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Proximity superconductivity in 
atom-by-atom crafted quantum dots

Lucas Schneider1 ✉, Khai That Ton1, Ioannis Ioannidis2,3, Jannis Neuhaus-Steinmetz1, 
Thore Posske2,3, Roland Wiesendanger1 & Jens Wiebe1

Gapless materials in electronic contact with superconductors acquire proximity- 
induced superconductivity in a region near the interface1,2. Numerous proposals  
build on this addition of electron pairing to originally non-superconducting systems 
and predict intriguing phases of matter, including topological3–7, odd-frequency8, 
nodal-point9 or Fulde–Ferrell–Larkin–Ovchinnikov10 superconductivity. Here we 
investigate the most miniature example of the proximity effect on only a single 
spin-degenerate quantum level of a surface state confined in a quantum corral11 on a 
superconducting substrate, built atom by atom by a scanning tunnelling microscope. 
Whenever an eigenmode of the corral is pitched close to the Fermi energy by 
adjusting the size of the corral, a pair of particle–hole symmetric states enters the 
gap of the superconductor. We identify these as spin-degenerate Andreev bound 
states theoretically predicted 50 years ago by Machida and Shibata12, which had— 
so far—eluded detection by tunnel spectroscopy but were recently shown to be 
relevant for transmon qubit devices13,14. We further find that the observed 
anticrossings of the in-gap states are a measure of proximity-induced pairing in the 
eigenmodes of the quantum corral. Our results have direct consequences on the 
interpretation of impurity-induced in-gap states in superconductors, corroborate 
concepts to induce superconductivity into surface states and further pave the way 
towards superconducting artificial lattices.

Particularly interesting states of matter are formed when supercon-
ductivity is induced into intrinsically non-superconducting materials 
by the proximity effect1,2 based on Andreev reflection processes at the 
interface. If the transparency of the interface between a normal metal 
in the clean limit and the superconductor is high, superconductivity is 
induced over a length scale that can exceed dozens of nanometres15. 
However, for many heterostructures, superconductivity has to be 
induced through interface states or into surface states6,16,17. These are 
typically well decoupled from the bulk bands and, thus, it is unclear 
a priori whether they acquire sufficient pairing if their distance to the 
superconductor is larger than a few nanometres15–17. To study this effect 
in detail, we downscale the problem as much as possible by investigat-
ing only a single resonance mode of a surface state. This is achieved 
by laterally confining the surface state in a quantum corral, forming a 
particular quantum dot (QD). These can naturally occur in nanoscopic 
islands18,19 or, in a more tunable platform, in artificially designed adsorb-
ate arrays11,20, in which the QD walls are built atom by atom using the 
tip of a scanning tunnelling microscope as a tool. Although the surface 
states are typically well decoupled from metallic bulk states in the direc-
tion perpendicular to the surface plane, scattering at step edges or the 
adsorbates is known to introduce a measurable coupling to the bulk 
electronic states, leading to a lifetime broadening of the QD’s eigen-
modes Γ on the order of several meV (refs. 21,22). Notably, in contrast to 
the usual cases of the more widely studied semiconductor or molecular 

QDs23, the electron density screening the metallic QDs investigated 
here is by orders of magnitude larger, which leads to largely suppressed 
electron–electron interactions, that is, the QD charging energy U is 
negligible and, thereby, the QD can be described by spin-degenerate 
single-particle eigenmodes. Coupled arrays of such QDs with tunable 
interactions between adjacent sites have evolved as an exciting plat-
form for the simulation of quantum materials24,25. However, although 
there has been progress in choosing different material templates for 
incorporating more complex phenomena such as, for example, Rashba 
spin–orbit coupling into these QDs26, pathways for inducing supercon-
ductivity into their individual eigenmodes have not been studied so far.

Here we investigate artificial QDs defined by a cage of Ag atoms on 
thin Ag(111) islands (see Fig. 1a,b and Methods) grown on superconduct-
ing Nb(110) using scanning tunnelling microscopy (STM) and scanning 
tunnelling spectroscopy. We use superconducting Nb tips, leading to 
enhanced energy resolution and a shift of spectral features to higher 
energies by the value of the tip’s superconducting gap Δt, that is, states 
at the sample’s Fermi energy EF are found at bias voltages of eV = ±Δt 
(Supplementary Note 1). The proximity to Nb(110) opens a supercon-
ducting gap of 2Δs = 2.70 meV in the bulk states of Ag(111) for island 
thicknesses well below dAg = 100 nm (refs. 15,27) (see Methods). The 
outline of the experiment is shown in Fig. 1b: the scattered Ag(111) 
surface-state electrons visible as wavy patterns at the surface of Ag 
islands (Fig. 1a) are confined within a couple of lattice constants in the 
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direction perpendicular to the surface28 but still have a finite coupling 
V Γ∝  to the superconducting Ag bulk electrons22,29. We further confine 
these electrons laterally within QDs built of walls of Ag atoms resulting 
in spin-degenerate eigenmodes of energies Er, which can be pitched 
to EF by adjusting the width Lx of the QD. We then investigate the prox-
imity effect of the bulk electrons onto these QD eigenmodes. Note that, 
owing to the negligible electron–electron interaction energy U, we are 
operating in the regime U ≪ Δs ≈ Γ ≪ δEr (δEr is the energetical separation 
of the QD eigenmodes), which—for semiconductor systems—has only 
recently been realized in transmon qubits based on superconductor–
semiconductor QD–superconductor Josephson junctions13,14.

