Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Indistinguishable telecom band photons from a single Er ion in the solid state

Abstract

Atomic defects in the solid state are a key component of quantum repeater networks for long-distance quantum communication1. Recently, there has been significant interest in rare earth ions2,3,4, in particular Er3+ for its telecom band optical transition5,6,7 that allows long-distance transmission in optical fibres. However, the development of repeater nodes based on rare earth ions has been hampered by optical spectral diffusion, precluding indistinguishable single-photon generation. Here, we implant Er3+ into CaWO4, a material that combines a non-polar site symmetry, low decoherence from nuclear spins8 and is free of background rare earth ions, to realize significantly reduced optical spectral diffusion. For shallow implanted ions coupled to nanophotonic cavities with large Purcell factor, we observe single-scan optical linewidths of 150 kHz and long-term spectral diffusion of 63 kHz, both close to the Purcell-enhanced radiative linewidth of 21 kHz. This enables the observation of Hong–Ou–Mandel interference9 between successively emitted photons with a visibility of V = 80(4)%, measured after a 36 km delay line. We also observe spin relaxation times T1,s = 3.7 s and T2,s > 200 μs, with the latter limited by paramagnetic impurities in the crystal instead of nuclear spins. This represents a notable step towards the construction of telecom band quantum repeater networks with single Er3+ ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Er3+:CaWO4 device architecture.
Fig. 2: Efficient photon collection from a cavity-coupled ion.
Fig. 3: Generation of indistinguishable photons.
Fig. 4: Spin dynamics.

Similar content being viewed by others

Data availability

Data for all figures are available from the Harvard Dataverse repository (https://doi.org/10.7910/DVN/YLXVLB).

References

  1. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    Article  ADS  CAS  Google Scholar 

  2. Simon, C. et al. Quantum memories. Eur. Phys. J. D. 58, 1–22 (2010).

    Article  ADS  CAS  Google Scholar 

  3. Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys. Rev. Lett. 121, 183603 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Ulanowski, A., Merkel, B. & Reiserer, A. Spectral multiplexing of telecom emitters with stable transition frequency. Sci. Adv. 8, eabo4538 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang, L., Wang, S., Shen, M., Xie, J. & Tang, H. X. Controlling single rare earth ion emission in an electro-optical nanocavity. Nat. Commun. 14, 1718 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. LeDantec, M. et al. Twenty-three-millisecond electron spin coherence of erbium ions in a natural-abundance crystal. Sci. Adv. 7, eabj9786 (2021).

    Article  ADS  CAS  Google Scholar 

  9. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Awschalom, D. et al. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article  Google Scholar 

  11. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. De Greve, K. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421 (2012).

    Article  ADS  PubMed  Google Scholar 

  14. Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  17. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

    Article  ADS  CAS  Google Scholar 

  19. Stolk, A. et al. Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers. PRX Quantum 3, 020359 (2022).

    Article  ADS  Google Scholar 

  20. Saglamyurek, E. et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photon. 9, 83–87 (2015).

    Article  ADS  CAS  Google Scholar 

  21. Craiciu, I. et al. Nanophotonic quantum storage at telecommunication wavelength. Phys. Rev. Appl. 12, 024062 (2019).

    Article  ADS  CAS  Google Scholar 

  22. Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Businger, M. et al. Non-classical correlations over 1,250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5. Nat. Commun. 13, 6438 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rančić, M., Hedges, M. P., Ahlefeldt, R. L. & Sellars, M. J. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys. 14, 50–54 (2018).

    Article  Google Scholar 

  25. Böttger, T., Thiel, C. W., Cone, R. L. & Sun, Y. Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5. Phys. Rev. B 79, 115104 (2009).

    Article  ADS  Google Scholar 

  26. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Ortu, A. et al. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater. 17, 671–675 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Kindem, J. M. et al. Characterization of 171Yb3+:YVO4 for photonic quantum technologies. Phys. Rev. B 98, 024404 (2018).

    Article  ADS  Google Scholar 

  29. Raha, M. et al. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat. Commun. 11, 1605 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kornher, T. et al. Sensing individual nuclear spins with a single rare-earth electron spin. Phys. Rev. Lett. 124, 170402 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Ruskuc, A., Wu, C.-J., Rochman, J., Choi, J. & Faraon, A. Nuclear spin-wave quantum register for a solid-state qubit. Nature 602, 408–413 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Uysal, M. T. et al. Coherent control of a nuclear spin via interactions with a rare-earth ion in the solid state. PRX Quantum 4, 010323 (2023).

    Article  ADS  Google Scholar 

  33. Thiel, C. W., Böttger, T. & Cone, R. L. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin. 131, 353–361 (2011).

    Article  CAS  Google Scholar 

  34. Zhong, T. & Goldner, P. Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics 8, 2003–2015 (2019).

    Article  CAS  Google Scholar 

  35. Phenicie, C. M. et al. Narrow optical line widths in erbium implanted in TiO2. Nano Lett. 19, 8928–8933 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Stevenson, P. et al. Erbium-implanted materials for quantum communication applications. Phys. Rev. B 105, 224106 (2022).

    Article  ADS  CAS  Google Scholar 

  37. Ferrenti, A. M., de Leon, N. P., Thompson, J. D. & Cava, R. J. Identifying candidate hosts for quantum defects via data mining. npj Computat. Mater. 6, 126 (2020).

    Article  ADS  Google Scholar 

  38. Nassau, K. & Loiacono, G. Calcium tungstate-III: Trivalent rare earth ion substitution. J. Phys. Chem. Solids 24, 1503–1510 (1963).

    Article  ADS  CAS  Google Scholar 

  39. Enrique, B. G. Optical spectrum and magnetic properties of Er3+ in CaWO4. J. Chem. Phys. 55, 2538–2549 (1971).

    Article  ADS  Google Scholar 

  40. Sun, Y., Thiel, C., Cone, R., Equall, R. & Hutcheson, R. Recent progress in developing new rare earth materials for hole burning and coherent transient applications. J. Lumin. 98, 281–287 (2002).

    Article  CAS  Google Scholar 

  41. Chen, S. et al. Hybrid microwave-optical scanning probe for addressing solid-state spins in nanophotonic cavities. Optics Expr. 29, 4902 (2021).

    Article  ADS  CAS  Google Scholar 

  42. Chen, S., Raha, M., Phenicie, C. M., Ourari, S. & Thompson, J. D. Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 370, 592–595 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Santori, C., Fattal, D., Vucković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Article  ADS  Google Scholar 

  45. Zhao, T.-M. et al. Entangling different-color photons via time-resolved measurement and active feed forward. Phys. Rev. Lett. 112, 103602 (2014).

    Article  ADS  PubMed  Google Scholar 

  46. Asano, T., Ochi, Y., Takahashi, Y., Kishimoto, K. & Noda, S. Photonic crystal nanocavity with a Q factor exceeding eleven million. Optics Express 25, 1769 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Hu, S. & Weiss, S. M. Design of photonic crystal cavities for extreme light concentration. ACS Photonics 3, 1647–1653 (2016).

    Article  CAS  Google Scholar 

  48. Collins, O. A., Jenkins, S. D., Kuzmich, A. & Kennedy, T. A. B. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Wang, Z. et al. Single electron-spin-resonance detection by microwave photon counting. Preprint at https://arxiv.org/abs/2301.02653 (2023).

  50. Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM - The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B. Beam Interact. Mater. Atoms 268, 1818–1823 (2010).

    Article  ADS  CAS  Google Scholar 

  51. Carnall, W. T., Goodman, G. L., Rajnak, K. & Rana, R. S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J. Chem. Phys. 90, 3443–3457 (1989).

    Article  ADS  CAS  Google Scholar 

  52. Wybourne, B. G. Spectroscopic Properties of Rare Earths (Interscience Publishers, 1965).

  53. Newman, D. Theory of lanthanide crystal fields. Adv. Phys. 20, 197–256 (1971).

    Article  ADS  CAS  Google Scholar 

  54. Messiah, A. Quantum Mechanics (Dover Publications, 1961).

  55. Suter, D. & Álvarez, G. A. Colloquium: Protecting quantum information against environmental noise. Rev. Mod. Phys. 88, 041001 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  56. Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. New J. Phys. 20, 115003 (2018).

    Article  ADS  CAS  Google Scholar 

  57. Loredo, J. C. et al. Scalable performance in solid-state single-photon sources. Optica 3, 433 (2016).

    Article  ADS  Google Scholar 

  58. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (OUP, 1970).

  59. Yang, W. & Liu, R.-B. Quantum many-body theory of qubit decoherence in a finite-size spin bath. ii. ensemble dynamics. Phys. Rev. B 79, 115320 (2009).

    Article  ADS  Google Scholar 

  60. de Wit, M., Welker, G., de Voogd, J. & Oosterkamp, T. Density and T 1 of surface and bulk spins in diamond in high magnetic field gradients. Phys. Rev. Appl. 10, 064045 (2018).

    Article  ADS  Google Scholar 

  61. Dwyer, B. L. et al. Probing spin dynamics on diamond surfaces using a single quantum sensor. PRX Quantum 3, 040328 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful conversations with C. Thiel, P. Goldner and M. Rančić. This work was primarily supported by the US Department of Energy (DOE), Office of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage (C2QA) under contract number DE-SC0012704. We also acknowledge support from the DOE Early Career award (grant no. DE-SC0020120, for modelling of decoherence mechanisms and spin interactions), as well as AFOSR (grant nos. FA9550-18-1-0334 and YIP FA9550-18-1-0081), the Eric and Wendy Schmidt Transformative Technology Fund, the Princeton Catalysis Initiative and DARPA DRINQS (grant no. D18AC00015) for establishing the materials spectroscopy pipeline and developing integrated nanophotonic devices. We acknowledge the use of Princeton’s Imaging and Analysis Center, which is partially supported by the PCCM, an NSF MRSEC (grant no. DMR-1420541), as well as the Princeton Micro-Nano Fabrication Center.

