Abstract
Forty years ago, it was proposed that gas-phase organic chemistry in the interstellar medium can be initiated by the methyl cation CH3+ (refs. 1,2,3), but so far it has not been observed outside the Solar System4,5. Alternative routes involving processes on grain surfaces have been invoked6,7. Here we report James Webb Space Telescope observations of CH3+ in a protoplanetary disk in the Orion star-forming region. We find that gas-phase organic chemistry is activated by ultraviolet irradiation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The JWST data presented in this paper are publicly available through the MAST online archive (http://mast.stsci.edu) using the PID 1288. The MIRI spectra presented in Fig. 2 and Extended Data Figs. 1 and 2 are available in ASCII format at https://doi.org/10.5281/zenodo.7989669 (ref. 59). The PGOPHER files to create the model spectra of CH3+ are available via https://doi.org/10.5281/zenodo.7993330 (ref. 60). Source data are provided with this paper.
Code availability
The JWST pipeline used to produce the final data products presented in this article is available at https://github.com/spacetelescope/jwst. The MEUDON PDR code is publicly available at https://ism.obspm.fr/pdr_download.html.
References
Black, J. & Dalgarno, A. Models of interstellar clouds. I-the Zeta Ophiuchi cloud. Astrophys. J. Suppl. Series 34, 405–423 (1977).
Smith, D. The ion chemistry of interstellar clouds. Chem. Rev. 92, 1473–1485 (1992).
Herbst, E. Unusual chemical processes in interstellar chemistry: past and present. Front. Astronom. Space Sci. 8, 776942 (2021).
Roueff, E. et al. CH2D+, the search for the holy grail. J. Phys. Chem. A 117, 9959–9967 (2013).
Indriolo, N., Oka, T., Geballe, T. & McCall, B. J. Constraining the environment of CH+ formation with CH3+ observations. Astrophys. J. 711, 1338 (2010).
Cuppen, H. et al. Grain surface models and data for astrochemistry. Space Sci. Rev. 212, 1–58 (2017).
Semenov, D. et al. Chemistry in disks-IV. Benchmarking gas-grain chemical models with surface reactions. Astron. Astrophys. 522, A42 (2010).
Berné, O. et al. PDRs4All: a JWST early release science program on radiative feedback from massive stars. Publ. Astron. Soc. Pac. 134, 054301 (2022).
Bally, J., O’Dell, C. & McCaughrean, M. J. Disks, microjets, windblown bubbles, and outflows in the Orion Nebula. Astron. J. 119, 2919 (2000).
Menten, K. M., Reid, M. J., Forbrich, J. & Brunthaler, A. The distance to the Orion Nebula. Astron. Astrophys. 474, 515–520 (2007).
Hillenbrand, L. A. & Carpenter, J. M. Constraints on the stellar/substellar mass function in the inner Orion Nebula cluster. Astrophys. J. 540, 236 (2000).
Cunha de Miranda, B. K. et al. Threshold photoelectron spectroscopy of the methyl radical isotopomers, CH3, CH2D, CHD2 and CD3: synergy between VUV synchrotron radiation experiments and explicitly correlated coupled cluster calculations. J. Phys. Chem. A 114, 4818–4830 (2010).
Asvany, O., Thorwirth, S., Redlich, B. & Schlemmer, S. Spectroscopy of the low-frequency vibrational modes of CH3+ isotopologues. J. Mol. Spectrosc. 347, 1–6 (2018).
Kraemer, W. & Špirko, V. Potential energy function and rotation-vibration energy levels of CH3+. J. Mol. Spectrosc. 149, 235–241 (1991).
Keçeli, M., Shiozaki, T., Yagi, K. & Hirata, S. Anharmonic vibrational frequencies and vibrationally-averaged structures of key species in hydrocarbon combustion: HCO+, HCO, HNO, HOO, HOO−, CH3+, and CH3. Mol. Phys. 107, 1283–1301 (2009).
Crofton, M. W., Jagod, M., Rehfuss, B. D., Kreiner, W. A. & Oka, T. Infrared spectroscopy of carboions. III. ν3 band of methyl cation CH3+. J. Chem. Phys. 88, 666–678 (1988).
Hierl, P. M., Morris, R. A. & Viggiano, A. A. Rate coefficients for the endothermic reactions C+ + H2 -> CH+ + H as functions of temperature from 400–1300 K. J. Chem. Phys. 106, 10145–10152 (1997).
Zanchet, A. et al. H2(v = 0,1) + C+(2P) -> H + CH+ state-to-state rate constants for chemical pumping models in astrophysical media. Astrophys. J. 766, 80 (2013).
Champion, J. et al. Herschel survey and modelling of externally-illuminated photoevaporating protoplanetary disks. Astron. Astrophys. 604, A69 (2017).
Black, J. H. & van Dishoeck, E. F. Fluorescent excitation of interstellar H2. Astrophys. J. 322, 412 (1987).
Sternberg, A. & Dalgarno, A. Chemistry in dense photon-dominated regions. Astrophys. J. 99, 565 (1995).
Agúndez, M., Goicoechea, J. R., Cernicharo, J., Faure, A. & Roueff, E. The chemistry of vibrationally excited H2 in the interstellar medium. Astrophys. J. 713, 662–670 (2010).
Thi, W.-F. et al. Detection of CH+ emission from the disc around HD 100546. Astron. Astrophys. 530, L2 (2011).
Thomas, R. D. et al. Dissociative recombination of vibrationally cold CH3+ and interstellar implications. Astrophys. J. 758, 55 (2012).
Pontoppidan, K. M. et al. A Spitzer survey of mid-infrared molecular emission from protoplanetary disks. I. Detection rates. Astrophys. J. 720, 887 (2010).
Grant, S. L. et al. Minds. the detection of 13CO2 with JWST-MIRI indicates abundant CO2 in a protoplanetary disk. Astrophys. J. Lett. 947, L6 (2022).
Winter, A. J. & Haworth, T. J. The external photoevaporation of planet-forming discs. Euro. Phys. J. Plus 137, 1132 (2022).
Bergin, E. A., Alexander, C., Drozdovskaya, M., Gounelle, M. & Pfalzner, S. Interstellar heritage and the birth environment of the solar system. Preprint at https://arXiv.org/abs/2301.05212 (2023).
Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).
Western, C. M. PGOPHER: a program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf. 186, 221–242 (2017).
Labiano, A. et al. Wavelength calibration and resolving power of the JWST MIRI medium resolution spectrometer. Astron. Astrophys. 656, A57 (2021).
Roueff, E. et al. The full infrared spectrum of molecular hydrogen. Astron. Astrophys. 630, A58 (2019).
Foschino, S., Berné, O. & Joblin, C. Learning mid-IR emission spectra of polycyclic aromatic hydrocarbon populations from observations. Astron. Astrophys. 632, A84 (2019).
Tabone, B., van Hemert, M. C., van Dishoeck, E. F. & Black, J. H. OH mid-infrared emission as a diagnostic of H2O UV photodissociation. I. Model and application to the HH 211 shock. Astron. Astrophys. 650, A192 (2021).
Zannese, M. et al. OH mid-infrared emission as a diagnostic of H2O UV photodissociation. II. Application to interstellar photodissociation regions. Astron. Astrophys. 671, A41 (2023).
Pound, M. W. & Wolfire, M. G. The photodissociation region toolbox: software and models for astrophysical analysis. Astron. J. 165, 25 (2022).
Gordon, I. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Rad. Trans. 277, 107949 (2022).
Schulenburg, A. M., Alcaraz, C., Grassi, G. & Merkt, F. Rovibrational photoionization dynamics of methyl and its isotopomers studied by high-resolution photoionization and photoelectron spectroscopy. J. Chem. Phys. 125, 104310 (2006).
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615 (2008).
Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).
Woon, D. E. & Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1993).
Frisch, M. J. et al. Gaussian 16 Revision A.01 (Gaussian, Inc., 2016).
Pracna, P., Spirko, V. & Kraemer, W. Ab initio study of linestrengths of vibration-rotation transitions of ammonia and methyl cations. J. Mole. Spectrosc. 158, 433–444 (1993).
Nyman, G. & Yu, H.-G. Infrared vibrational spectra of CH3+ and its deuterated isotopologues. AIP Adv. 9, 095017 (2019).
Jagod, M.-F., Gabrys, C. M., Rösslein, M., Uy, D. & Oka, T. Infrared spectrum of CH3+ involving high rovibrational levels. Can. J. Phys. 72, 1192–1199 (1994).
Le Petit, F., Nehmé, C., Le Bourlot, J. & Roueff, E. A model for atomic and molecular interstellar gas: the Meudon PDR code. Astrophys. J. S. 164, 506–529 (2006).
Goicoechea, J. R. & Le Bourlot, J. The penetration of far-UV radiation into molecular clouds. Astron. Astrophys. 467, 1–14 (2007).
Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).
Birnstiel, T. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA maps of protoplanetary disks in terms of a dust model. Astrophys. J. Lett. 869, L45 (2018).
Walsh, C., Millar, T. J. & Nomura, H. Molecular line emission from a protoplanetary disk irradiated externally by a nearby massive star. Astrophys. J. Lett. 766, L23 (2013).
Plasil, R. et al. Reactions of cold trapped CH+ ions with slow H atoms. Astrophys. J. 737, 60 (2011).
Blint, R. J., Marshall, R. F. & Watson, W. D. Calculations of the lower electronic states of CH3+: a postulated intermediate in interstellar reactions. Astrophys. J. 206, 627–631 (1976).
McEwan, M. J. et al. New H and H2 reactions with small hydrocarbon ions and their roles in benzene synthesis in dense interstellar clouds. Astrophys. J. 513, 287–293 (1999).
Adams, N. & Smith, D. Reactions of hydrocarbon ions with hydrogen and methane at 300 K. Chem. Phys. Lett. 47, 383–387 (1977).
Larson, A. et al. Branching fractions in dissociative recombination of CH2+. Astrophys. J. 505, 459–465 (1998).
Cuadrado, S. et al. The chemistry and spatial distribution of small hydrocarbons in UV-irradiated molecular clouds: the Orion Bar PDR. Astron. Astrophys. 575, A82 (2015).
Scott, G. B. I., Milligan, D. B., Fairley, D. A., Freeman, C. G. & McEwan, M. J. A selected ion flow tube study of the reactions of small CmHn+ ions with O atoms. J. Chem. Phys. 112, 4959–4965 (2000).
Argyriou, I. et al. JWST MIRI flight performance: the medium-resolution spectrometer. Astron. Astrophys. 675, A111 (2023).
Schroetter, I. & The PDRs4All team. JWST MIRI channel1 spectrum of d203-506. Zenodo https://doi.org/10.5281/zenodo.7989669 (2023).
Martin, M. A., Jacovella, U. & Gans. B. p-Gopher files for the CH3+ ν4/ν2 and ν3 bands. Zenodo https://doi.org/10.5281/zenodo.7993330 (2023).
Acknowledgements
O.B. is funded by a CNES APR programme. MIRI data reduction is performed at the French MIRI centre of expertise with the support of CNES and the ANR-labcom INCLASS between IAS and the company ACRI-ST. Part of this work was supported by the Programme National Physique et Chimie du Milieu Interstellaire (PCMI) of CNRS/INSU with INC/INP cofunded by CEA and CNES. Quantum chemical calculations were performed using HPC resources from the ‘Mésocentre’ computing centre of CentraleSupélec and École Normale Supérieure Paris-Saclay supported by CNRS and Région Ile-de-France (http://mesocentre.centralesupelec.fr/). J.R.G. and S.C. thank the Spanish MCINN for funding support under grant no. PID2019-106110GB-I00. J.C and E.P. acknowledge support from the University of Western Ontario, the Institute for Earth and Space Exploration, the Canadian Space Agency and the Natural Sciences and Engineering Research Council of Canada. The Cologne spectroscopy group acknowledges funding by the Deutsche Forschungsgemeinschaft DFG (CRC956, subproject B2, ID no. 184018867) and the ERC AdG Missions (ID no. 101020583). Work by Y.O. and M. Röllig is carried out within the Collaborative Research Centre 956, subproject C1, funded by the DFG - project ID no. 184018867. C.B. is grateful for an appointment at NASA Ames Research Center through the San José State University Research Foundation (grant no. 80NSSC22M0107). T.O. acknowledges support from JSPS Bilateral Programme, grant no. 120219939. A.F. thanks Spanish MICIN for funding support from PID2019-106235GB-I00.
Author information
Authors and Affiliations
Contributions
O.B. found the signal in the data and led the analysis of the data and write-up of the article. M.-A.M.-D., I.S., U.J., B.G., E.D., L.H.C., E.B., F.A., J.C., E.R., J.H.B., O.A., C.J., S.S., S.T., J.C., M.G., A.T., T.O. and M.Z. conducted the spectroscopic analysis and participated in the write-up. M.-A.M.-D. created Fig. 3, and Extended Data Figs. 4 and 5. I.S. created Figs. 1 and 2 and Extended Data Figs. 1–3. I.S. and O.B. created Extended Data Fig. 6. J.R.G. performed the chemical models, created Extended Data Figs. 7 and 8, and participated in the write-up. O.B., E.H. and E.P. led the JWST observing programme. I.S., J.R.G., E.D., E. Bergin, F.A., J.C., A.C., B.T., C.J., A.T., M.Z., A.A., J.B.-S., C.B., E. Bron, R.C., S.C., D.D., M.E., A.F., K.D.G., L.I., O.K., B.K., O.L., D.L., R.L.G., A.M., R.M., Y.O., T.O., S.P., M.W.P., M. Robberto, M. Röllig, B.S., T.S., A.S., B.T., D.V.D.P., S.V. and M.G.W. contributed to the observing programme with JWST. I.S., A.C., R.C., A.S., B.T., F.A., D.V.P. reduced the data. E.D., M.-A.M.-D., L.H.C., J.R.G. and O.B. conducted the column density analysis. J.H.B. wrote the section on the excitation of CH3+. M.G.W. and J.H.B. corrected the English throughout the manuscript. All authors contributed to the discussions and provided feedback on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Daniel Harsono, Stephen Lepp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 ON and OFF spectra of d203-506 over the full MIRI-MRS spectral range.
The ON-OFF spectrum is also shown. Main atomic and H2 lines are indicated.
Extended Data Fig. 2 ON-OFF spectrum of d203-506 over the full MIRI-MRS spectral range.
Main atomic and H2 lines are indicated.
Extended Data Fig. 3 H2 excitation diagram derived from the line intensities in Extended Data Table 2 using the H2 toolbox (see Methods for details).
Error bars result from the propagation of the absolute calibration error of MIRI, which we take from ref. 58.
Extended Data Fig. 4 Spectroscopic models I and II.
a, Model I, with zoom on the strongest lines (b). c, Model II, with zoom on the strongest lines (d). For these models, the excitation temperature is T = 400 K, and we use a Gaussian profile of 0.35 cm−1 full-width-at-half-maximum.
Extended Data Fig. 5 Spectroscopic models III and IV.
a, Model III, with zoom on the strongest lines (b). c, Model IV, with zoom on the strongest lines (d). For these models, the excitation temperature is T = 400 K, and we use a Gaussian profile of 0.35 cm−1 full-width-at-half-maximum.
Extended Data Fig. 6 NIRSpec spectrum of d203-506. The spectrum is shown in gray, the shaded regions is the ±3 sigma error interval of the data.
This includes the error provided by the JWST pipeline, and error ν3 band of CH3+ in the NIRSpec spectrum of d203-506. Model of the OH emission (blue), H2 emission (orange), CH3+ emission (green), and sum of these three (red). Beyond 3.22 μm, emission due to the wings of the Aromatic Infrared Band at 3.3 μm is seen, affecting the baseline of the NIRSpec spectrum. The OH spectrum is computed with an LTE model at a temperature of 800 K. A detailed model of the OH emission will be presented in a forthcoming paper (Zannese et al. in prep). The H2 lines are fitted individually. The CH3+ model used here was computed using the constants for v = 0 and v3 = 1 from Extended Data Table 3, at 400 K.
Extended Data Fig. 7 Photochemical model results for d203-506 adopting G0 = 4 × 104 and different gas densities (nH) and dust grain properties.
Upper panels: Density and gas temperature structure as a function of visual extinction (AV) from the wind surface. The gray curve shows the density of vibrationally excited H2*(v > 0). Lower panels: Abundance profiles with respect to H nuclei. The pink dotted curves show the molecular fraction \({f}_{{H}_{2}}\) profile. Dashed curves in model a) refer to a model with the same gas density but G0 lower by a factor 104.
Extended Data Fig. 8 Dominant CH3+ formation and destruction reactions at the CH3+ abundance peak predicted by the photochemical model shown in Fig. 7.
This reaction network also leads to abundant HCO+ in FUV-irradiated gas layers where x(C+) > x(CO). Red arrows show endoergic reactions when H2 is in the ground-vibrational state v = 0. These reactions become fast only in disk layers where the gas temperature is high (several hundred K) and/or significant vibrationally excited H2* (v ≥ 0) exists. The formation of CH3+ from methane will only be relevant if very high CH4 and H+ abundances coexist in the gas.
Supplementary information
Supplementary Information
Supplementary Methods and additional references.
Source data
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Berné, O., Martin-Drumel, MA., Schroetter, I. et al. Formation of the methyl cation by photochemistry in a protoplanetary disk. Nature 621, 56–59 (2023). https://doi.org/10.1038/s41586-023-06307-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-023-06307-x
This article is cited by
-
Sub-Doppler optical-optical double-resonance spectroscopy using a cavity-enhanced frequency comb probe
Nature Communications (2024)
-
n-Alkanes formed by methyl-methylene addition as a source of meteoritic aliphatics
Communications Chemistry (2024)
-
Life on Earth can grow on extraterrestrial organic carbon
Scientific Reports (2024)
-
OH as a probe of the warm-water cycle in planet-forming disks
Nature Astronomy (2024)