Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of the methyl cation by photochemistry in a protoplanetary disk

Abstract

Forty years ago, it was proposed that gas-phase organic chemistry in the interstellar medium can be initiated by the methyl cation CH3+ (refs. 1,2,3), but so far it has not been observed outside the Solar System4,5. Alternative routes involving processes on grain surfaces have been invoked6,7. Here we report James Webb Space Telescope observations of CH3+ in a protoplanetary disk in the Orion star-forming region. We find that gas-phase organic chemistry is activated by ultraviolet irradiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the d203-506 externally irradiated protoplanetary disk.
Fig. 2: JWST-MIRI spectra of d203-506.
Fig. 3: Comparison between the observed JWST spectrum of d203-506 and modelled CH3+ spectrum.

Similar content being viewed by others

Data availability

The JWST data presented in this paper are publicly available through the MAST online archive (http://mast.stsci.edu) using the PID 1288. The MIRI spectra presented in Fig. 2 and Extended Data Figs. 1 and 2 are available in ASCII format at https://doi.org/10.5281/zenodo.7989669 (ref. 59). The PGOPHER files to create the model spectra of CH3+ are available via https://doi.org/10.5281/zenodo.7993330 (ref. 60). Source data are provided with this paper.

Code availability

The JWST pipeline used to produce the final data products presented in this article is available at https://github.com/spacetelescope/jwst. The MEUDON PDR code is publicly available at https://ism.obspm.fr/pdr_download.html.

References

  1. Black, J. & Dalgarno, A. Models of interstellar clouds. I-the Zeta Ophiuchi cloud. Astrophys. J. Suppl. Series 34, 405–423 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Smith, D. The ion chemistry of interstellar clouds. Chem. Rev. 92, 1473–1485 (1992).

    Article  CAS  Google Scholar 

  3. Herbst, E. Unusual chemical processes in interstellar chemistry: past and present. Front. Astronom. Space Sci. 8, 776942 (2021).

    Article  Google Scholar 

  4. Roueff, E. et al. CH2D+, the search for the holy grail. J. Phys. Chem. A 117, 9959–9967 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Indriolo, N., Oka, T., Geballe, T. & McCall, B. J. Constraining the environment of CH+ formation with CH3+ observations. Astrophys. J. 711, 1338 (2010).

    Article  ADS  CAS  Google Scholar 

  6. Cuppen, H. et al. Grain surface models and data for astrochemistry. Space Sci. Rev. 212, 1–58 (2017).

    Article  ADS  Google Scholar 

  7. Semenov, D. et al. Chemistry in disks-IV. Benchmarking gas-grain chemical models with surface reactions. Astron. Astrophys. 522, A42 (2010).

    Article  Google Scholar 

  8. Berné, O. et al. PDRs4All: a JWST early release science program on radiative feedback from massive stars. Publ. Astron. Soc. Pac. 134, 054301 (2022).

    Article  ADS  Google Scholar 

  9. Bally, J., O’Dell, C. & McCaughrean, M. J. Disks, microjets, windblown bubbles, and outflows in the Orion Nebula. Astron. J. 119, 2919 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Menten, K. M., Reid, M. J., Forbrich, J. & Brunthaler, A. The distance to the Orion Nebula. Astron. Astrophys. 474, 515–520 (2007).

    Article  ADS  CAS  Google Scholar 

  11. Hillenbrand, L. A. & Carpenter, J. M. Constraints on the stellar/substellar mass function in the inner Orion Nebula cluster. Astrophys. J. 540, 236 (2000).

    Article  ADS  Google Scholar 

  12. Cunha de Miranda, B. K. et al. Threshold photoelectron spectroscopy of the methyl radical isotopomers, CH3, CH2D, CHD2 and CD3: synergy between VUV synchrotron radiation experiments and explicitly correlated coupled cluster calculations. J. Phys. Chem. A 114, 4818–4830 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Asvany, O., Thorwirth, S., Redlich, B. & Schlemmer, S. Spectroscopy of the low-frequency vibrational modes of CH3+ isotopologues. J. Mol. Spectrosc. 347, 1–6 (2018).