Author information

Authors and Affiliations

Authors

Contributions

S.O., Ł.D., S.P.H. and M.T.U. performed the experiments in the main text and analysed the data. S.P.H., C.M.P. and P.S. developed the materials used in this work, including ion implantation and annealing techniques. C.M.P., M.R. and S.C. performed initial spectroscopy of single erbium ions in CaWO4, together with S.O., Ł.D., S.P.H. and M.T.U. R.J.C. and N.P.d.L. supervised the materials development, and J.D.T. developed the project concept and supervised all aspects of the work. S.O., Ł.D., S.P.H., M.T.U., N.P.d.L. and J.D.T. wrote and edited the manuscript, with input from all authors.

Corresponding author

Correspondence to Jeff D. Thompson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Rose Ahlefeldt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Extended data

is available for this paper at https://doi.org/10.1038/s41586-023-06281-4.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Ensemble PLE dependence on annealing.

Blue: the ensemble PLE intensity for a high density sample. Orange: the PLE intensity recorded for the same sample after annealing at a temperature of 300 °C for 1 hour, revealing a 5x increase in fluorescence intensity. This data was obtained using a sample cooled to 4K.

Extended Data Fig. 2 Ensemble spectroscopy of Er3+:CaWO4.

a Site-selective excitation spectrum of Er3+:CaWO4. Green arrows indicate when the excitation laser is resonant with different excited state crystal-field levels, where the corresponding excitation path is labeled using the matching number in (b). Solid orange arrows denote the fluorescence energies due to decay from the 4I13/2Y1 level, whereas the dashed arrows denote decay from the 4I13/2Y2 level. No other Er3+ sites were observed. The prominent line with unity gradient corresponds to laser scatter and has been re-scaled in intensity for clarity. b Assigned transitions. The performed spectroscopy yielded energies of four 4I15/2 and three 4I13/2 levels.

Extended Data Fig. 3 Measuring the cyclicity.

a Decay of the A transition fluorescence count rate from optical pumping after initializing into \(\left|{\uparrow }_{g}\right\rangle \) (blue). The count rate decays as en/C revealing a cyclicity of C = 1030(10). The orange trace corresponds to the same readout pulse sequence after initializing into \(\left|{\downarrow }_{g}\right\rangle \). b Intensity autocorrelation g(2)(t1 − t2) of the A transition showing strong suppression of the zero-delay peak with g(2)(0) = 0.018(3).

Extended Data Fig. 4 Optical coherence of Er3+:CaWO4.

a Timing sequence for an optical Hahn echo experiment. The ion is initialized into \(\left|{\uparrow }_{g}\right\rangle \) state using 10 pairs of optical πB and microwave πMWe pulses. b An optical Hahn echo measurement (green) reveals an optical coherence of T2,o = 10.2 μs. Applying XY32 dynamical decoupling sequence (orange) extends the optical coherence to the radiative limit (blue dashed line) T2,o = 18 μs, at a field where the optical T1,o = 9.1(3) μs. c Timing sequence for an optical XYN experiment. d Dephasing rate scaling with the number of refocusing pulses of XY dynamical decoupling sequences (red) compared to the lifetime limit (blue).

Extended Data Fig. 5 Spin lifetime as a function of magnetic field strength.

Solid line is a fit to Eq. (14) as is predicted for the spin-lattice relaxation time.

Extended Data Fig. 6 W bath limited coherence.

a The second order contribution to the CCE simulation for the Hahn experiment for 10 random W-bath configurations, where we assume that the nearest W nuclear spin is located at rW. Fitting each of the curves to a stretched exponential yields T2,s = 22.7(4) ms with n = 2.7(1). We note that this is only the envelope and faster ESEEM features, obtained from the first order CCE simulation, persist as seen in Fig. 4d. This simulation considers W nuclear spins within an 11 nm radius of the Er3+ spin. b CCE simulation of Ramsey experiment for the same W bath configurations. Fitting each of the curves to a Gaussian decay yields \({T}_{2,{\rm{s}}}^{* }=4.0(4)\,\mu s\). Both simulations are performed at our experimental field configuration.

Extended Data Fig. 7 Probability density of paramagnetic impurity concentration.

a Assuming a 3D uniform distribution of impurities, we estimate that the bath concentration is in the range 1.6 × 1016 – 5.7 × 1016 cm−3 with 70% confidence, with the likeliest concentration at 3.7 × 1016 cm−3. b Assuming a 2D distribution on the surface of our crystal, assumed to be located 10 nm away from the Er3+ spin, we estimate an area concentration in the range of 0.5–1.3 nm−2 with 70% confidence, with the likeliest concentration at 0.77 nm−2. Dashed lines indicate the confidence ranges for the impurity concentrations.

Extended Data Table 1 Transition energies of implanted Er3+:CaWO4 determined using site-selective excitation spectroscopy
Extended Data Table 2 Single-ion g-tensors measured for two separate ions

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ourari, S., Dusanowski, Ł., Horvath, S.P. et al. Indistinguishable telecom band photons from a single Er ion in the solid state. Nature 620, 977–981 (2023). https://doi.org/10.1038/s41586-023-06281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06281-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing