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Mixing of moiré-surface and bulk states in 
graphite

Ciaran Mullan1,10, Sergey Slizovskiy1,2,10, Jun Yin1,3,10 ✉, Ziwei Wang1, Qian Yang1,2, Shuigang Xu2,4, 
Yaping Yang1,2, Benjamin A. Piot5, Sheng Hu2,6, Takashi Taniguchi7, Kenji Watanabe7, 
Kostya S. Novoselov1,2,8, A. K. Geim1,2, Vladimir I. Fal’ko1,2,9 ✉ & Artem Mishchenko1,2 ✉

Van der Waals assembly enables the design of electronic states in two-dimensional 
(2D) materials, often by superimposing a long-wavelength periodic potential on a 
crystal lattice using moiré superlattices1–9. This twistronics approach has resulted  
in numerous previously undescribed physics, including strong correlations and 
superconductivity in twisted bilayer graphene10–12, resonant excitons, charge ordering 
and Wigner crystallization in transition-metal chalcogenide moiré structures13–18 and 
Hofstadter’s butterfly spectra and Brown–Zak quantum oscillations in graphene 
superlattices19–22. Moreover, twistronics has been used to modify near-surface states 
at the interface between van der Waals crystals23,24. Here we show that electronic states 
in three-dimensional (3D) crystals such as graphite can be tuned by a superlattice 
potential occurring at the interface with another crystal—namely, crystallographically 
aligned hexagonal boron nitride. This alignment results in several Lifshitz transitions 
and Brown–Zak oscillations arising from near-surface states, whereas, in high magnetic 
fields, fractal states of Hofstadter’s butterfly draw deep into the bulk of graphite. Our 
work shows a way in which 3D spectra can be controlled using the approach of 2D 
twistronics.

At the surface of a crystal, its periodic lattice is interrupted, and surface 
states arise with wavefunctions exponentially decaying into the bulk of 
the crystal25. For example, surface charge accumulation in semiconduc-
tors leads to distinct 2D subbands tunable by electrostatic gating. By 
contrast, in metals, the high charge-carrier density makes it difficult 
to observe and control surface states, as the bulk shunts the surface 
conductivity. Lying in between these two extremes are semimetals 
such as bismuth and graphite, which have tunable surface states that 
are interesting but remain underexplored. Graphite films are of inter-
est as they show both 3D and 2D electronic properties controlled by 
electrical doping and an external magnetic field B. Notably, graphite of 
a finite thickness exhibits an unusual 2.5-dimensional (2.5D) quantum 
Hall effect (QHE)26.

In this Article, we explore moiré engineering of highly tunable elec-
tronic states, by aligning two bulk crystals, hexagonal graphite and 
hexagonal boron nitride (hBN). To this end, we prepared hBN/graphite/
hBN heterostructures by aligning thin graphite films (about 5–10 nm 
thick) on top of the hBN substrate and encapsulating the stack with 
another hBN crystal. Unless otherwise stated, this latter, encapsulat-
ing, hBN is intentionally misaligned (see Methods, ‘Device fabrication’ 
for details). As the lattice constants of hBN and graphite are close, 

in the heterostack, they form a moiré superlattice with the periodic-
ity controlled by the lattice mismatch, δ = 1.8%, and a misalignment  
angle, θ (Fig. 1a). In addition to providing the moiré superlattice, the 
hBN encapsulation also preserves the high electronic quality of graphite 
films26–28. Figure 1a–c shows schematics and micrographs of the hBN/
graphite/hBN heterostructures, fabricated into Hall bar and Corbino 
geometry devices. In these devices, the top and bottom electrostatic 
gates were used to independently control carrier densities nt and nb, 
at the top and bottom interfaces of the hBN/graphite/hBN hetero-
structure. In total, we have studied 11 graphite heterostructure devices 
(Extended Data Table 1).