    Article  ADS  CAS  Google Scholar 

  14. Kraemer, W. & Špirko, V. Potential energy function and rotation-vibration energy levels of CH3+. J. Mol. Spectrosc. 149, 235–241 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Keçeli, M., Shiozaki, T., Yagi, K. & Hirata, S. Anharmonic vibrational frequencies and vibrationally-averaged structures of key species in hydrocarbon combustion: HCO+, HCO, HNO, HOO, HOO, CH3+, and CH3. Mol. Phys. 107, 1283–1301 (2009).

    Article  ADS  Google Scholar 

  16. Crofton, M. W., Jagod, M., Rehfuss, B. D., Kreiner, W. A. & Oka, T. Infrared spectroscopy of carboions. III. ν3 band of methyl cation CH3+. J. Chem. Phys. 88, 666–678 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Hierl, P. M., Morris, R. A. & Viggiano, A. A. Rate coefficients for the endothermic reactions C+ + H2 -> CH+ + H as functions of temperature from 400–1300 K. J. Chem. Phys. 106, 10145–10152 (1997).

  18. Zanchet, A. et al. H2(v = 0,1) + C+(2P) -> H + CH+ state-to-state rate constants for chemical pumping models in astrophysical media. Astrophys. J. 766, 80 (2013).

    Article  ADS  Google Scholar 

  19. Champion, J. et al. Herschel survey and modelling of externally-illuminated photoevaporating protoplanetary disks. Astron. Astrophys. 604, A69 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Black, J. H. & van Dishoeck, E. F. Fluorescent excitation of interstellar H2. Astrophys. J. 322, 412 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Sternberg, A. & Dalgarno, A. Chemistry in dense photon-dominated regions. Astrophys. J. 99, 565 (1995).

    Article  CAS  Google Scholar 

  22. Agúndez, M., Goicoechea, J. R., Cernicharo, J., Faure, A. & Roueff, E. The chemistry of vibrationally excited H2 in the interstellar medium. Astrophys. J. 713, 662–670 (2010).

    Article  ADS  Google Scholar 

  23. Thi, W.-F. et al. Detection of CH+ emission from the disc around HD 100546. Astron. Astrophys. 530, L2 (2011).

    Article  ADS  Google Scholar 

  24. Thomas, R. D. et al. Dissociative recombination of vibrationally cold CH3+ and interstellar implications. Astrophys. J. 758, 55 (2012).

    Article  ADS  Google Scholar 

  25. Pontoppidan, K. M. et al. A Spitzer survey of mid-infrared molecular emission from protoplanetary disks. I. Detection rates. Astrophys. J. 720, 887 (2010).

    Article  ADS  CAS  Google Scholar 

  26. Grant, S. L. et al. Minds. the detection of 13CO2 with JWST-MIRI indicates abundant CO2 in a protoplanetary disk. Astrophys. J. Lett. 947, L6 (2022).

  27. Winter, A. J. & Haworth, T. J. The external photoevaporation of planet-forming discs. Euro. Phys. J. Plus 137, 1132 (2022).

    Article  Google Scholar 

  28. Bergin, E. A., Alexander, C., Drozdovskaya, M., Gounelle, M. & Pfalzner, S. Interstellar heritage and the birth environment of the solar system. Preprint at https://arXiv.org/abs/2301.05212 (2023).

  29. Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Western, C. M. PGOPHER: a program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf. 186, 221–242 (2017).

    Article  ADS  CAS  Google Scholar 

  31. Labiano, A. et al. Wavelength calibration and resolving power of the JWST MIRI medium resolution spectrometer. Astron. Astrophys. 656, A57 (2021).

    Article  CAS  Google Scholar 

  32. Roueff, E. et al. The full infrared spectrum of molecular hydrogen. Astron. Astrophys. 630, A58 (2019).

    Article  CAS  Google Scholar 

  33. Foschino, S., Berné, O. & Joblin, C. Learning mid-IR emission spectra of polycyclic aromatic hydrocarbon populations from observations. Astron. Astrophys. 632, A84 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tabone, B., van Hemert, M. C., van Dishoeck, E. F. & Black, J. H. OH mid-infrared emission as a diagnostic of H2O UV photodissociation. I. Model and application to the HH 211 shock. Astron. Astrophys. 650, A192 (2021).

    Article  CAS  Google Scholar 

  35. Zannese, M. et al. OH mid-infrared emission as a diagnostic of H2O UV photodissociation. II. Application to interstellar photodissociation regions. Astron. Astrophys. 671, A41 (2023).

  36. Pound, M. W. & Wolfire, M. G. The photodissociation region toolbox: software and models for astrophysical analysis. Astron. J. 165, 25 (2022).

    Article  ADS  Google Scholar 

  37. Gordon, I. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Rad. Trans. 277, 107949 (2022).

    Article  CAS  Google Scholar 

  38. Schulenburg, A. M., Alcaraz, C., Grassi, G. & Merkt, F. Rovibrational photoionization dynamics of methyl and its isotopomers studied by high-resolution photoionization and photoelectron spectroscopy. J. Chem. Phys. 125, 104310 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    Article  ADS  CAS  Google Scholar 

  41. Woon, D. E. & Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1993).

    Article  ADS  CAS  Google Scholar 

  42. Frisch, M. J. et al. Gaussian 16 Revision A.01 (Gaussian, Inc., 2016).

  43. Pracna, P., Spirko, V. & Kraemer, W. Ab initio study of linestrengths of vibration-rotation transitions of ammonia and methyl cations. J. Mole. Spectrosc. 158, 433–444 (1993).

    Article  ADS  CAS  Google Scholar 

  44. Nyman, G. & Yu, H.-G. Infrared vibrational spectra of CH3+ and its deuterated isotopologues. AIP Adv. 9, 095017 (2019).

    Article  ADS  Google Scholar 

  45. Jagod, M.-F., Gabrys, C. M., Rösslein, M., Uy, D. & Oka, T. Infrared spectrum of CH3+ involving high rovibrational levels. Can. J. Phys. 72, 1192–1199 (1994).

  46. Le Petit, F., Nehmé, C., Le Bourlot, J. & Roueff, E. A model for atomic and molecular interstellar gas: the Meudon PDR code. Astrophys. J. S. 164, 506–529 (2006).

    Article  ADS  Google Scholar 

  47. Goicoechea, J. R. & Le Bourlot, J. The penetration of far-UV radiation into molecular clouds. Astron. Astrophys. 467, 1–14 (2007).

    Article  ADS  CAS  Google Scholar 

  48. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    Article  ADS  CAS  Google Scholar 

  49. Birnstiel, T. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA maps of protoplanetary disks in terms of a dust model. Astrophys. J. Lett. 869, L45 (2018).

    Article  ADS  CAS  Google Scholar 

  50. Walsh, C., Millar, T. J. & Nomura, H. Molecular line emission from a protoplanetary disk irradiated externally by a nearby massive star. Astrophys. J. Lett. 766, L23 (2013).

    Article  ADS  Google Scholar 

  51. Plasil, R. et al. Reactions of cold trapped CH+ ions with slow H atoms. Astrophys. J. 737, 60 (2011).

    Article  ADS  Google Scholar 

  52. Blint, R. J., Marshall, R. F. & Watson, W. D. Calculations of the lower electronic states of CH3+: a postulated intermediate in interstellar reactions. Astrophys. J. 206, 627–631 (1976).

    Article  ADS  CAS  Google Scholar 

  53. McEwan, M. J. et al. New H and H2 reactions with small hydrocarbon ions and their roles in benzene synthesis in dense interstellar clouds. Astrophys. J. 513, 287–293 (1999).

    Article  ADS  CAS  Google Scholar 

  54. Adams, N. & Smith, D. Reactions of hydrocarbon ions with hydrogen and methane at 300 K. Chem. Phys. Lett. 47, 383–387 (1977).

    Article  ADS  CAS  Google Scholar 

  55. Larson, A. et al. Branching fractions in dissociative recombination of CH2+. Astrophys. J. 505, 459–465 (1998).

    Article  ADS  CAS  Google Scholar 

  56. Cuadrado, S. et al. The chemistry and spatial distribution of small hydrocarbons in UV-irradiated molecular clouds: the Orion Bar PDR. Astron. Astrophys. 575, A82 (2015).