Individual Ag atoms (see Methods for details) can be arranged to 
form rectangular artificial QDs of tunable sizes (Fig. 1c,d) using lateral 
atom-manipulation techniques (see Methods). The spatial structure 
of the QD’s eigenmodes can be mapped by measuring the differential 
conductance dI/dV(x, y, E) at a particular bias voltage eV = E. The result-
ing patterns (Fig. 1e, upper panels) closely resemble the eigenmodes 
of a two-dimensional rectangular box potential with infinite walls hav-
ing a well-defined number of antinodes in the x and y directions [nx, ny] 

(Fig. 1e, lower panels; see Methods for details). In the following, the 
width Ly of the QD is kept fixed, whereas the length Lx is tuned by mov-
ing the upper Ag wall laterally (see Fig. 1d). This leads to a change in the 
confinement conditions such that the eigenenergies of the QD states 
are shifted. Experimentally, this can be verified by measuring dI/dV 
line profiles along lines close to the central axis of a given QD (Fig. 1f, 
upper panel): the eigenmodes with ny = 1 and nx = 1, 2, 3… can be iden-
tified and are marked by black arrows. When the QD length Lx is changed 
from 24.0 nm to 16.4 nm (lower panel; see Extended Data Fig. 1 for a 
complete set of line profiles measured on QDs with Lx = 3.0 nm to 
24 nm), a shift of the individual states to higher energies can be 
observed (black arrows)20. Note that it can already be seen by com-
parison of the top and bottom panels of Fig. 1f that, by decreasing the 
length Lx of the QD, the linewidth Γ of the eigenmodes and thereby their 
coupling V Γ∝  to the bulk superconducting electrons increases, which 
is a well-known effect owing to increased surface–bulk scattering22,29. 
These effects are used in the following to continuously pitch QD eigen-
modes with different couplings V through EF by accordingly  
tuning Lx.
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Fig. 1 | Atom-by-atom built QDs coupled to a superconducting substrate.  
a, Three-dimensional rendering of the constant-current STM topography of a 
Ag island with a thickness of 12 nm. The simultaneously measured dI/dV signal 
is used as the texture of the model. The island grows on top of a pseudomorphic 
Ag double layer on Nb(110) (sketched profile; see Methods). b, Sketch of the 
experimental setup with the QD walls laterally confining the surface-state 
electrons into spin-degenerate QD eigenmodes of energies Er. The eigenmodes 
couple to the superconducting substrate (Δs) with a strength V Γ∝ . Er can be 
pitched by adjusting the width Lx of the QD. c, Constant-current STM image of a 
rectangular QD with side lengths Lx and Ly consisting of 44 Ag atoms. Lx and Ly 
are defined as the distance between the Ag atoms in the inner ring. Z, apparent 
height. d, Constant-current STM image of the same structure with one of the 

QD walls moved as indicated by the arrow. e, Upper panels, constant-height  
dI/dV maps at bias voltages indicated in the respective panels measured in the 
interior of the QD in panel d (area marked by the dashed yellow lines). All panels 
are 15 × 7.5 nm2 in size. Lower panels, simulation of a hard-wall rectangular box 
with dimensions Lx = 16.4 nm, Ly = 9.1 nm assuming a parabolic dispersion of  
the quasiparticles with meff = 0.58me and E0 = −26.4 meV (see Methods). The 
quantum numbers [nx, ny] of the dominant eigenmodes at the energies of the 
experimental maps (corrected by an offset of Δtip) are given below each map.  
f, dI/dV line profiles along the dashed orange vertical lines marked in panels  
c and d. QD eigenmodes with ny = 1 and nx as indicated by the arrows at the top 
are observed. Their respective energy is shifted when the length Lx is altered as 
illustrated by the black arrows. a.u., arbitrary units.
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At low energies, dI/dV spectroscopy of the QD presented in Fig. 1d 
shows clean superconductor–insulator–superconductor (SIS) tunnel-
ling without any in-gap states at spatial locations at which no QD eigen-
modes are present (grey curve in Fig. 2a and grey cross in Fig. 1e): sharp 
and prominent peaks appear at bias voltages corresponding to 
eV = ±(Δt + Δs), indicating tunnelling between the coherence peaks of 
tip and sample (the bias range |eV| < Δt is left out in Fig. 2a,c; see Meth-
ods and Supplementary Note 1 for more details). The absence of con-
ductance at lower energies confirms that the bulk gap of Ag(111) is fully 
developed. By contrast, when measuring on a maximum of the QD 
eigenmode closest to EF, we find a pair of sharp electronic states at 
particle–hole symmetric energies ±(Δt + ε±) within the gap (blue curve 
in Fig. 2a and blue cross in Fig. 1e). When mapping the spatial distribu-
tion of these states (Fig. 2b), we find that they closely resemble the 
shape of the expected QD eigenmode at E ≈ EF as obtained from 
particle-in-a-box simulations (rightmost panel). To gain more insight 
into the nature of these in-gap states, we tune the length Lx of the QD 
and study the evolution of both the eigenmodes outside and inside the 
gap (Fig. 2c; see Extended Data Fig. 1 for the full datasets and Supple-
mentary Note 3 for another QD example). As expected, the eigenmodes 
with quantum numbers [nx, 1] outside the gap move in energy following 
the well-known Lx

−2 behaviour (dashed white lines; see also Supplemen-
tary Note 2). Moreover, it can be seen that the peaks at ±(Δt + Δs) (dashed 
white vertical lines) remain at the same energy for all QD sizes, indicat-
ing that they stem from the proximitized Ag bulk states. Most notably, 
it can be observed that the in-gap states at varying energies ±(Δt + ε±) 
appear whenever a QD eigenmode energy Er approaches EF. The abso-
lute value for ε± is lowest when the length Lx of the QD is such that the 
Er would cross EF if extrapolated from outside the superconducting gap 

to the energetical region inside the gap (see dashed lines in Fig. 2c). We 
evaluate this minimum value εmin for different eigenmodes of the QD 
and compare the results with their estimated energetic broadening Γ 
at energies outside the gap (see Supplementary Note 2 for details on 
the analysis). The energetic broadening is known to be predominantly 
related to the inverse lifetime of quasiparticles in the respective QD 
eigenmode for energies close to EF. Furthermore, as noted above, Γ of 
the eigenmodes close to EF decreases with increased QD size22,29. Indeed, 
this trend can be seen in Fig. 2d for the eigenmodes with increasing nx, 
that is, for wider QDs. As a main result of this work, there is a clear cor-
relation between εmin and Γ V∝ 2 : for increased couplings Γ of a 
zero-energy QD eigenmode to the substrate superconductor, εmin is 
shifted from EF towards the gap edge Δs of the substrate (see Fig. 2d).

The observation of these in-gap states in an STM experiment is a sur-
prising result, as impurity-induced states at particle–hole-symmetric 
energies deep inside the gap of an s-wave superconductor are com-
monly believed to only appear for magnetic impurities30,31. In-gap states 
emerging around non-magnetic impurities are mostly considered to be 
evidence for unconventional superconductivity32,33. In our samples, we 
exclude that magnetism plays a role on the pure and well-characterized 
noble-metal surface with only non-magnetic adatoms. Furthermore, 
Nb is a conventional s-wave superconductor and the proximity effect 
induced in a normal metal with negligible spin–orbit coupling is not 
expected to induce considerable unconventional pairing. However, as 
shown theoretically by Machida and Shibata12 in 1972, there is always a 
subgap solution for the problem of a localized spin-degenerate level, 
as present in the QDs in our samples, coupled to a superconducting 
bath owing to resonance scattering12,30. We consider the Hamiltonian 
of ref. 12, that is,
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Fig. 2 | In-gap states of near-zero-energy pitched QD eigenmodes. a, dI/dV 
spectra measured at two different positions (grey and blue crosses in Fig. 1e) in 
the QD shown in Fig. 1d–f. The values of the tip’s superconducting gap eV = ±Δt 
and the sum eV = ±(Δt + Δs) with the proximity-induced Ag bulk gap Δs are marked 
by dashed orange and purple lines, respectively. In-gap states appear at 
energies ±(Δt + ε±), marked by black arrows. b, Left, constant-height dI/dV maps 
measured at the energies of the in-gap state peaks in the same area as in Fig. 1e. 
Right, particle-in-a-box simulation evaluated at zero energy with dominant 
contribution of the eigenmode with [nx, ny] = [3, 1]. c, Evolution of averaged  
dI/dV spectra from dI/dV line profiles measured along the central vertical axis 
of different QDs (see dashed orange lines in Fig. 1c,d) as a function of Lx. The 
dashed white lines mark the evolution of the eigenmodes with ny = 1 and 

nx = {1, 2, 3, 4} obtained from fitting the dI/dV spectra at energies outside the 
gap (see Supplementary Note 2). The length of the QD presented in panels  
a and b is marked by the blue arrow on the left side. d, Linewidths Γ of different 
QD eigenmodes extracted from fitting data from different QDs to Lorentzian 
peaks at energies outside the gap (see Supplementary Note 2). These are 
compared with the minimal energies of the in-gap states found when Er ≈ 0 
(error bars are standard deviations extracted from fitting the data; see 
Supplementary Note 2 for details). The dashed grey line is the expected 
theoretical relation for a spin-degenerate level coupled to a superconducting 
bath12 (based on equation (13) in Methods). Data on further QDs constructed 
and analysed as described in Supplementary Note 3 are included in panel d. 
a.u., arbitrary units.
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†) refer to the annihilation (creation) oper-
ators of superconducting bath electrons and the localized level with 
spin σ ∈ {↑,↓}, respectively. ϵk denotes the normal electronic dispersion 
of the superconductor, V Γ∝  is the coupling strength of the localized 
level at energy Er to the bath and Δs is the order parameter of s-wave 
superconductivity in the bath. Calculating the local density of states 
(LDOS) of the level using Green’s function equations of motion 
(see Methods) confirms that there is always a pair of Andreev bound 
states at in-gap energies12 for all non-vanishing V (see also Extended 
Data Fig. 2 and refs. 13,14). In the following, we refer to these states as 
Machida–Shibata states (MSSs)12, which are a special kind of Andreev 
bound states in the limit of negligible electron–electron interactions 
(U). We depict the energy evolution of the MSSs as a function of the 
localized level’s energy Er in the normal state for different choices of Γ 
in Fig. 3. For Γ/Δs ≪ 1 (Fig. 3a), the localized level couples only weakly 
to the superconductor and its energy ε evolves continuously through 
the gap, whereas its particle–hole-symmetric partner state at −ε fea-
tures negligible spectral weight in the LDOS. As Γ/Δs is increased 
(Fig. 3b), the states with ε± show a pronounced anticrossing behaviour 
as Er approaches zero. Moreover, both states at ε± acquire a finite spec-
tral weight in the LDOS, indicating that the superconductor mixes 
particle-like and hole-like states. This situation is closely reminiscent 
of the experimental data in Fig. 2c. For strong coupling Γ/Δs ≫ 1, the 
in-gap states shift close to Δs irrespective of Er, consistent with the 
regular proximity effect being induced into the localized resonance 
level, leading to a full superconducting gap (see Extended Data Figs. 2 
and 3 for more detailed simulations of this model and its comparison 
with experimental data). We observe a similar effect in a tight-binding 
description of a QD weakly coupled to a superconducting surface layer 
(Supplementary Note 4), corroborating that the simplified description 
of the QD’s eigenmode as a single localized quantum level Er shown in 
Fig. 3 is appropriate. The predicted shift of the minimal energy of the 
MSS with increasing Γ is included as a grey dashed line in Fig. 2d. Its 
good quantitative agreement with the experimental data without  
further fitting parameters suggests that the resonances found exper-
imentally are indeed MSSs.

Although these results demonstrate that the lowest-energy quasi-
particle excitations of the local level become gradually gapped out with 
increasing coupling to the superconducting bath, it is not clear a priori 
whether the local level experiences proximity superconductivity. To 
this end, we perform a Schrieffer–Wolff transformation of equation (1) 
to obtain the effective low-energy theory of the level when Er lies within 
the gap of the superconductor (see Methods for details). The resulting 
Hamiltonian reads

H ∑ E ∆ ∆ d d ∆ d d d d′ = (1 − / ) − ( + ). (2)
σ

σ σD r ind s
†

ind ↑
†

↓
†

↓ ↑

Indeed, equation (2) includes a term for the induced pairing energy 
Δind of the level’s quasiparticles, resembling the Bardeen–Cooper–
Schrieffer-like mean-field expression for superconductivity. On the 
basis of equation (2), it can be seen that, for Er = 0, the lowest-energy 
eigenstates of the system are energetically located at ε± = ±Δind. Thereby, 
for negligible electron–electron interactions U = 0, the values of εmin 
we measured for the different QD eigenmodes (Fig. 2d) can indeed be 
identified with the proximity-gap magnitudes Δind, which approach Δs 
for strong coupling Γ.

Notably, the observed in-gap states at ε+ and ε− are not symmetric in 
intensity. Their peak asymmetry in spectral weight can be analysed in 
terms of the Bogoliubov mixing angle

( ) ( )θ u v A A= arctan / = arctan / . (3)ε εB
2 2

+ −

Here u and v are the respective particle and hole amplitudes of the 
Bogoliubov quasiparticles, which are related to the peak heights Aε±

 
at positive and negative peak energies ε± measured in tunnelling spec-
troscopy34. The results are shown in Fig. 4. For maximal particle–hole 
mixing (|u|2 = |v|2), the angle θB equals π/4. For Bogoliubov quasiparti-
cles, this case is expected when their energy approaches the pairing 
energy ε± ≈ ±Δind. In the experimental data, we indeed find a value of 
θB ≈ π/4 whenever ε ε≈ min  (Er ≈ 0; see Supplementary Note 2). This  
finding further supports the above conjecture that εmin can be inter-
preted as a proximity-induced superconducting pairing Δind in the  
QD resonance level. When moving to larger in-gap state energies, θB 
either increases (for Er > 0) or decreases (for Er < 0). This trend is  
found consistently for all eigenmodes and qualitatively agrees well 
with the expectations for Bogoliubov excitation solutions of 
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equation (2) (dashed grey lines in Fig. 4; see Methods and Extended 
Data Fig. 4 for details).

Our experimental observation of MSSs clearly challenges the idea 
that the appearance of sharp in-gap states in STM experiments on super-
conductors was a fingerprint of either a local magnetic moment30,31 or 
unconventional superconducting pairing32,33. The sharp linewidth γ of 
the in-gap states can be understood as a consequence of negligible scat-
tering into the gapped bulk states, unlike in the metallic state at E > Δs, 
in which the level obtains a broadening Γ ≫ γ. The energy of the MSSs 
critically depends on the ratio of Γ  and Δs. For typical localized levels 
residing on single-atomic impurities, this ratio is Γ/Δs ≫ 1 and, thus, the 
bound states are located at energies very close to the coherence peaks 
of the bath superconductor. Therefore, for atomic impurities coupled 
to superconducting hosts, these resonances are hardly detectable. 
However, the linewidths of the eigenmodes of the QDs studied here 
are of similar magnitude as the superconducting gap, which leads to 
the low-energy in-gap states depicted in Fig. 2c that are well split off 
from the coherence peaks.

The strongest coupling Γ  is observed for the narrowest investigated 
QD (nx = 1 in Fig. 2d), resulting in a comparably large gap Δind of up to 
85% of Δs induced into the QD eigenmode. This suggests that the prox-
imity effect originates from scattering of the surface state at the QDs 
walls, which is maximal for the narrowest QDs, as also speculated by 
recent works16,17. Because the coupling Γ  is controlled by the QD size, the 
induced gap Δind  is found to be tunable as well (see Fig. 2d). Moreover, 
as demonstrated in Fig. 4, the experimentally observed resonance 
peaks behave like Bogoliubov excitations, which are expected to carry 
an energy-dependent fractional charge35 of (|u|2 − |v|2)e. This could 
potentially be directly examined by STM-based shot-noise measure-
ments36, opening avenues for studying quasiparticles with tunable 
fractional charge on the atomic scale.

We anticipate that the concept of impurity-supported proximity- 
induced Cooper pairing could be helpful in general to induce supercon-
ductivity into arbitrary surface states, potentially also combined with 
non-trivial topology. Among others, the latter presents a pathway for 
the creation of unconventional superconductivity and Majorana bound 
states5,6,16,37. Moreover, patterning the surface states of (111) noble-metal 
surfaces by precisely positioned scattering centres has evolved to one 
of the most promising platforms in the direction of artificial lattices. 
These have been shown to host Dirac fermions38,39, flat bands40–42, wave-
functions in fractal geometries43 or topologically non-trivial states42,44. 
Eventually, our results facilitate studying the interaction of these exotic 

phenomena with superconducting pairing in a simple and tunable 
platform. Notably, although electron–electron interactions inside the 
noble-metal QDs we study here are typically screened well by the charge 
carriers in the system’s bulk, it would be interesting to extend this plat-
form towards reduced screening, potentially enabling atomic-scale 
studies of the crossover from spin-degenerate to spinful QDs coupled 
to superconductors45.
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Methods

Experimental procedures
The experiments were performed in a commercially purchased SPECS 
STM system operated at T = 4.5 K, which is equipped with home-built 
ultrahigh-vacuum chambers for sample preparation46. STM images 
were obtained by regulating the tunnelling current Istab to a constant 
value with a feedback loop while applying a constant bias voltage 
Vstab across the tunnelling junction. For measurements of differential 
tunnelling conductance (dI/dV) spectra, the tip was stabilized at bias 
voltage Vstab and current Istab as individually noted in the figure cap-
tions. In a next step, the feedback loop was switched off and the bias 
voltage was swept from −Vstab to +Vstab. The dI/dV signal was measured 
using standard lock-in techniques with a small modulation voltage 
Vmod (RMS) of frequency f = 1,097.1 Hz added to Vstab. The following 
measurement parameters have been used for the data presented in the  
main figures:

Fig. 1a: V = 50 mV, I = 1 nA, Vmod = 5 mV; Fig. 1c,d: V = 5 mV, I = 1 nA; 
Fig. 1e,f: Vstab = −100 mV, Istab = 2 nA, Vmod = 2 mV; Fig. 2a,c: Vstab = −15 mV, 
Istab = 4 nA, Vmod = 50 µV; Fig. 2b: Vstab = −15 mV, Istab = 4 nA, Vmod = 100 µV.

dI/dV line profiles were acquired recording several dI/dV spec-
tra along a one-dimensional line of lateral positions on the sample, 
respectively. Note that the tip was not stabilized again after each indi-
vidual spectrum was acquired but the line profiles were measured in 
constant-height mode. This avoids artefacts stemming from a modu-
lated stabilization height. At the chosen stabilization parameters, the 
contribution of multiple Andreev reflections and direct Cooper pair 
tunnelling to the superconducting tip can be neglected (see Supple-
mentary Note 1). Throughout this work, we use Nb tips made from a 
mechanically cut and sharpened high-purity Nb wire. The tips were 
flashed in situ to about 1,500 K to remove residual contaminants or 
oxide layers. The use of superconducting tips increases the effective 
energy resolution of the experiment beyond the Fermi–Dirac limit47 
but requires careful interpretation of the acquired dI/dV spectra. 
These are proportional to the convolution of the sample’s LDOS, the 
superconducting tip DOS and the difference in the Fermi–Dirac dis-
tributions of the tip and sample. Notably, the latter can play a large 
role when measuring at T = 4.5 K. We measure a value of Δs = 1.35 meV 
(Supplementary Note 1), which is similar to the gap of elemental Nb, 
ΔNb = 1.50 meV (refs. 3,48), indicating a high interface quality between 
Nb and Ag. Details on the interpretation of SIS tunnelling spectra and 
on the determination of the tip’s superconducting gap Δt can be found 
in the next section, as well as in Supplementary Note 1.

Sample preparation
A Nb(110) single crystal was used as a substrate and cleaned by 
high-temperature flashes to T ≈ 2,000 K. This preparation method 
yields the characteristic oxygen-reconstructed Nb surface observed 
in previous works49, as can be seen in Extended Data Fig. 5a. Notably, a 
similar surface quality can be achieved by sputter-annealing cycles only, 
that is, without the need for challenging ultrahigh temperature flashes 
typically required for the preparation of clean c(1x1) Nb(110) surfaces48. 
Ag was deposited from an e-beam evaporator using a high-purity rod 
at a deposition rate of about 0.1 monolayers (ML) min−1. In agreement 
with previous studies, evaporation of Ag at elevated temperatures 
leads to the formation of two pseudomorphic monolayers of Ag fol-
lowed by Stranski–Krastanov growth of large Ag(111) islands (Extended 
Data Fig. 5c). To obtain preferably thin islands, we grew Ag islands in a 
three-step process, starting with the deposition of 2ML at T ≈ 600 K, 
creating two closed wetting layers. In a second step, the temperature 
was reduced to T ≈ 400 K to limit the lateral diffusion of Ag on the sur-
face and to create more nucleation centres for the Stranski–Krastanov 
islands. Under these conditions, another 2ML of Ag were deposited, 
followed by three further ML grown at T≈  600 K, again to guarantee a 
well-annealed surface of the topmost layers.

A topographic image of a Ag island grown on NbOx/Nb(110) is shown 
in Extended Data Fig. 5a. This sample features a Ag coverage of only 
15%, enabling the identification of the substrate’s oxygen reconstruc-
tion (see refs. 48,49) and of the islands’ apparent heights. Nearly all 
of such islands are found to have heights in the range 500–550 pm, 
consistent with a preferred double-layer growth. Low-energy dI/dV 
spectroscopy measurements (Extended Data Fig. 5b) reveal clean SIS 
tunnelling on both the NbOx/Nb(110) substrate and the Ag double-layer 
island: sharp peaks of high differential tunnelling conductance appear 
at bias voltages eV = ±(Δt + Δs), corresponding to quasiparticle tunnel-
ling between the coherence peaks of the tip and sample, respectively. 
Also, weaker resonances are found at voltages eV = ±(Δt − Δs). These 
are typically attributed to thermally activated tunnelling between 
the partially occupied and unoccupied coherence peaks of the tip and 
sample47. From the positions of these peaks measured with different 
microtips, the tip and sample gaps can be unambiguously determined. 
Notably, there is no clear difference between the spectra measured on 
NbOx/Nb(110) and on the Ag double layer, providing evidence that the 
interface quality between Nb and Ag is sufficient to open a full proxim-
ity gap in the Ag states.

As the Ag coverage is increased above 2ML, the Ag double layer is 
gradually closed and the formation of further large islands in the Stran-
ski–Krastanov growth mode is observed (Extended Data Fig. 5c). For 
these samples, the closed double layer can be investigated in more 
detail. Characteristic defects of unknown chemical composition are 
found on the double layer, exhibiting a twofold symmetry (Extended 
Data Fig. 5d). This already suggests that the Ag film does not grow in 
a fcc(111) fashion for the first two layers. Instead, atomically resolved 
images of the double layer (Extended Data Fig. 5e) reveal a pseudo-
morphic growth of Ag on the bcc(110) surface of the underlying NbOx/
Nb(110). Previously, a similar growth mode has been reported for Ag 
layers on oxygen-reconstructed V(100) in ref. 50: the pseudomorphic 
nature of the growth despite a reconstructed substrate surface has 
been explained by the enhanced mobility of oxygen in vanadium at 
elevated temperatures, leading to a substitution of oxygen atoms by 
Ag atoms during the growth and to a clean interface. We speculate 
that a similar growth mode is taking place for the first double-layer  
Ag/Nb(110). In contrast to this, atomically resolved images on the 
thicker islands (Extended Data Fig. 5f) reveal the hexagonal lattice 
expected for the energetically favoured fcc(111) growth of Ag and a very 
low number of impurities (typically 1–2 per 100 × 100 nm2; see Extended 
Data Fig. 6a). These results are in agreement with earlier reports of the 
growth mode of Ag on Nb(110) by low-energy electron diffraction51  
and STM15,52.

On the islands, we find pronounced signatures of the well-known 
Shockley-type surface state of Ag(111), providing further evidence 
for a fcc(111) growth. In Extended Data Fig.  6b, an example of a 
constant-height dI/dV map measured in the area of Extended Data 
Fig. 6a is shown, measured at an energy above the onset of the surface 
state and outside the superconducting gap. It features a clear periodic 
modulation in agreement with pronounced quasiparticle interfer-
ence of the surface-state electrons53,54. A Fourier transformation of the 
map visualizes the circular Fermi surface of the surface state (inset of 
Extended Data Fig. 6b).

Construction of QDs
As previously reported in ref. 55, approaching the tip to a Ag(111) sur-
face can lead to two processes: (1) single Ag atoms can be reproducibly 
pulled out of the surface by attractive tip–sample interactions, leaving 
a vacancy behind in the Ag lattice, and (2) single Ag atoms are dropped 
from a Ag-coated tip, which was coated previously by dipping the tip 
into the Ag(111) surface.

An example of this process of adatom gathering is shown in 
Extended Data Fig. 7a–e. Once the Ag atoms are moved to a region 
without surface-state contributions—for example, inside a QD 



structure (Extended Data Fig. 7f)—the dI/dV spectra on top of Ag atoms 
(Extended Data Fig. 7g) show clean SIS tunnelling without signs of 
Yu–Shiba–Rusinov states31. This provides further evidence that the 
adatoms used for our QDs are indeed non-magnetic, as expected for 
Ag/Ag(111). Subsequently, after gathering a sufficient number of Ag 
atoms, the Ag QDs were constructed by lateral atom manipulation56,57 
at low tunnelling resistances of R ≈ 100 kΩ. Because the Ag walls of 
the QDs have a finite transparency for the surface-state electrons, a 
second wall of Ag atoms is constructed around the central QD wall 
to screen the interior from surface-state modes located outside  
the structure.

Modelling of QD eigenmodes
The wavefunctions of the eigenmodes of the QDs can be well modelled 
by hard-wall particle-in-a-box simulations to a first approximation, as 
it was done already in the pioneering work by Crommie et al.11 in 1993. 
The eigenmodes of an infinitely high rectangular potential wall with 
dimensions Lx and Ly are the well-known analytical solutions:

Ψ n n Ψ n Ψ n( , ) = ( ) × ( ) (4)x y x x y y
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Note that the parameter δ is introduced to renormalize the effective 
dimensions of the QDs, because the distances seen by the scattered qua-
siparticles are not necessarily given by the distances of the adatoms of 
the walls. Here, meff = 0.58me, the surface-state band edge E0 = −26.4 meV 
and δ = −0.28 nm are used, as motivated in Supplementary Note 2. The 
LDOS patterns presented in Figs. 1e and 2b have been calculated as a 
sum of the individual eigenfunctions with a finite Lorentzian broaden-
ing of Γ = 3 meV acting on their eigenenergies:

∑E
Ψ n n

E E n n Γ
LDOS( ) =

| ( , )|

1 + ( − ( , )) /
. (7)

n n

x y

x y,

2

2 2
x y

MSS model
We start by considering a system of a single spatially extended spin- 
degenerate level coupled to an s-wave superconducting three- 
dimensional bath, being a generalization of the model introduced  
in ref. 12:
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The Hamiltonian given in equation (1) and in ref. 12 is a special  
case of equation  (8) for a perfectly localized impurity level 
(V V( ) = = constant
∼

k ). Here and in the following, we set ħ = 1.
We aim to calculate the LDOS at the local level. For that, we use the 

Green’s function equations of motion in energy space58
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retarded Green’s function58, for which ai is one of the operators d, ck or 
their adjoint. The LDOS at the local level is
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in which ω = E + iδE and δE is a small and positive real number approxi-
mating the experimentally observed energy broadening. We obtain 
the Green’s function by solving the system of equations of motion in 
equation (9) for the Hamiltonian in equation (8) after linearizing the 
dispersion around EF, that is, ϵk = vF(k − kF), with vF and kF being the Fermi 
velocity and momentum, respectively:
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The impurity, which is described by its coupling to the substrate V(r), 
has a localization length Limp corresponding to the size of the QD, and 
drops to zero for |r| ≫ Limp. We can therefore reasonably set the corre-
sponding Fourier transform kV ( )

∼
 constant for momenta k = |k| in the 

interval [kF − β/Limp, kF + β/Limp], in which β is on the order of one, whereas 
its concrete value depends on the spatial details of the impurity cou-
pling V(r). In the following order-of-magnitude approximation, we set 
β = 1. From equation (11), we find that the physics of a spatially exte-
nded impurity does not differ from that of a localized impurity if 

≪
k

1
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− −2 2 2
s

 at k = kF ± 1/Limp. Combining the last two formulas, we find 

that an extended impurity can be considered as localized if ω is within 
a few Δs from EF, which is the case for the experiment in the main text, 
and if ≫ξ L=

v
∆ imp

F

s
, in which ξ = vF/Δs is the proximitized super-

conducting coherence length in the Ag islands. For Ag, the Fermi 
velocities range from 0.518 to 1.618 × 106 m s−1 (ref. 59), resulting in 
ξ = 253 to 789 nm, which is considerably larger than the maximal extent 
of our QDs reaching Limp = 24 nm. The QD level can therefore be trea-
ted as a localized impurity. In this limit, the Green’s function can be  
written as
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in which Γ = πV2D, with D = k WF
2 /(2π2vF) being the density of states per 

spin species of the substrate above the critical temperature at EF and 
W is its volume. The LDOS is given by
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We note the emergence of in-gap states as found in ref. 12. The energy 
ε+ of this in-gap state for a range of values Er and Γ is plotted in Extended 
Data Figs. 2 and 3. Recently, an LDOS of a localized impurity including 
further magnetic scattering has been derived60. In contrast to a metallic 
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bath, in which the scattering results in a spectral broadening of the 
local level, the superconducting bath induces superconductivity by 
proximity to the local level. Hence, when Er lies within the gap of the 
superconductor, the state at Er splits into two particle–hole-symmetric 
ones around EF. Notably, for energy scales Er sufficiently larger than Δs, 
equation (13) reduces to a typical Lorentzian LDOS of width Γ at position 
Er, as observed in the experiment.

The obtained spin-degenerate single-level Hamiltonian with 
proximity-induced pairing (equation (2)) is equivalent to the Green’s 
function approach above to the second order in the coupling constant 
V Γ∝ , as we show in the following.

Derivation of the effective Hamiltonian
In this section, we derive an effective low-energy model for the elec-
tronic level valid when the bare energy of the spin-degenerate electronic 
level is close to the Fermi energy and the coupling to the superconduct-
ing bulk is smaller than the superconducting gap. We find that the level 
obtains proximity pairing and a correction in its chemical potential.

The Hamiltonian of a spin-degenerate electronic level locally coupled 
to a Bardeen–Cooper–Schrieffer s-wave superconductor is given in 
equation (1), which we repeat here for convenience
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in which ck,σ are the annihilation operators in the superconducting 
bulk with momentum k and spin σ, dσ the annihilation operator of the 
electronic level with spin σ, ϵk the dispersion relation in the bulk, Er 
the electric potential of the electronic levels and V quantifies the local 
coupling between the electronic levels and the superconducting bulk.

To derive the low-energy model, we use the Schrieffer–Wolff  
transformation
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where h.c. is the Hermitian conjugate, with sgn(↑) = 1, sgn(↓) = −1, and
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to obtain the effective Hamiltonian
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The physics inside the superconducting gap is contained in the effec-
tive Hamiltonian H′D, which is that of a spin-degenerate electronic level 
with proximity-induced superconductivity

H ∑ E E d d ∆ d d d d′ = ( + ) − ( + ), (19)
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with the induced gap Δind and the shift Eshift in the chemical potential
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We approximate equations (20) and (21) by linearizing the dispersion 
relation ϵk close to the Fermi momentum kF by

k� v k k= ( − ), (22)F F

in which vF is the Fermi velocity of the superconductor and we only con-
sider momenta within the range [kF − Λ, kF + Λ]. For a three-dimensional 
host superconductor, we find
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in which Γ and D are defined as in the main text. We infer that the effec-
tive Hamiltonian of the spin-degenerate electronic level close to EF 
obtains a proximity-induced superconducting pairing. From equa-
tion (19), we calculate the energy ε of the level and the hole weight |v|2 
of the negative-energy eigenvalue to be
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in which we have neglected orders of ∆ind
3  and higher in the last step. If 

the spin-degenerate electronic level originally lies at the Fermi energy, 
that is, Er = 0, its effective Hamiltonian only contains induced super-
conductivity and its Bogoliubov quasiparticles have 50% particle and 
50% hole content. Moreover, the resonances are located at ±εmin = ±Δind 
for Er = 0. Thus, the proximity-induced pairing strength can be readily 
inferred from measuring the value of εmin.

Using |u|2 = 1 − |v|2 for the particle weight, the Bogoliubov angle, 
which conveniently measures the amount of particle–hole mixing, 
takes the form
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Notably, equation (27) is independent of Δind if the energies ε are 
normalized by Δind. This is the reason why equation (27) is used to plot 
the theoretical curve in Fig. 4. For the Bogoliubov angle of the MSSs 
based on the LDOS given in equation (13), the energy-dependent θB(ε) 
varies with Γ and is thus different for each eigenmode. In Extended 
Data Fig. 4, we compare the Bogoliubov angle for a single supercon-
ducting level (equation (27)) with the expected Bogoliubov angle of 
MSSs using the expression for the LDOS calculated in equation (13). 
In the low-energy limit, both theories agree well, verifying that the 
anticrossing of the MSSs is evidence for superconducting pairing in 
the spin-degenerate level. For higher energies, the MSSs approach 
the coherence peak of the bulk gap and their asymmetries decrease 
again and finally converge to zero (equivalent to θB approaching 
π/4 at Δs, marked by the dashed blue lines in Extended Data Fig. 4). 
This leads to an even better agreement with the experimental data 
and demonstrates that the observed resonances indeed behave  
like MSSs.
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Extended Data Fig. 1 | Complete set of dI/dV line profiles measured on  
34 different QDs. dI/dV line profiles measured along the central vertical axis  
of 34 different QDs with lengths Lx ranging from 3.0 nm up to 24.0 nm. All line 

profiles have been measured at constant tip height. Parameters: Vstab = −15 mV, 
Istab = 4 nA, Vmod = 50 µV.



Extended Data Fig. 2 | MSS energy versus localized level energy Er and 
coupling strength Γ to the superconducting host. a, Energy of the lowest- 
energy excitation of the Hamiltonian in equation (1). For all Γ ≠ 0, an in-gap 
solution with ε+/Δs < 1 is found. b–d, Energy-dependent local electron density of 

states LDOS(E) of a spin-degenerate localized level at energy Er/Δs = 0.0 (panel b), 
Er/Δs = 0.5 (panel c) and Er/Δs = 2.0 (panel d) coupled to a superconducting bath 
with the order parameter Δs by a coupling strength Γ ∝ V2 (see Methods). An 
energetic broadening of δE = 0.03Δs has been added in all panels (see Methods).
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Extended Data Fig. 3 | Dependence of MSS energy on the localized level 
energy Er for individual QD eigenmodes. a, Evolution of averaged dI/dV 
spectra from dI/dV line profiles measured along the central vertical axis of 
different QDs (same data as Fig. 2c) as a function of the localized level energy  
Er of the nx = 1 resonance. The value of Er has been extrapolated from inserting 
the known QD length into the fit function for Er(Lx) obtained in Supplementary 
Note 2. b, Energy-dependent local electron density of states LDOS(E) of a single 

localized level at energy Er coupled to a superconducting bath with the 
parameter Δs = 1.35 meV. The coupling strength Γ is set to 4.06 meV, motivated 
by the average experimental width of the nx = 1 resonances taken from Fig. 2d. 
c,d, Same as panels a and b but for the nx = 2 resonances and Γ = 2.58 meV.  
e,f, Same as panels a and b but for the nx = 3 resonances and Γ = 2.02 meV. An 
energetic broadening of δE = 0.08 meV corresponding to the experimental 
energy resolution has been added in all theoretical panels (see Methods).



Extended Data Fig. 4 | Bogoliubov angle of individual eigenmodes compared 
with the MSS model. a, Bogoliubov angle θB of the in-gap states of the nx = 1 
eigenmode with different mean energies ε ε ε= ( − )/2+ − . All error bars are 
standard deviations extracted from fitting the data; see Supplementary Note 2 
for details. The coloured lines represent the energy-dependent Bogoliubov 
angles of MSSs computed numerically from the LDOS in equation (13) in Methods. 
Here we use Γ = 4.55 meV as extracted on average for all nx = 1 eigenmodes  

(see Supplementary Note 2) and the experimental value Δs = 1.35 meV. The dashed 
grey lines represent the expected relationship for Bogoliubov quasiparticles 
(equation (27)) with an induced gap of Δind = εmin set to the value given by the 
induced gap of the MSS model using the values for Γ and Δs above. b, The same  
for the nx = 2 eigenmodes and Γ = 2.82 meV. c, nx = 3 eigenmodes, Γ = 2.20 meV.  
d, nx = 4 eigenmodes, Γ = 1.96 meV. e, nx = 5 eigenmodes, Γ = 1.73 meV. The sample 
gap Δs is marked by the light blue dashed lines in all panels.
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Extended Data Fig. 5 | Growth of Ag on Nb(110). a, Constant-current STM 
image of a thin Ag island grown on oxygen-reconstructed Nb(110). The 
apparent height of the island equals 540 pm, indicating that Ag grows in double 
layers (DL). The white bar corresponds to 2 nm. b, dI/dV spectra measured on 
the Ag DL and on the oxidized Nb(110) substrate. The sharp peaks at bias 
voltages corresponding to ±(Δt + Δs) and ±(Δt − Δs) are marked by purple arrows. 
c, Large-scale constant-current image of a sample with nominal Ag coverage of 
8ML. The DL is found to cover the entire Nb surface and further thicker Ag(111) 
islands are formed. The white bar corresponds to 500 nm. d, Zoom-in on the  
DL surface quality, exhibiting atomically flat areas of Ag and several twofold 
symmetric defects of unknown origin. The white bar corresponds to 2 nm.  

e, Atomically resolved constant-current image of the same area shown in  
panel d. Inset, Fourier transform of the atomic-resolution image, showing Bragg 
spots incompatible with a hexagonal lattice (a perfect hexagon is overlaid as a 
yellow dashed line) but with a pseudomorphic growth on the bcc(110) surface 
of clean Nb. The white bar corresponds to 2 nm. f, Atomically resolved constant- 
current image of a thick Ag island. The white bar corresponds to 2 nm. Inset, 
Fourier transform of the image, showing Bragg spots in good agreement with a 
hexagonal fcc(111) growth. Parameters: V = 5 mV, I = 1 nA for panel a; Vstab = 5 mV, 
Istab = 1 nA, Vmod = 50 µV for panel b; V = 1,000 mV, I = 0.1 nA for panel c; V = 2.5 mV, 
I = 10 nA for panel d; V = 2.5 mV, I = 80 nA for panel b; V = 100 mV, I = 1 nA for 
panel f.



Extended Data Fig. 6 | Low-energy electronic structure of Ag(111)/Nb(110). a, 
Large-scale constant-current STM image of a 12 nm thin Ag island. The black bar 
corresponds to 20 nm. b, dI/dV map at above-gap energy acquired with 

constant tip height and on the same region shown in panel a. The insets show 
the Fourier transform (FFT) of the dI/dV map. Parameters: V = −100 mV, I = 1 nA 
for panel a; Vstab = 10 mV, Istab = 2 nA, Vmod = 100 µV for panel b.
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Extended Data Fig. 7 | Single Ag atoms on Ag(111)/Nb(110). a, Constant-current 
STM image of a clean Ag area. The white bar corresponds to 10 nm. b–e, The 
same area after approaching the tip by 600 pm towards the surface at different 
positions. A single adsorbate of similar apparent height is found after each 
approach with the tip, consistent with the finding of ref. 55. Therefore, we 
identify these adsorbates as single Ag atoms. f, Constant-current STM image  

of a QD’s wall consisting of Ag atoms manipulated to form a suitable shape of 
the wall. The white bar corresponds to 2 nm. g, dI/dV spectra measured on three 
of the Ag atoms marked in panel f (yellow, purple and red) as well as on the 
surface between the atoms (grey). Parameters: V = 15 mV, I = 1 nA for panels a–e; 
V = 5 mV, I = 1 nA for panel f; Vstab = −5 mV, Istab = 1 nA, Vmod = 50 µV for panel g.
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