Hexagonal graphite (Bernal stacking) is a compensated semi-
metal with the Fermi surface occupying only a small fraction of the 
Brillouin zone. The size of the Fermi surface is determined mostly 
by a through-layer hopping parameter, γ2 ≈ −20 meV (ref. 29). Owing 
to its semimetallic nature, graphite does not host surface states  
(evanescent modes) in the absence of dangling bonds or applied elec-
tric field. However, if an electric field above a certain value is applied 
perpendicular to the basal plane, tunable surface states emerge26,30 
(see Methods, ‘Surface states in non-aligned graphite films in a zero-B 
field’ and Extended Data Fig. 1).
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We find that a moiré superlattice at the surface of graphite mark-
edly modifies its surface states, resulting in an entirely different trans-
port behaviour observed between aligned and non-aligned devices 
(Fig. 1d). Devices with a non-aligned interface show a nearly featureless 
carrier-density dependence of longitudinal σxx(n) and transversal σxy(n) 
conductivities in small B. By contrast, for the aligned graphite interface, 
σxy(n) shows multiple zero crossings that are accompanied by peaks in 
σxx(n). We attribute this behaviour to the recurrence of electrostatically 
induced surface states occupied by electron- or hole-like charge car-
riers. To quantify this, we calculated Fermi-surface projections using 
an effective-mass model with Slonczewski–Weiss–McClure param-
eterization of graphite31,32 subjected to moiré superlattice potential, 
in combination with self-consistent Hartree analysis (see Methods, 
‘Surface states in graphite films in the presence of a moiré superlat-
tice’). Our calculations in the superlattice Brillouin zone (SBZ) of an 
hBN/graphite/hBN heterostructure show a multitude of surface states 
with numerous topological Lifshitz transitions (LTs) across a range of 
carrier densities (Fig. 1e). The four pairs of plots (labelled A–D in Fig. 1e) 
with considerable changes in the Fermi-surface topology demonstrate 
four LTs that correspond to the four n ranges (Fig. 1d). LTs observed 
at |n| ≈ 2.0 and 3.7 × 1012 cm−2 belong to two different branches of the 
surface states—one residing mostly on the first graphene bilayer of 
graphite and the other mostly on the second bilayer (Extended Data 
Fig. 1c–f). As B increases, the surface states in the vicinity of LTs give 
rise to separate branches of Landau levels. For details of evolution of 
σxx(n) and σxy(n) in low magnetic fields see Methods, ‘Surface states in 
graphite films in the presence of a moiré superlattice’ and Extended 

Data Fig. 2) Extended Data Fig. 2e,f provides a further comparison of 
aligned and non-aligned interfaces of device D1, confirming the absence 
of LTs in surface states at the non-aligned interface.

With high B, the difference between hBN/graphite/hBN devices with 
aligned and non-aligned interfaces becomes even more prominent 
(Fig. 2a). The curves σxx(B) were measured at 60 K to suppress Landau 
quantization. If the aligned surface is doped away from the electron–
hole compensation, σxx shows an oscillatory behaviour periodic in 1/B. 
Peaks in σxx appear in fields B =q q

φ
A1/

1 0

0
, corresponding to the integer 

number q of superlattice unit cells with an area A0 = √3/2λ2 that are 
commensurate with the magnetic flux quantum ϕ0 = h/e, where λ is the 
wavelength of moiré superlattice, h is the Planck’s constant and e is  
the elementary charge. The commensurability between ϕ0 and the 
magnetic flux through a moiré unit cell, ϕ = BA0, can be interpreted as 
a manifestation of Brown–Zak quantum oscillations at the superlattice 
interface, which were recently reported for aligned monolayer gra-
phene/hBN heterostructures21,22. The formation of magnetic Bloch 
states leads to higher conductivity because of the straight rather than 
cyclotron trajectories of the surface-charge carriers21,22,33,34, as evi-
denced by the conductivity peaks at B1/q (Fig. 2a). Figure 2b shows some 
of these nb-independent conductivity peaks that were found at all dis-
tinguishable 1/q-commensurate fields. Note that not only unit fractions 
but also second-order fractal states (for example, B2/5 in Extended Data 
Fig. 3a) can be seen in Brown–Zak oscillations.