    Article  Google Scholar 

  57. Scott, G. B. I., Milligan, D. B., Fairley, D. A., Freeman, C. G. & McEwan, M. J. A selected ion flow tube study of the reactions of small CmHn+ ions with O atoms. J. Chem. Phys. 112, 4959–4965 (2000).

    Article  ADS  CAS  Google Scholar 

  58. Argyriou, I. et al. JWST MIRI flight performance: the medium-resolution spectrometer. Astron. Astrophys. 675, A111 (2023).

  59. Schroetter, I. & The PDRs4All team. JWST MIRI channel1 spectrum of d203-506. Zenodo https://doi.org/10.5281/zenodo.7989669 (2023).

  60. Martin, M. A., Jacovella, U. & Gans. B. p-Gopher files for the CH3+ ν4/ν2 and ν3 bands. Zenodo https://doi.org/10.5281/zenodo.7993330 (2023).

Download references

Acknowledgements

O.B. is funded by a CNES APR programme. MIRI data reduction is performed at the French MIRI centre of expertise with the support of CNES and the ANR-labcom INCLASS between IAS and the company ACRI-ST. Part of this work was supported by the Programme National Physique et Chimie du Milieu Interstellaire (PCMI) of CNRS/INSU with INC/INP cofunded by CEA and CNES. Quantum chemical calculations were performed using HPC resources from the ‘Mésocentre’ computing centre of CentraleSupélec and École Normale Supérieure Paris-Saclay supported by CNRS and Région Ile-de-France (http://mesocentre.centralesupelec.fr/). J.R.G. and S.C. thank the Spanish MCINN for funding support under grant no. PID2019-106110GB-I00. J.C and E.P. acknowledge support from the University of Western Ontario, the Institute for Earth and Space Exploration, the Canadian Space Agency and the Natural Sciences and Engineering Research Council of Canada. The Cologne spectroscopy group acknowledges funding by the Deutsche Forschungsgemeinschaft DFG (CRC956, subproject B2, ID no. 184018867) and the ERC AdG Missions (ID no. 101020583). Work by Y.O. and M. Röllig is carried out within the Collaborative Research Centre 956, subproject C1, funded by the DFG - project ID no. 184018867. C.B. is grateful for an appointment at NASA Ames Research Center through the San José State University Research Foundation (grant no. 80NSSC22M0107). T.O. acknowledges support from JSPS Bilateral Programme, grant no. 120219939. A.F. thanks Spanish MICIN for funding support from PID2019-106235GB-I00.

Author information

Authors and Affiliations

Authors

Contributions

O.B. found the signal in the data and led the analysis of the data and write-up of the article. M.-A.M.-D., I.S., U.J., B.G., E.D., L.H.C., E.B., F.A., J.C., E.R., J.H.B., O.A., C.J., S.S., S.T., J.C., M.G., A.T., T.O. and M.Z. conducted the spectroscopic analysis and participated in the write-up. M.-A.M.-D. created Fig. 3, and Extended Data Figs. 4 and 5. I.S. created Figs. 1 and 2 and Extended Data Figs. 13. I.S. and O.B. created Extended Data Fig. 6. J.R.G. performed the chemical models, created Extended Data Figs. 7 and 8, and participated in the write-up. O.B., E.H. and E.P. led the JWST observing programme. I.S., J.R.G., E.D., E. Bergin, F.A., J.C., A.C., B.T., C.J., A.T., M.Z., A.A., J.B.-S., C.B., E. Bron, R.C., S.C., D.D., M.E., A.F., K.D.G., L.I., O.K., B.K., O.L., D.L., R.L.G., A.M., R.M., Y.O., T.O., S.P., M.W.P., M. Robberto, M. Röllig, B.S., T.S., A.S., B.T., D.V.D.P., S.V. and M.G.W. contributed to the observing programme with JWST. I.S., A.C., R.C., A.S., B.T., F.A., D.V.P. reduced the data. E.D., M.-A.M.-D., L.H.C., J.R.G. and O.B. conducted the column density analysis. J.H.B. wrote the section on the excitation of CH3+. M.G.W. and J.H.B. corrected the English throughout the manuscript. All authors contributed to the discussions and provided feedback on the manuscript.

Corresponding author

Correspondence to Olivier Berné.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Daniel Harsono, Stephen Lepp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 ON and OFF spectra of d203-506 over the full MIRI-MRS spectral range.

The ON-OFF spectrum is also shown. Main atomic and H2 lines are indicated.

Extended Data Fig. 2 ON-OFF spectrum of d203-506 over the full MIRI-MRS spectral range.

Main atomic and H2 lines are indicated.

Extended Data Fig. 3 H2 excitation diagram derived from the line intensities in Extended Data Table 2 using the H2 toolbox (see Methods for details).

Error bars result from the propagation of the absolute calibration error of MIRI, which we take from ref. 58.

Extended Data Fig. 4 Spectroscopic models I and II.

a, Model I, with zoom on the strongest lines (b). c, Model II, with zoom on the strongest lines (d). For these models, the excitation temperature is T = 400 K, and we use a Gaussian profile of 0.35 cm−1 full-width-at-half-maximum.

Extended Data Fig. 5 Spectroscopic models III and IV.

a, Model III, with zoom on the strongest lines (b). c, Model IV, with zoom on the strongest lines (d). For these models, the excitation temperature is T = 400 K, and we use a Gaussian profile of 0.35 cm−1 full-width-at-half-maximum.

Extended Data Fig. 6 NIRSpec spectrum of d203-506. The spectrum is shown in gray, the shaded regions is the ±3 sigma error interval of the data.

This includes the error provided by the JWST pipeline, and error ν3 band of CH3+ in the NIRSpec spectrum of d203-506. Model of the OH emission (blue), H2 emission (orange), CH3+ emission (green), and sum of these three (red). Beyond 3.22 μm, emission due to the wings of the Aromatic Infrared Band at 3.3 μm is seen, affecting the baseline of the NIRSpec spectrum. The OH spectrum is computed with an LTE model at a temperature of 800 K. A detailed model of the OH emission will be presented in a forthcoming paper (Zannese et al. in prep). The H2 lines are fitted individually. The CH3+ model used here was computed using the constants for v = 0 and v3 = 1 from Extended Data Table 3, at 400 K.

Extended Data Fig. 7 Photochemical model results for d203-506 adopting G0 = 4 × 104 and different gas densities (nH) and dust grain properties.

Upper panels: Density and gas temperature structure as a function of visual extinction (AV) from the wind surface. The gray curve shows the density of vibrationally excited H2*(v > 0). Lower panels: Abundance profiles with respect to H nuclei. The pink dotted curves show the molecular fraction \({f}_{{H}_{2}}\) profile. Dashed curves in model a) refer to a model with the same gas density but G0 lower by a factor 104.

Extended Data Fig. 8 Dominant CH3+ formation and destruction reactions at the CH3+ abundance peak predicted by the photochemical model shown in Fig. 7.

This reaction network also leads to abundant HCO+ in FUV-irradiated gas layers where x(C+) > x(CO). Red arrows show endoergic reactions when H2 is in the ground-vibrational state v = 0. These reactions become fast only in disk layers where the gas temperature is high (several hundred K) and/or significant vibrationally excited H2* (v ≥ 0) exists. The formation of CH3+ from methane will only be relevant if very high CH4 and H+ abundances coexist in the gas.

Extended Data Table 1 H i detected emission lines
Extended Data Table 2 Pure rotational H2 detected emission lines in MIRI MRS wavelength range
Extended Data Table 3 Spectroscopic parameters of CH3+

Supplementary information

Supplementary Information

Supplementary Methods and additional references.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berné, O., Martin-Drumel, MA., Schroetter, I. et al. Formation of the methyl cation by photochemistry in a protoplanetary disk. Nature 621, 56–59 (2023). https://doi.org/10.1038/s41586-023-06307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06307-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing