally, multiplexed 
measurements and automated data processing have the potential to 
introduce inaccuracies, although we worked to exclude unreliable data. 
For notable individual results, examining the raw data can be helpful, 
and we included all data and code to regenerate all fits.

Despite these limitations, the unique scale of cDNA display proteoly-
sis opens completely new possibilities for studying protein stability. 
By comprehensively measuring single mutants across nearly all small 
structures in the Protein Data Bank, we quantified several global trends: 
trends in amino acid fitness at different sites, trends in the effects of sin-
gle and double mutants, and trends in how stability influences sequence 
evolution. Alongside these trends, our analysis uncovered hundreds of 
exceptional cases that would be challenging to identify by smaller-scale 
methods. These include mutations with extreme effects, sites with 
unus ual stability landscapes, and pair interactions with unusually 
strong thermodynamic couplings. The thermodynamic couplings  
that we identified in the J domain of human HSJ1a (Fig. 4g)—which 
was not present in the deposited NMR structure—highlight how large- 
scale stability assays can complement other methods for revealing 
structural details in solution. Beyond studying stability, cDNA dis-
play proteolysis will have other applications, including assaying 
designed proteins on a massive scale to systematically improve design  
methods18,30,31,49 and to dissect the relationships between folding sta-
bility and function50.

Achieving an accurate, quantitative understanding of protein sta-
bility and its sequence dependence has long been a central goal in 
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biophysics. We envision millions of cDNA display proteolysis measure-
ments forming the foundation for a new generation of deep learning  
models that predict absolute folding stabilities and effects of muta-
tions. Breakthroughs in structure prediction powered by deep learning 
have demonstrated the power of these models in protein science, but 
collecting sufficient thermodynamic data has always been a major 
obstacle. Owing to the scale and efficiency of cDNA display proteolysis, 
the main limit to measuring stability for millions of small domains is 
the cost of DNA synthesis and sequencing—both of which are rapidly 
decreasing. The size and diversity of the protein sequence space creates 
enormous challenges for biology and protein design. cDNA display 
proteolysis offers a powerful approach for large-scale mapping of fold-
ing stability across this space.
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Methods

Selection of natural proteins for mutational scanning
We first collected all monomeric proteins in the PDB in the 30–100 
amino acid length range in June 2021. We next excluded structures that 
had only a single helix, contained other molecules (for example, pro-
teins, nucleic acids or metals), were annotated to have DNAse, RNAse 
or protease inhibition activity, or included more than four cystines. We 
then removed redundant sequences (amino acid sequence distance <2).  
We then predicted the structures of these PDB sequences using  
AlphaFold (even though the PDB structures were known), and used 
the AlphaFold models to trim amino acids from the N- and C termini 
that had a low number of contacts with any other residues. Finally, 
we selected domains with up to 72 amino acids after excluding N- or 
C-terminal flexible loops.

EEHH design method
EEHH protein design was performed in three steps: (1) backbone 
construction, (2) sequence design, (3) selection of designs for deep 
mutational analysis. Backbone construction (the de novo creation of a 
compact, three-dimensional backbone with a pre-specified secondary 
structure) was performed using a blueprint-based approach described 
previously51,52. All blueprints are included as Blueprints_for_EEHH.zip 
in Source data.

Hallucination design method
We used a TrRosetta hallucination protocol described previously in 
the previous reports31,32 and available at https://github.com/gjoni/
trDesign/tree/master/02-GD to unconditionally generate protein 
backbones and sequences with lengths ranging from 46 to 69 amino 
acids by maximizing the Kullback–Leibler divergence between the 
predicted and background distance/angle distributions. Predicted 
distograms and anglegrams were used to obtain 3D structures of 
these models as described in the TrRosetta paper53. We selected the 
best designs according to the predicted distogram and 3D structure  
match.

DNA oligonucleotide library construction
All sequences were reverse-translated and codon-optimized using 
DNAworks2.054. Sequences were optimized using E. coli codon frequen-
cies because we used an in vitro translation kit derived from E. coli. 
Oligonucleotide libraries encoding amino acid sequences of Library 
1 were purchased from Agilent Technologies.

Library 1. We selected ~250 designed proteins and ~50 natural proteins  
that are shorter than 45 amino acids. Then, we created amino acid  
sequences for deep mutational scanning followed by padding by Gly, 
Ala and Ser amino acids so that all sequences have 44 amino acids.  
The total number of sequences is ~244,000 sequences Purchased from 
Agilent Technologies, length 230 nt.

Library 2. We selected ~350 natural proteins that have PDB structures 
that are in a monomer state and have 72 or less amino acids after remov-
ing N and C-terminal linkers. Then, we created amino acid sequences 
for deep mutational scanning followed by padding by Gly, Ala and Ser 
amino acids so that all sequences have 72 amino acids. The total number 
of sequences is ~650,000 sequences. This library also includes scramble 
sequences to construct unfolded state model. Purchased from Twist 
Bioscience, length 250 nt.

Library 3. We selected ~150 designed proteins and created amino acid 
sequences for deep mutational scanning of the proteins. We also in-
cluded comprehensive deletion and Gly or Ala insertion of all wild-type 
proteins included in Library 1 and Libary 2. Additionally, amino acid se-
quences for comprehensive double mutant analysis on polar amino acid 

pairs were also included. The total number of sequences is ~840,000 
sequences. Purchased from Twist Bioscience, length 250 nt.

Library 4. Amino acid sequences for exhaustive double mutant analysis 
on amino acid pairs located in close proximity were included. We also 
include overlapped sequences to calibrate effective protease concen-
tration and to check consistency between libraries. The total number of 
sequences is ~900,000 sequences. Purchased from Twist Bioscience, 
length 300 nt.

DNA and mRNA preparation for cDNA display proteolysis 
method
Oligonucleotide libraries were amplified by PCR using KOD PCR  
Master Mix (Toyobo) to add T7 promoter, PA tag to an N-terminal, 
and His tag to an C-terminal of the proteins. The number of cycles was  
chosen based on a test qPCR run to avoid overamplification using 
SsoAdvanced Universal SYBR Green Supermix (Bio-Rad). The PCR 
product was gel extracted to isolate the expected length product. 
Then we used T7-Scribe Standard RNA IVT Kit (Cellscript) to synthesize  
mRNA using the DNA fragment as a template.

Preparation of protein–cDNA complex
We followed the protocol essentially as described24,55, with some modi-
fications, described below.

Photo-crosslinking between mRNA and the puromycin linker. We 
prepared the photocrosslinking reaction solution (usually at 40 μl 
scale) using 100 mM NaCl, 20 mM Tris-HCl (pH 7.5), 1 μM cnvK linker 
(EME), 1 μM mRNA. The solution was incubated at 95 °C for 5 min, then 
slowly cooled down to 45 °C (0.1 °C s−1) using a thermal cycler. Then the 
solution including the duplex was irradiated with UV light at 365 nm 
using a 6 W Handheld lamp (Thermofisher) for 15 min. At 40 μl scale (40 
pmol cnvK linker and 40 pmol mRNA total), this produces crosslinked 
mRNA sufficient for 48 proteolysis reactions.

In vitro translation and reverse transcription. We used the PUREfrex 
2.0 (GeneFrontier) translation system according to the manufacturer 
protocol. We typically used a 160 μl total reaction including 40 μl of 
the mRNA-cnvK linker duplex product from Step 1 and RiboLock RNase 
Inhibitor (Thermofisher). We incubated the reaction at 37 °C for 2 h. 
After the incubation, 500 mM EDTA (16 μl for a 160 μl reaction) was 
added to the sample to dissociate ribosomes. Then, an equal amount 
(160 μl for a 160 μl reaction) of 2× binding/washing buffer (20 mM Tris 
pH 7.5, 2 mM EDTA, 2M NaCl, 0.2% Tween) was added. The solution was 
added to Dynabeads MyOne Streptavidin C1 (Thermofisher, 200 μl  
for 40 pmol mRNA) to pull down the protein-mRNA complex and incu-
bated at room temperature for 20 min. Before use, streptavidin beads 
were pre-washed with (1) 100 mM NaOH, 50 mM NaCl, then (2) 100 mM  
NaCl to remove any RNase activity. After streptavidin pull-down, the 
beads were washed by 1× binding/washing buffer once and rinsed 
twice by TBS (10 mM Tris-HCl pH7.5, 100 mM NaCl), and we added 
reverse transcription solution (PrimeScript RT Reagent Kit; Takara) 
onto the beads with protein mRNA complex, and incubated the beads  
at 37 °C for 30 min.

Purification of protein–cDNA complex. After the reverse transcrip-
tion, the protein–cDNA complex was eluted with His-binding buffer  
(30 mM Tris pH7.4, 0.5 NaCl, 0.05% Tween) with RNase T1 (Thermofish-
er) usually in 400 μl scale. The eluent was added to His Mag Sepharose 
Ni (Cytiva) (800 μl for 40 pmol starting mRNA) and incubated at room 
temperature for 30 min. Then the complex was eluted by His-binding 
buffer with 400 mM imidazole (usually 400 μl) and the eluent was 
buffer-exchanged to PBS by Zeba Spin Desalting Column (Thermofisher).  
Then the complex was snap-frozen with liquid nitrogen and stored 
at −80 °C until the following protease assay. When starting from  
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40 pmol cnvK linker and 40 pmol mRNA for step 2, we would typically 
finish this step with 400 μl of protein–cDNA complex divided into  
4 frozen tubes (100 μl each) for four sets of 12 protease experiments 
(48 conditions total).

Protease assay on protein–cDNA complex
Proteolysis reactions were performed in two ‘replicates’ of 12 condi-
tions each (11 protease concentrations in a threefold dilution series and 
one condition with no protease). Replicate 1 used a maximum protease 
concentration of 25 μM and replicate 2 used 43.3 μM (25 x 30.5 μM). For 
one replicate (12 reactions), we started from ~25 μl complex, diluted this 
in PBS up to 240 μl, then added 20 μl to each of the 12 Protein LoBind 
tubes used for that replicate. Each reaction contained protein–cDNA 
complex equivalent to 0.83 pmol starting cnvK linker and 0.83 pmol 
starting mRNA. To start each reaction, we added 40 μl of protease solu-
tion to each tube. After 5 min protease digestion at room temperature, 
we added 200 μl chilled 2% BSA in PBS to quench the reaction, then 
the solution was added to 40 μl Dynabeads Protein G (Thermofisher) 
preincubated with anti-PA tag (Wako; Clone number: NZ-1; 1 μg antibody 
per 30 μl beads), and incubated at 4 °C for 1 h. Then the beads were 
washed by washing buffer (PBS including 800 mM NaCl and 1% Triton) 
three times and rinsed by PBS three times, then the complex was eluted 
with 50 μl PBS including 250 μg ml−1 PA peptide (Wako) and 200 μg ml−1 
BSA (Thermofisher). Trypsin experiments used Trypsin-EDTA (0.25%) 
with phenol red (Thermo Fisher Scientific) for consistency with  
ref. 18 and chymotrypsin experiments used α-chymotrypsin from 
bovine pancreas (Sigma).

qPCR analysis of cDNA display proteolysis results on individual 
proteins
The cDNA amount for each specific sequence in the eluents was quanti-
fied by qPCR using SsoAdvanced Universal SYBR Green Supermix and 
specific primers for each sequence. The qPCR was performed using 
CFX96 Touch Real-Time PCR Detection System (Bio-Rad), and the 
qPCR cycles were determined by the CFX Maestro Software (Bio-Rad). 
Extended Data Fig. 1.

Next-generation sequencing sample preparation
For DNA library analysis, one-half volume (25 μl) of the eluted cDNA of 
the complex was amplified by PCR using SsoAdvanced Universal SYBR 
Green Supermix (BioRad) to add P5 and P7 NGS adapter sequences. 
The number of cycles was chosen based on a test qPCR run using the 
same PCR reagents to avoid overamplification. The DNA fragment 
length and concentration were confirmed by 4200 TapeStation System 
(Agilent), then the samples were analysed by NovaSeq 6000 System  
(Illumina).

Processing of next-generation sequencing data
Each library in a sequencing run was identified via a unique 6- or 8-bp 
barcode. Following sequencing, reads were paired using the PEAR pro-
gram56 then the adapter sequences were moved by Cutadapt57. Reads 
were considered counts for a sequence if the read perfectly matched 
the ordered sequences at the nucleotide level.

Overall strategy for inferring K50 and ΔG from sequencing data
We used Bayesian inference to infer K50 and ΔG values for all sequences 
in our library. This analysis uses two main models. The first model is 
called the ‘K50 model’ and infers each sequence’s K50 values based on the 
sequencing count data. The second model is called the ‘unfolded state 
model’ and predicts each sequence’s unfolded state K50 value (K50,U) 
based on its sequence. Both models are implemented in Python 3.9 
using the Numpyro package58 version 0.80. In Supplementary Notes, 
we describe the structure of each model and the procedure for fitting 
each model. Our scripts to reproduce the complete fitting process are 
provided in the Source Data.

Replicate analysis of K50

Instead of sampling K50 values using 24 samples per protease at one time 
as described in step 5 above, we sampled K50 values using one experi-
ment set (that is, 12 samples) and obtained K50 for trypsin replicates 1 
and 2, and chymotrypsin replicates 1 and 2. Note that we still used the 
calibrated protease concentrations to improve consistency between 
replicates. The replicates were conducted on different days using the 
same preparation of the protein–cDNA complex.

Data for purified protein experiments
The data on purified proteins shown in Fig.  1g was taken from  
refs. 29,59–71.

Data quality filtering and classification of datasets 1–3
Our data (Fig. 2) were filtered for quality in three stages. First, our Bayes-
ian procedure produces confidence intervals for K50 and ΔG estimates, 
producing a quality estimate for each individual measurement. Second, 
we evaluated the quality of each full mutational scan, classified these 
into categories, and removed the low quality categories from our main 
analysis (below). Third, we filtered our mutational scanning data to 
remove mutants that showed evidence of causing cleavage from the 
folded state or intermolecular disulfide cross-linking.

Analysis of Bayesian confidence intervals. Nearly all low-confidence 
ΔG estimates result from stabilities that are outside the main dynam-
ic range of the assay (−1 to 5 kcal mol−1). This is due to the very steep 
slope of ΔG with respect to K50 in this range (see Fig. 1e). For all figures, 
we clip all ΔG estimates to the range of −1 to 5 kcal mol−1 before fur-
ther analysis. In the table of all data, the ‘dG_ML’ column categorizes  
sequences as ‘<−1’ and ‘>5’ if the 95% confidence interval is fully out-
side the range. Of the sequences with ΔG estimates between −1 and  
5 kcal mol−1, the median sequence had a 95% confidence interval width of  
0.14 kcal mol−1, and 99.9% of sequences had confidence intervals 
smaller than 0.96 kcal mol−1. Although a very small fraction of ΔG 
estimates were low confidence (that is, had a wide confidence inter-
val), we still included these sequences in all analyses. Note that these 
confidence intervals only reflect the model’s uncertainty stemming 
from the finite deep sequencing counts; other uncertainties (such 
as uncertainty in K50,U, K50,F, protease concentrations, the validity of 
the kinetic model, and so on) are not reflected in these confidence  
intervals.

Classification of mutational scans. All mutational scanning data were 
classified into 12 groups (0 to 11) according to the protocol in Extended 
Data Fig. 8. Groups 0 and 1 contain the mutational scans that passed all 
quality filters. Domains in group 0 have wild-type ΔG values below 4.75 
kcal mol−1 so that stabilizing mutations can still fall within the cDNA 
proteolysis assay’s dynamic range. Group 1 contains the remaining 
high-quality domains. Groups 2–11 contain mutational scans that failed 
one or more quality filters. All mutational scans are included in only one 
group, so a mutational scan classified as ‘group 5’ (for poor correlation 
between independent trypsin and chymotrypsin results) might also fail 
other filters (such as having a poor slope or intercept between trypsin 
and chymotrypsin results).

Below, we define each group, along with a short explanation of pos-
sible causes.

Group 0: Passing all quality filters.
Group 1: Passing all quality filters, but wild-type ΔG > 4.75 kcal mol−1, 

so stabilizing mutants may not be resolved compared to the wild type.
Group 2: Poor expression in the assay, based on low counts in 

next-generation sequencing.
Group 3: The wild-type protein is too unstable to see sequence– 

stability relationships. This may be due to a truly unstable wild-type 
sequence or due to rapid cleavage of some segment in the folded state.



Group 4: The wild-type stability (ΔG) is inconsistent. We often 
observed this for high stability proteins in our first library where the 
wild-type stability exceeded the dynamic range of the assay.

Group 5: Poor correlation between trypsin experiment and chymo-
trypsin experiments. This can suggest that one or both proteases are 
not probing global unfolding, leading to different mutational patterns 
between the proteases.

Group 6: Poor slope between trypsin experiment and chymotrypsin 
experiments. This can suggest that some cleavage is occurring from 
folded state(s) for one or both proteases. If cleavage can occur from 
the folded state for one protease, the modelled K50,F will be different 
from the true K50,F, creating a slope between the inferred ΔG values and 
the true ΔG values (see Fig. 1e).

Group 7: Too many stabilizing mutants. In a typical well-folded 
domain, most mutations are neutral, so a very large fraction of stabi-
lizing mutations suggests the wild-type ΔG may not have been meas-
ured accurately. Furthermore, when the large majority of hydrophobic 
substitutions at surface sites are stabilizing, this suggests the domain 
may be stabilized by non-specific intermolecular interactions. For these 
reasons, we removed domains showing these patterns.

Groups 8 and 9: Includes multiple cysteines with proper folding 
(G8) or misfolding (G9). Disulfide linkages have the potential to dis-
rupt our assay by preventing the C-terminal cDNA from dissociating 
from the protein N terminus even after the protein is proteolysed. In 
general, we found that proteins with >1 Cys performed poorly in our 
assay and many of these proteins are found in groups 2–7. Owing to 
these results, we decided to remove the remaining proteins with >1 Cys 
(group 9). However, two proteins appeared to produce good results. 
Although we chose not to include these proteins in our main analysis, 
they have been separated into group 8 (high-quality data from proteins  
with >1 Cys).

Group 10: Poor intercept between trypsin experiment and chy-
motrypsin experiments. A poor intercept indicates that our trypsin 
and chymotrypsin experiments cannot agree on where ΔG = 0 is for 
the overall mutational scan. This depends on the unfolded model for 
each protease (the inference of K50,U for each protease). Because the 
two proteases did not agree on the ΔG values for these sequences, 
the ΔG values are likely less reliable than those in group 0 and group 
1. However, ΔΔG values for this group are still consistent across both  
proteases.

Group 11: Probably cleavable in folded states. In many cases, excessive 
cleavage from the folded state or partially folded states will lead to low 
wild-type stability (G3), poor correlation between the proteases (G5), 
or a poor slope (G6). However, we saw some evidence of folded state 
cleavage even in mutational scans that passed these filtering criteria. 
Specifically, we observed cases where mutating out a wild-type cut site 
led to increased protease resistance (higher K50) and apparently higher 
stability (ΔG) to one specific protease but not the other (for example, 
R16 in Extended Data Fig. 6a,b). This increase in apparent stability for 
just one protease suggests that either the site can be cleaved from 
folded state(s) for that protease, or removing the cut site is decreas-
ing unfolded state susceptibility (K50,U) in a way that is not properly 
accounted for by our model. Because these conditions lower the reli-
ability of our ΔG estimates, we removed these mutational scans from 
analysis. The code to perform this filtering is provided (Data_quality_ 
filtering_script.ipynb).

Removal of individual mutants that may disrupt the assay. In the 
previous stage, we filtered out entire domains; here, we filtered out 
data from individual mutants in domains that otherwise passed filtering 
(that is, were in group 0 or group 1). We focused on two specific types 
of mutations that could disrupt our assay. First, we filtered out data 
where introducing new cleavage sites into poorly structured regions of 
a protein resulted in apparent destabilization. Because these mutants 
are located in poorly structured sites, the apparent destabilization 

may result from cleavage from folded or partially folded states. These 
mutants were identified based on (1) apparent destabilization from 
introducing the new cleavage site, and (2) a low variance in stability 
between the other amino acids, which indicates a poorly structured 
region of the protein where cleavage might occur in the folded state. 
Second, we filtered out data where introducing Cys mutants into poor-
ly structured regions of a protein resulted in apparent stabilization. 
Again, because these mutants are located in poorly structured sites, 
the apparent stabilization may result from the formation of inter- or 
intramolecular disulfide linkages that prevent the dissociation of the 
C-terminal cDNA following protease cleavage. The code to perform this 
filtering is provided (Data_quality_filtering_script.ipynb).

All sequences in dataset 2 and dataset 3 are included in Tsuboy-
ama2023_Dataset2_Dataset3_20230416.csv. All sequences in this file 
have an inferred ΔG estimate, but only sequences in dataset 3 have a tab-
ulated ΔΔG estimate. Of course, one can calculate ΔΔG for the remain-
ing sequences in dataset 2, but these ΔΔG values will be biased toward 
destabilizing mutations because stabilizing mutations would typically 
be indistinguishable from the wild-type stability. Note that datasets 2 
and 3 include a very small number of sequences with low-quality data 
(wide confidence intervals) because these sequences come from muta-
tional scans that are high quality overall. Although these tables include 
all K50, ΔG and ΔΔG data (for dataset 3), low-quality data (including 
mutant data filtered in Stage 3) have been filtered out and replaced 
by a – symbol in the columns labelled ‘_ML’ (for machine learning).

Principal component analysis
We performed principal component analysis to determine the factors 
influencing stability of different amino acids (Fig. 3). To this end, we 
used 17,093 sites in the 365 domains that are classified as G0 in the 
above. All folding stability data were clipped between from −1 and  
5 kcal mol−1 because the folding stability outside the dynamic range 
is not reliable, and then the average of the stability for 20 amino acids 
for each site was subtracted from the data. Using the data, we per-
formed principal components analysis using the scikit-learn library 
implemented in Python 3.

Side chain contacts and burial analysis
Burial values and contact counts (Fig. 3b and Extended Data Fig. 9h) 
were computed based on AlphaFold models1 of all sequences using the 
included script Burial_side_chain_contact_Fig3_Fig6.ipynb based on Bio.
PDB72 and BioPython73. The calculation is based on the Rosetta ‘side-
chain_neighbors’ LayerDesign method previously reported18. In brief, 
to calculate the burial or contacts of residue X, we added up the number 
of residues in a cone projecting out 9 Å away from the Cβ atom on resi-
due X in the direction of the residue X Cα-Cβ vector. ‘Burial’ (Fig. 6h) 
indicates the number of Cα atoms in the cone. Contact counts (Fig. 3d) 
each count different atoms inside the cone: ‘side chain contact count’  
(Fig. 3d) counts all Cβ atoms; ‘aromatic side chain contact count’ counts 
all CE2 atoms of Phe, Tyr, and Trp; ‘acidic side chain contact count’ 
counts all Glu OE1 and Asp OD1 atoms; and ‘Basic side chain contact 
count’ counts all Lys NZ and Arg NE atoms.

Secondary structure determination
Using the DSSP algorithm74,75, we obtained secondary structure infor-
mation based on AlphaFold models (Fig. 3b).

Selection method of site pairs for double mutational analysis
Double mutants (Fig. 4) were selected for analysis in two ways. First, 
we manually selected polar interactions where either amino acid 
appeared important for stability in single mutational analysis. These 
pairs were mainly included in library 3. Second, we used the program 
confind76,77 to identify interacting residues. All confind pairs with nota-
ble interactions such as polar interactions and cation–π interactions 
were selected, along with a randomly chosen subset of more common 
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interactions such as hydrophobic interactions. These pairs were included  
in library 4.

Thermodynamic coupling analysis
The thermodynamic coupling model and the procedure for fitting the 
model (Fig. 4) are described in Supplementary Notes.

Wild-type amino acid prediction model
The wild-type sequence prediction model (Fig. 5) and the procedure 
for fitting the model are described in Supplementary Notes.

GEMME analysis
To calculate the normalized averaged GEMME score, which represents 
the sensitivity of a wild-type amino acid to substitutions inferred from 
evolutionary information (ΔΔE in the previous reports36,37), we ran 
GEMME42 on each natural amino acid sequence using the default param-
eters. We computed a single score for each site by averaging the scores 
of the 19 amino acids (except Cys), and then standardized each domain 
individually (subtracted the domain’s mean and divided by the domain’s 
standard deviation) so that the site scores within a domain had a mean 
of zero and a standard deviation of one. Finally, we flip the sign of the 
score so that positive values imply high susceptibility to mutations (that 
is, very negative raw GEMME scores for non-wild-type amino acids). We 
define this standardized score for each site as the normalized GEMME 
score. To build the input multiple sequence alignments, we performed 
five iterations of the profile HMM homology search tool Jackhmmer78,79 
against the UniRef100 database of non-redundant proteins80 using 
the EVcouplings framework81. We used the default bitscore threshold 
of 0.5 bit per residue.

Structural modelling by AlphaFold
For most of the structural analysis, we used structural models pre-
dicted by AlphaFold1. We ran AlphaFold using default parameters and 
chose the model with the highest pLDDT score for each sequence. 
For designed sequences, we skipped a step for generating multiple 
sequence alignment.

Statistics and reproducibility
We did not use statistical tests here. We did not perform multiple experi-
ments under exactly the same conditions, but we used two different 
proteases and two different protease concentration sets to confirm 
reproducibility. In addition, we also confirmed that the same amino acid 
sequences show consistent K50 values in different libraries (Extended 
Data Fig. 5).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the main text, the extended data figures or tables, 
or available for download at https://doi.org/10.5281/zenodo.7992926.

Code availability
The code for the analyses can be found at https://github.com/
Rocklin-Lab/cdna-display-proteolysis-pipeline.
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Extended Data Fig. 1 | Single turnover model fitting on qPCR data. (a) To test 
the single turnover model, we performed cDNA display proteolysis on a mixture 
of eight mini protein sequences with diverse folding stability and quantified 
the surviving amount of each cDNA using qPCR. We then each curve one at a 
time by Bayesian inference using the single turnover kinetics model in Fig. 1b. 
We sampled kmax*t and K50 for each sequence. Dots represent the observed cDNA 
amount quantified by qPCR and lines show the two-parameter fits. (b) Posterior 
distributions of kmax*t and K50 for eight proteins were shown. Whereas K50 
values vary between different proteins, kmax*t values (indicating saturation at 
high protease concentrations) were either constant or unconstrained by the 
data. (c) Based on the analysis (b), we fixed kmax*t at 100.65 and re-sampled K50 for 
each protein. Dots represent the observed cDNA amount quantified by qPCR 
(same as in (a)) lines show the one-parameter fits. (d) Posterior distributions of 
K50. For trypsin, the K50 values for the two most stable proteins (orange and blue) 
could not be defined because they were too stable and outside of the dynamic 
range of this proteolysis assay.



Extended Data Fig. 2 | Unfolded state model parameters and goodness  
of fit. (a) Fit parameters for the unfolded state model position-specific scoring 
matrix (PSSM) for trypsin. The mean of all coefficients (−0.4) was subtracted 
from the values in the figure to aid visualization. Positive values indicate  
faster proteolysis and lower predicted K50,U values. By using different prior 
distribution widths for different rows during fitting, we guided the strongest 
rate determinants into the center row of each matrix, which we label “P1” (the 
assay cannot actually identify the specific location of cutting). Overall, the 
heatmap resembles similar data as previously reported18 and is consistent with 
known trypsin specificity determinants, including the preference for R/K at P1, 
the inhibitory effect of P, and the unfavorability of D and E82. (b) 2D-histogram 

showing the overall agreement between the trypsin model (predicted K50,U, 
y-axis) and the data (experimental K50, x-axis). Only scrambled sequences with 
inferred ΔG < 0.5 kcal/mol (where we can assume K50 ≈ K50,U) are shown (53,949 
out of 64,238 total sequences used in training). The Pearson r value is shown. 
(c) Overall distribution of inferred ΔG of all scramble sequences. The vertical 
line represents 0.5 kcal/mol, which is a threshold used in (b). (d, e) As above, for 
chymotrypsin. As in our previous report18, the coefficients resemble established 
features of chymotrypsin specificity, including the preference for F/Y/W 
followed by M/L at P1, the inhibitory effect of P at P3, P1’, and P2’, and the 
general unfavorability of D and E83–86. The mean of all coefficients (−0.5) was 
subtracted from the values in the figure to aid visualization.
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Extended Data Fig. 3 | Relationship between offset in Fig. 1g and assay 
temperature. Previous studies shown in Fig. 1g used diverse conditions 
including buffer, pH, ion strength, and temperature (see Supplementary 
Table 1)29,59–71. However, our measurements were all conducted in PBS at room 
temperature (approximately 22 °C). In general, the offsets observed in Fig. 1g 
are correlated to the temperatures used in the previous studies, suggesting 
that the assay temperature is the main cause of the offsets. The red line 
represents a best fit line. The x-intercept (21.7 °C) is close to our assay condition 
(approximately 22 °C). 2HBB (the N-terminal domain of Ribosomal Protein L9) 
and 2WQG (SAP domain from Tho1) were not included in the linear fit. 2HBB is 
an outlier; this may owe to its zinc-binding activity or to differences between 
the measured sequences (our construct lacks three C-terminal amino acids 
present in the previous study). 2WQG is close to the fit line but was removed 
because the previous literature used the L31W background as ‘wild-type’; this 
mutation stabilizes the protein by 0.49 kcal/mol60.



Extended Data Fig. 4 | Heat maps for a stable domain (Ubiquitin; 1UBQ)  
and its destabilizing mutants. (a) Mutational scanning results for human 
erythrocytic ubiquitin (1UBQ) and its destabilizing mutant backgrounds  
(I3A and L67S). Heat maps show the ∆G of wild-type ubiquitin (top), ubiquitin 
I3A (middle-top), ubiquitin L67S (middle-bottom), and the difference (∆∆G) 
between two mutant backgrounds (bottom) for substitutions, deletions,  
and Gly and Ala insertions at each residue. In the three ∆G heat maps, white 
represents the folding stability of the wild-type and red/blue indicates 
stabilizing/destabilizing mutations. Black dots indicate the background 

(wild-type or mutant) amino acid, red slashes indicate missing data, and  
black corner slashes indicate lower confidence ∆G estimates, (95% confidence 
interval > 0.5 kcal/mol), including ∆G estimates near the edges of the dynamic 
range. (b) Consistency between mutant stabilities measured in the I3A 
background (x-axis) and L67S (y-axis) background. The plot is annotated with 
the number of points and the Pearson r value. (c) Ubiquitin structure highlighting 
the mutant points (I3 and L67) and the residues with a different effect on stability 
between two mutational backgrounds.
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Extended Data Fig. 5 | Consistency of K50 measurements across libraries.  
(a and b) To examine the consistency between K50 (μM) values measured in 
different libraries, we included identical sequences (potentially with different 
padding at the termini) in multiple libraries. For each pair of libraries with 
overlapping sequences, we show the K50 values for those sequences in both 
libraries for trypsin (a) and chymotrypsin (b). The top row shows raw K50 values 

for overlapping sequences in each library; the second row shows the difference 
in K50 estimates plotted against the K50 in one of the libraries. The red diagonal 
line shows Y=X in the top row and Y = 0 (i.e. identical K50 estimates) in the bottom 
row. Blue/orange vertical lines show K50,F; all K50 values above K50,F are treated  
as equivalent. Each plot is annotated at the top-left with the total number of 
overlapping sequences and Pearson r-value between the libraries.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Domains with and without evidence of cleavage  
from the folded state. (a) Mutational scanning results for 2L3X, which 
includes trypsin cleavage sites in the loop region. Left: Heat maps show the ∆G 
measurements from independent trypsin (top) and chymotrypsin challenges 
(bottom) for substitutions, deletions, and Gly and Ala insertions at each residue, 
with our one-indexed numbering at the bottom. Black dots indicate the wild-
type amino acid, red slashes indicate missing data, and black corner slashes 
indicate lower confidence ∆G estimates, (95% confidence interval > 0.5 kcal/
mol), including ∆G estimates near the edges of the dynamic range. The colored 
boxes highlight the flexible loop region. Right: Comparison of independent 
trypsin and chymotrypsin ∆G measurements. Multiple codon variants of the 
wild-type sequence are shown in red, reliable ∆G values in blue, and less reliable 
∆G estimates (same as above) in gray. The black dashed line represents Y = X. 

The dots show a reverse ‘L’ shape because trypsin can cleave the loop even from 
the folded state, lowering the apparent stability for the wild-type and all high-
stability variants. (b) 2L3X structure highlighting arginines in the loop region 
(R14 and R16). (c) Same as (a) for 2L3X after removing the trypsin-cleavable sites 
(R14 and R16) from the loop. In this deep mutational scanning, we observed 
higher consistency between trypsin and chymotrypsin challenges because we 
removed sites that could be cleaved in the folded state. (d) Top: Four example 
domains with long protease-cleavable loops that do not show evidence of folded 
state cleavage. Bottom: Agreement between mutant ∆G values independently 
determined using assays with trypsin (x-axis) and chymotrypsin (y-axis), as in 
(a). The consistency between the two proteases indicates that both proteases 
are measuring global unfolding, unlike the example in (a).



Extended Data Fig. 7 | Comparison of ∆∆G observed in experiments and ∆∆G 
reconstructed by the PCs. (a) Distribution of the mean ∆∆G values across all 
sites, using the experimental data (left) and ∆∆G values reconstructed from the 
principal components. More negative average ∆∆G values indicate greater 
stabilization from the wild-type amino acid. Center line, box limit, and whiskers 

represent median, upper and lower quartiles, and 1.5x interquartile range of 
each distribution (n = 17,093). (b) As in (a), grouped by domain types (natural 
domains, Rosetta designs, and hallucination designs). Center line, box limit, 
and whiskers represent median, upper and lower quartiles, and 1.5x interquartile 
range of each distribution (n = 17,093 in total).
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Extended Data Fig. 8 | Comparison of AlphaFold model and NMR structure 
for J domain of HSJ1a Structure of J domain in HSJ1a (2LGW). We show  
NMR structure of all states stacked (a) and the first state (b), and AlphaFold 
predicted structures for the minimum construct (the variable segment in cDNA 

display) (c), the construct with linkers for cDNA display proteolysis (d), and  
the exact sequence used for NMR (e). In (f), we overlay the first state of the NMR 
ensemble (cyan) with the AlphaFold structure (orange) of the minimal 
construct.



Extended Data Fig. 9 | Properties of functional sites across diverse 
domains. (a) The relationship between wild-type stability (average ∆∆G for 
substitutions) and evolutionary-based sensitivity to substitutions (normalized 
averaged GEMME score). All sites above the orange dashed line are highly 
conserved but unimportant for stability; we define these as “functional sites”. 
(b) As in (a), highlighting positions in the HP1 chromo domain (2M2L; green) 
and the BBC1 SH3 domain (1TG0; red). (c) Structures of HP1 chromo domain  
and BBC1 SH3 domain (gray) and their ligands (light blue). Functional sites are 
shown in orange. Ligand positions were modeled based on PDB structures 
1KNA (for HP1) and 2LCS (for the SH3 domain). (d) Amino acids are ranked by  
the percentage of positions where that wild-type amino acid is classified as 
functional, for positions in 104 non-redundant natural domains. (e) The 
percentage of functional residues in each of the 104 non-redundant domains. 
(f) Structures of the two domains with the highest percentages of functional 
residues. Nucleic acids interacting with each of the structures are shown in 
light blue and functional residues are shown in orange. The Sso7d-DNA 
complex is the crystal structure 1BNZ; the S19-RNA complex is modeled  
based on the 4V5Y structure. (g) As in (a), except only considering nonpolar 

substitutions for calculating ∆∆G and normalized averaged GEMME score.  
(h) The distributions of burial (side chain contacts) for all sites (blue), sites 
where the wild-type amino acid is unimportant for stability (average ∆∆G < 1 
kcal/mol) (green), and functional sites (orange). Functional sites are generally 
located on the surface of the protein. Two unusual buried functional residues 
are highlighted. (i) Structure of the DUF1471 domain of yahO (2MA4) with 
functional sites in orange and the unusual buried functional site A64 in red. 
Ala64 is highly conserved yet the domain is stabilized by substitutions to Tyr or 
Phe (positive ∆∆G, x-axis). However, Tyr and Phe are rarely found in evolution 
(low GEMME score, y-axis). ( j) Left: Structure of the N-terminal domain of 
FK506-binding protein 3 (2KFV) with functional sites in orange and the unusual 
buried functional site L55 (L78 in PDB numbering) in red. Middle: Residues  
with chemical shift perturbations in response to DNA binding43; L55 shows a 
perturbation despite not contacting DNA. Right: L55 is conserved (high GEMME 
score, y-axis) but relatively unimportant for stability (low average ∆∆G, x-axis). 
Substitution to Phe, Val, or Ile is thermodynamically neutral (∆∆G near zero) 
but these amino acids are rarely found in evolution (low GEMME score).
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Extended Data Fig. 10 | Analysis of stable yet less hydrophobic designs  
and notable hydrogen bond networks. (a) Relationship between 
hydrophobicity (calculated based on the previous report86) and folding 
stability (∆G) for designed proteins18. Examples from (b) are shown as large 
dots. (b) For three proteins with high folding stability and low hydrophobicity, 
we highlight critical hydrophilic interactions stabilizing these proteins. Gray 
density plots show the average ∆∆G of substitutions at 3,858 polar sites in 151 
designed domains. Colored vertical bars show the values for the highlighted 
positions. These three proteins feature polar amino acids where the average 
∆∆G of substitutions is unusually destabilizing (> top 5%ile). For HHH_rd1_0756, 
K22 is shown as a red line; the interacting W32 is considered nonpolar and not 
shown. Full mutational scanning results are shown in Supplementary Fig. 7. All 
three structures are design models reported previously18, not experimental 
structures. (c) As in (a), highlighting EHEE_rd2_0152 (from (b)) and two other 

designs with the same hydrogen bond network. (d) Average ∆∆G of substitutions 
at 3,715 polar sites in 144 designed domains. The colored vertical bars indicate 
the values for the sites related to the 2nd hydrogen bond network shown in  
(b) for EHEE_rd2_0152. (e) Relationship between ∆∆G in EHEE_rd2_0152 and in 
the other designs EHEE_rd2_0372 or EHEE_rd2_0191 for E11, R14, and E18. At E11, 
substitutions to the 19 other amino acids have smaller effects in EHEE_rd2_0372 
(blue) and EHEE_rd2_0191 (orange) compared to in EHEE_rd2_0152 (e.g. all points 
are above the dashed Y=X line). However, the points are ordered similarly; i.e. 
the rank ordering of the 19 other amino acid variants in stability is similar 
between the three designs. For R14 and E18, substitutions in EHEE_rd2_372 
(blue) have similar effect sizes to EHEE_rd2_0152, but substitutions in EHEE_
rd2_0191 (orange) have smaller effects. Again, the rank ordering of the amino 
acid variants by stability is similar across the three designs.



Extended Data Fig. 11 | Global analysis of PROSS designs. (a) All 727 PROSS 
designs grouped according to the number of amino acid substitutions in each 
design. Top: the number of designs with each different number of substitutions. 
Bottom: the distribution of design results for each group. ∆∆G indicates the 
stability of the PROSS design (∆G) minus the stability of the original wild-type 
sequence; positive ∆∆G indicates the design stabilized the domain. Center line, 
box limit, whiskers, and dots represent median, upper and lower quartiles, 1.5x 
interquartile range, and outliers of each distribution (n = 727 in total). (b) ∆∆G 
distributions for all amino acid substitutions in wild-type domains used as 
input to PROSS (blue), all amino acid substitutions at sites modified in PROSS 
designs (orange), and all PROSS-designed substitutions (green). All ∆∆G 
measurements are in the original wild-type background; positive ∆∆G indicates 

stabilizing substitutions. (c) Relationship between ∆∆G of PROSS designs and 
∆∆G of the most stabilizing mutations designed by PROSS. At left, we compare 
PROSS designs to the single most stabilizing mutation (in the original wild-type 
background) out of all the substitutions in the PROSS design. At right, we 
compare PROSS designs to the sum of the two most stabilizing mutations (each 
measured individually in the original wild-type background without considering 
thermodynamic coupling). The density plots show the distribution of PROSS 
designs that were better (positive) or worse (negative) than the single best 
mutation (left) or sum of the two best mutations (right). Two-thirds of designs 
are better than the best single designed mutation, although the difference is 
small. Likewise, two-thirds of designs are worse than the additive effect of the 
two best designed mutations (assuming no thermodynamic coupling).
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Extended Data Table 1 | Number of sequences and sequence groups for our datasets

Dataset name Description # of total 

sequences Sequence group # of sequence 

groups  
# of 

sequences 

Dataset #1 All data (no filtering) 1,841,285 

Single a.a. mut. 983 wild-types 1,046,752 

Double + triple 
a.a. mut. 

725 pairs  
(including 36 

triples) 
416,274 

Scrambles for 

unfolded model - 68,427 

Rocklin 2017 rd1-

3 - 36,707 

Others - 273,125 

Dataset #2 All data for ∆G 776,298 

Single a.a. mut. 478 wild-types 566,180 

Double a.a. mut. 559 pairs 210,118 

Dataset #3  All data for ∆∆G (WT < 4.75 kcal/mol 

to detect stabilizing mutations) 607,839 

Single a.a. mut. 412 wild-types 448,788 

Double a.a. mut. 496 pairs 159,051 

Dataset #4 

(For Fig. 3) 
Dataset #3 after removing 

modified/variant WTs 325,132 Single a.a. mut. 365 wild-types 325,132 

Dataset #5 

(For Fig. 5) 
Non-redundant natural domains (for 

amino acid classification model) 113,572 Single a.a. mut. 104 wild-types 113,572 
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