Because Brown–Zak oscillations stem from the translational invari-
ance of magnetic Bloch states at rational fractions of magnetic flux 
ϕ/ϕ0 = p/q (where p is an integer), they are insensitive to temperature 
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Fig. 1 | Moiré superlattice at the graphite–hBN interface. a, Schematic of a 
heterostructure device with graphite (labelled Grt) encapsulated in hBN with 
one of the interfaces aligned. Here the lattice mismatch between graphite and 
hBN has been exaggerated for clarity. b,c, Optical micrographs of devices D1 
(b) and D3 (c). Scale bar, 10 μm (b and c). d, Conductivities σxx and σxy as a function 
of the carrier density induced by the bottom gate, nb, for aligned device D1 and 
non-aligned device D4, measured at T = 0.24 K and non-quantizing B = 120 mT. 

e, Line cuts through the calculated dispersion relation in the k x–ky plane of the 
SBZ, at carrier densities (bottom to top) n (×1012 cm−2) = −3.8, −3.6, −2.1, −2.0, 1.9, 
2.3, 3.6 and 3.9, grouped as pairs. Labels A, B, C and D correspond to the regions 
highlighted in d. The black dashed hexagon denotes the boundary of the first 
SBZ and red curves denote the hole and blue curves denote electron Fermi- 
surface cuts. Some lines at the corners are extended into the second SBZ for 
clarity.
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as long as electrons retain phase coherence in the area of the mag-
netic supercell qA0. Figure 2c shows that at intermediate temperatures 
(T = 20 K), states with ϕ0/ϕ up to 24 are visible (and even states with 
ϕ0/ϕ > 35 are distinguishable in Extended Data Fig. 3b). This provides 
a lower bound on the phase coherence length of greater than about 
100 nm. Brown–Zak oscillations can also be interpreted as Aharonov–
Bohm interference in a periodic 2D network formed by classic trajecto-
ries of electrons drifting around the Fermi contours that are joined by 
magnetic breakdown tunnelling in the vicinity of Van Hove singularities 
(see Methods, ‘Conventional interpretation of Brown–Zak oscillations’ 
and Extended Data Fig. 4). This interpretation enables a convenient 
conceptual transition into the regime of low-B fields in which we see 
multiple LTs of the Fermi-surface topology (Fig. 1e) and explains the 
disappearance of Brown–Zak oscillations for |nb| < 2 × 1012 cm−2.

In comparison, no LTs or Brown–Zak oscillations could be observed 
in our hBN/graphite/hBN devices if non-aligned interfaces were gated 
(Figs. 1d and 2a and Extended Data Fig. 2). This is not surprising, as 
it has previously been shown that states at the opposite surfaces of 
a graphite film are well screened from each other, with a screening 
depth of only two to three layers26. Raman measurements also do not 
show any qualitative difference in strain distribution or other effects 
of alignment for films thicker than seven to eight graphene layers at 
both aligned and non-aligned graphite interfaces (see Methods, ‘Raman 
spectroscopy of aligned graphite films’ and Extended Data Fig. 10). This 
conclusion is further supported by a recent report on atomic relaxation 
in multilayer moiré heterostructures23 that predicts a very short (one 
layer) penetration depth for moiré reconstruction with superlattice 
periodicity λ < 20 nm.

Surprisingly, if the aligned devices are cooled down to our lowest T of 
30 mK and Landau fan maps are measured, we observe the development 
of Hofstadter’s butterfly—the fractal QHE—not just in the near-surface 
2D states but across the entire graphite film (Fig. 3) as witnessed by 
gating either bottom (non-aligned) or top (aligned) interface. A high-B 
map of conductivity σxx versus n = nt + nb for device D2 (Fig. 3a) shows 
multiple QHE features. Figure 3c traces the observed conductivity 
minima on a Wannier diagram. An analogous map and Wannier diagram 

are presented in Fig. 3b,d for device D3. Although QHE is forbidden in 3D 
electronic systems, it has recently been reported for thin (up to 100 nm) 
graphite films26. Two main factors contribute to the observed QHE: 
dimensional reduction of the electronic system from a 3D semimetal 
to one-dimensional (1D) Landau bands in strong B and the consequent 
formation of standing waves in the 1D Landau bands because of a finite 
thickness of graphite films. Standing waves result in the quantization of 
the 1D Landau bands and the development of minigaps, which manifest 
themselves in a so-called 2.5D QHE. At high fields (above B marked 
by white dashed lines in Fig. 3a,b), only the two lowest Landau bands  
(0 and 1) cross the Fermi level and contribute to magnetotransport. 
In addition to being gapped by the standing waves, these two bands 
are split by an energy gap δ10 ≈ 0.4 meV T−1, and further spin-resolved 
by the Zeeman gap, 2μBB (μB is the Bohr magneton). Lifting the +KH 
and −KH valley degeneracy of these bands depends on the graphite  
layer parity26.

To show how the QHE states of Hofstadter’s butterfly penetrate 
through the entire graphite bulk, we have also measured σxx as a func-
tion of n using both top and bottom gates at fixed B (see Extended 
Data Fig. 5a,c and the corresponding Wannier diagrams in Extended 
Data Fig. 5b,d). 2.5D QHE gaps appear as diagonal features because 
these Landau levels can be filled equivalently by either nb or nt and, 
therefore, the states extend throughout the bulk. This is the case for 
both standard QHE and Hofstadter’s butterfly gaps, which shows that, 
in the ultraquantum regime (UQR), the moiré surface potential affects 
the entire bulk of graphite. Conductivity maps σxx(nt, nb) at the high-B 
field for doubly aligned device D3 is generally similar to that of singly 
aligned device D2, with QHE and Hofstadter’s butterfly gaps following 
both nt and nb (Extended Data Fig. 5). One notable difference attributed 
to the symmetry breaking of the interface alignment is that σxx(nt, nb) 
is asymmetric for singly aligned device D2, but symmetric for doubly 
aligned device D3 (Extended Data Fig. 5).

Hofstadter’s butterfly35—a fractal set of energy eigenvalues for mag-
netic fluxes ϕ/ϕ0 = p/q—is shown in Fig. 4a for a honeycomb lattice36, 
matching the geometry of our moiré superlattice. In electron transport 
measurements, this fractal pattern manifests itself in a Landau fan 
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diagram and its Wannier representation, which are described by the 
Diophantine equation:

n
n

t
φ

φ
s= + , (1)

0 0

where integer t is the Landau filling factor ν = nh/eB and integer s is the 
superlattice Bloch band-filling index; n0 = 1/A0 is the density of one 

electron per superlattice unit cell. For s = 0, equation (1) corresponds 
to the conventional Landau fan with t ≡ ν (Fig. 3c,d, grey lines), whereas 
for s ≠ 0, it traces Hofstadter states (Fig. 3c,d, purple lines) emanating 
from magnetic fields satisfying ϕ/ϕ0 = p/q.

Figure 3e shows a hierarchy in the observed QHE gaps: those meas-
ured at integer filling factors (s = 0) are one order of magnitude larger 
than the gaps because of Hofstadter’s butterfly (s ≠ 0). This suggests that 
the effect of the moiré superlattice on the QHE can be considered a small 
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perturbation. To model the impact of this perturbation, we envelop the 
standing waves of 0 and 1 Landau bands in graphite with Hofstadter’s 
butterfly energy spectrum. Figure 4b shows the Landau-level spectrum 
calculated for a 16-layer-thick graphite film without taking into account 
moiré perturbation (see Methods, ‘Bulk states in graphite films in the 
presence of a surface moiré superlattice’), where Landau levels cross 
each other with increasing B, which corresponds to closure and sub-
sequent reopening of gaps in the 2.5D QHE. Figure 4c plots the same 
16-layer-graphite spectrum but each Landau level, Em, is now augmented 
by the Hofstadter’s butterfly spectrum, ε, using

́E E Sε= + . (2)m
moire

m

Here S ≈ 0.42 meV is the scaling factor for the bandwidth of Hofstadter’s 
butterfly37, which was estimated from the measured transport gaps. 
The obtained E m

moire ́ spectrum shows good agreement with our exper-
imental data in terms of both sizes and positions of the gaps (Fig. 4d) 
(gap closures at ϕ/ϕ0 = 1 are labelled with crossings of the correspond-
ing ́E m

moire states).
Bulk fractal states observed here are different from those of graphene- 

based 2D electronic systems, and our mixed moiré system demon-
strates plenty of additional, non-trivial physics, inaccessible in 2D  
systems. First, the conductivity of bulk graphite can be efficiently tuned 
using interface alignment—σxx is increased more than two times at zero 
B field and up to an order of magnitude at high B  in aligned versus 
non-aligned devices (Extended Data Fig. 4c,d). Second, B-field depend-
ence of the amplitude of Brown–Zak oscillations observed in aligned 
graphite films differs from that of graphene, showing a non-monotonic 
dependence of the amplitude of oscillations on 1/B and emphasizing the 
richness of our 3D twistronics system (Extended Data Fig. 4e). Third, the 
absence of bulk fractal states beyond threshold filling factors (ν = −9 
and 12; Fig. 3a,b and Extended Data Fig. 5) shows that the mixing of 
moiré surface and bulk states can be controlled electrostatically by 
changing the screening of moiré potential to the bulk bands.

In summary, we have shown that surface states in graphite (and, 
potentially, other semimetals and doped semiconductors) can be 
strongly modified by a moiré superlattice potential. The alignment 
between hBN and graphite provides a kaleidoscope of LTs that develop 
into Brown–Zak oscillations and Hofstadter surface states. Remark-
ably, moiré surface states in high magnetic fields also affect the entire 
electronic spectrum of these graphite films, which results in fractal 
Hofstadter butterflies that can be referred to as 2.5D in analogy with the 
2.5D QHE in graphite. Our approach thus offers a possibility to explore 
mixed-dimensionality effects arising because of surface superlattices 
extending their influence deep into the bulk of 3D electronic systems.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-06264-5.

1. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 
(2022).

2. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and 
physics of moire materials. Nature 602, 41–50 (2022).

3. Ciarrocchi, A., Tagarelli, F., Avsar, A. & Kis, A. Excitonic devices with van der Waals 
heterostructures: valleytronics meets twistronics. Nat. Rev. Mater. 7, 449–464 (2022).

4. Liu, Y. et al. Moiré superlattices and related moiré excitons in twisted van der Waals 
heterostructures. Chem. Soc. Rev. 50, 6401–6422 (2021).

5. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. 
Nat. Phys. 17, 155–163 (2021).

6. He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944–5958 (2021).
7. Carr, S., Fang, S. & Kaxiras, E. Electronic-structure methods for twisted moiré layers. Nat. 

Rev. Mater. 5, 748–763 (2020).
8. Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. van der Waals heterostructures 

combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019).
9. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).
10. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene 

superlattices. Nature 556, 80–84 (2018).

–4 0 4 8

10

15

20

25

30

1/2

2/3

1

(nh/eB)

0  + 1   +1 0   

10

15

20

25

30

0 6

1 10

0

–2 2 6

–4 0 4

–2 2 6

0

10

15

20

25

30

–5 0 5
E (meV)

B
 (T

)

0    0    1    1

–8

–6

–8

–6

–4

–2

–2

0

0

2

2

4

6

6

8

–1 0

1/2

1

0

a

b

c d

1
e

B
 (T

)

8

2 4
E (meV)

B
 (T

)

/
0

/
0

Fig. 4 | Hofstadter broadening of energy levels in graphite. a, Hofstadter’s 
butterfly calculated for a honeycomb lattice following ref. 36, with a normalized 
energy scale. The dashed line marks ϕ/ϕ0 equivalent to B = 13.5 T, the field 
strength as in Fig. 3e. b, Landau levels resulting from quantized states from  
0 Landau bands are shown in red and 1 Landau bands are shown in grey and 
calculated for a 16-layer-thick graphite film without a moiré perturbation26. 
Zeeman splitting is included, as indicated by lighter and darker curves for the 

spin up and down, respectively. Labels in black refer to the filling factor ν.  
c, Expected spectra by applying Hofstadter’s butterfly in a as a small 
perturbation to each Landau level in b. Same labelling as in b. d, Conductivity 
map replotted from Fig. 3b as a function of ν. Two prominent gap closures 
around ϕ/ϕ0 = 1 have been labelled by the Landau band origin and spin of the 
levels that are crossing; the same colour coding as in b,c. Colour scale: brown  
to yellow, 0 μS to 115 μS.
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Methods

Device fabrication
To make hBN/graphite/hBN heterostructures, graphite flakes were 
encapsulated by hBN through dry transfer as described elsewhere38,39. 
In brief, graphite and hBN flakes were mechanically exfoliated onto 
oxidized silicon substrates. The target hBN flake was picked up by a 
polymer film made of polydimethylsiloxane and polymethylmeth-
acrylate and then used to pick up a graphite flake of known thickness. 
The obtained stack is then released onto another hBN flake on an SiO2/
Si wafer, completing the heterostructure. To make aligned hBN/graph-
ite structures, the straight edges of hBN and graphite flakes, which 
are usually along their crystallographic axes, were aligned in parallel.

Top-gate electrode and metal contacts to graphite (3 nm Cr/80 nm Au) 
were patterned using electron beam (e-beam) lithography and reactive 
ion etching, followed by an e-beam evaporation process. These devices 
were then shaped into Hall bar geometry using a thermally evaporated 
aluminium film as etch mask, which was later removed by 0.1 M NaOH 
solution. Alternatively, for Corbino devices, we utilized e-beam overex-
posure of polymethylmethacrylate resist to form a crosslinked bridge, 
which separates the inner contact, the top gate and the outer contact.

Graphite capacitor devices used to study surface states of non-aligned 
heterostructures were fabricated similarly, with the hBN flake intention-
ally misaligned to the underlying graphite film on a quartz substrate. 
A quartz substrate was chosen to minimize the parasitic capacitance, 
known to be a feature of SiO2/Si substrates. Graphite flakes of around 
50 nm thickness were used, guaranteeing the 3D graphite electronic 
spectrum. Relatively thick hBN flakes (>40 nm) were also chosen to 
eliminate the inhomogeneity of electrostatic potential introduced by 
a relatively rough metal electrode.

Transport and capacitance measurements
The longitudinal and Hall voltages of Hall bar devices were recorded with 
lock-in amplifiers (SR830 or MFLI) on applying a small low-frequency 
a.c. current of 10 nA (except where a higher current is specified). For 
Corbino devices, a small ac bias (40–100 μV) was applied to the inner 
contact, and the current was recorded from the outer one using SR830 
in current input mode (lock-in amplifier input resistance of 1 kΩ and any 
in-line filters were subtracted from the measured resistance to account 
for any voltage drop across these components). The conductivity of 
Corbino devices was calculated using σxx = 1/(2π)ln(ro/ri)G, where G is 
the measured conductance and ro is the outer radius and ri is the inner 
radius of the graphite channel. Magnetic fields up to 18 T were gener-
ated by superconducting magnets, while data above 18 T were obtained 
in a 20 MW resistive magnet at the LNCMI-Grenoble.

To confirm the alignment or misalignment of the top and bottom 
graphite/hBN interfaces and to extract the moiré wavelength λ, we used 
the following two methods: (1) measuring the Landau fan diagrams of 
surface states at each interface by sweeping either the top or bottom 
gate voltages, respectively, and (2) measuring high-temperature 
Brown–Zak oscillations. Because the two surface states are electroni-
cally decoupled, they can feel only the potential in the vicinity of the 
corresponding interface because of electrostatic screening. For doubly 
aligned device D3, both surface states show Brown–Zak oscillations 
with conductivity peaks at nearly the same B fields, indicating the same 
moiré period for the top and bottom interfaces. We fitted multiple 
oscillations corresponding to integer flux fractions ϕ/ϕ0 from 1/2 to 
1/8 to σxx and derivatives σ

B
d

d
xx  and σ

B

d

d

xx
2

2
 (Extended Data Fig. 3c,d), which 

yields a value of B0 for each sequence of oscillations, where B0 is the 
magnetic field at which ϕ0 = B0A0 with magnetic flux quantum ϕ0 and 
superlattice unit cell area A0. Using this value of B0, the moiré wavelength 
λ is calculated as λ =  A2 / 30 . Furthermore, B0 can also be extracted 
from fractal QHE states fitting at low temperatures. The difference in 
λ between the two interfaces calculated using these two methods was 
less than or equal to 0.1 nm. Given the similarity in the measured λ from 

Brown–Zak oscillations and the appearance of only one set of fractal 
states in the dual-gate maps in Fig. 3 (where distinct moiré periods 
would be expected to generate multiple sets of fractal states), we con-
firm the alignment of both interfaces with a precision of ±0.1 nm.

Differential capacitance C was measured as a function of bias voltage 
Vb between the metal gate and graphite using an on-chip cryogenic 
bridge40, which reaches a sensitivity of about 10 aF at 1-mV excitation. 
Excitations of 102.53-kHz frequency and opposite phases were applied 
to the sample and a reference capacitor. Output signals from these 
two capacitors were mixed at the gate of a high-electron-mobility 
transistor, which served as an amplifier. The excitation voltage of the 
reference capacitor was modulated so that the output signal from the 
high-electron-mobility transistor becomes zero, and the capacitance of 
the sample is obtained from the ratio of excitation voltages at the bal-
ance point. A typical excitation voltage applied to the samples ranged 
from 1 to 10 mV, depending on the thickness of the hBN dielectric layer.

Surface states in non-aligned graphite films in a zero-B field
To compute the surface states, we adapted an effective-mass model of 
a finite-thickness graphite film using the Slonczewski–Weiss–McClure 
(SWMC) parameterization26,31,32 combined with the self-consistent 
potential profile of graphite sandwiched between two gates with carrier 
densities nt and nb. In the Hartree approximation, the potentials on the 
layers, Uj > 1, are related to layer electronic densities nl as
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where ε = 2.6 accounts for the vertical polarizability of graphene41, 
c = 3.35 Å is the interlayer separation and 2N is the number of graphene 
layers. We temporarily fix the value of U1, which has the role of a surface 
chemical potential and then self-consistently calculate Hartree poten-
tials and densities on all the layers. The electronic density in layer l of 
graphite, calculated in the Hartree approximation, is
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where f is a Fermi–Dirac distribution, and n enumerates the eigenfunc-
tions for a given in-plane momentum k. The constant n0 is chosen to 
match n∑ = 0l

N
l=1

2  to provide electrical neutrality. After finding the den-
sities on all the layers, we relate U1 to nt using n n n= − −∑n

N
lt b =1

2 .
To examine the thermodynamic density of states (DOS) at the  

graphite–hBN interface, we use capacitance spectroscopy, which is a 
tool that has been applied to 2D systems40,42. However, its application 
to study surface states of metals or semimetals is rare. The measured 
capacitance (C) can be considered as geometric parallel-plate capaci-
tance CG = εε0A/d and quantum capacitance CQ in series, 1/C = 1/CG + 1/CQ, 
where A is the device area, ε0 is the vacuum permittivity and d and ε are 
the thickness and relative permittivity of the hBN dielectric layer43. 
The quantum capacitance reflects the DOS = dn/dU1 on the surface  
of graphite: CQ = Ae2dn/dU1, where n is the carrier density and e is the 
electron charge. In our measurements, C follows a V-shaped depend-
ence on n, where ∫n V C V V( ) = ( )dAe

V
b

1

0
b , with a notable fine structure 

(Extended Data Fig. 1a).
The capacitance (per unit area) can be calculated self-consistently 

from equations (3) and (4) as

C n C e
n

U
( ) = + −

d
d

. (5)
U U n

−1
G
−1

1

−1

= ( )1 1











By comparing the calculated capacitance with experimental data, 
we obtained a set of SWMC parameters (γ0 = 3.16 eV, γ1 = 0.39 eV, 



γ2 = −17 meV, γ3 = −0.315 eV, γ4 = 44 meV, γ5 = 38 meV and ΔAB = 50 meV). 
Results of this procedure are shown in Extended Data Fig. 1b, showing 
excellent agreement between theory and experiment. At low doping 
(|U1| < |γ2|, that is, |n| < 6 × 1011 cm−2), there are no surface states, and 
quantum capacitance plotted in Extended Data Fig. 1b is determined by 
electron and hole screening. Because holes have a slightly larger DOS 
(shallower dispersion) than electrons, we see larger CQ at hole doping. 
When doping reaches U1 ≈ ±γ2, type 1 and type 2 surface states appear 
and contribute to the quantum capacitance. The radius of the surface 
Fermi line for type 1 states grows with |n|, leading to an increase in the 
density of surface states and growth of CQ. Examples of the graphite film 
dispersion spectra with self-consistently determined layer potentials 
are shown in Extended Data Fig. 1c–g for n ranging from −6 ×  1012  cm−2 
to 6 × 1012 cm−2, where the red colour coding represents a high prob-
ability for wavefunctions at the first graphene bilayer and the green 
colour coding represents a high probability for wavefunctions at the 
second graphene bilayer.

To provide a qualitative understanding of the surface states in 
graphite, we analytically solve the spectrum of graphite32, consider-
ing the boundary conditions (Ψ = 0 for surface carbon atoms) and 
plot the eigenstates for homogeneous bulk graphite (Extended Data 
Fig. 1h,i), which consist of a propagating mode (black curves, real kz) 
and an evanescent mode (orange curves, complex kz). There are no 
complex kz solutions at zero doping, as only real kz solutions satisfying 
zero boundary conditions can be normalized. Electrostatic doping of 
graphite surface creates an inhomogeneous z direction potential near 
the surface, which does not preserve kz momentum, allowing real kz 
solutions near the surface, which then turn into evanescent modes 
decaying into the bulk. This provides a heuristic picture of the origin 
of non-trivial surface-state solutions (Extended Data Fig. 1h,i).

There are three types of propagating mode: majority electron 
and hole bands with bandwidth 2γ2 and a minority carrier band near 
ckz = π/2. These propagating bands cross the bulk Fermi level at a small 
in-plane momentum kx,ky (Extended Data Fig. 1h, 1D metal regime in 
the z direction) but are spread away from the Fermi level at large kx,ky 
(Extended Data Fig. 1i, 1D semiconductor regime in the z direction). 
When a potential near the surface is introduced by doping, the propa-
gating modes in the 1D semiconductor region start to cross the Fermi 
level. With potential abating away from the surface, these modes evolve 
into evanescent modes in the gap (Extended Data Fig. 1i, green arrows 
for electron doping and blue arrows for hole doping). The dispersion 
of these evanescent modes, which we denote as type 1, crosses the 
Fermi level, forming a surface Fermi line with a radius larger than the 
Fermi surface of propagating carriers (Extended Data Fig. 1c–g, yellow 
contours). These states are similar to surface states in doped semicon-
ductors, with the difference that they exist for only in-plane momenta 
larger than the projection of the bulk Fermi surface of graphite (no 
surface states observed for zero doping in Extended Data Fig. 1g). In 
the 1D metal regime, another type of evanescent mode, denoted as 
type 2, appears for |E| > |γ2| and never crosses the Fermi level (Extended 
Data Fig. 1h).

Surface states in graphite films in the presence of a moiré 
superlattice
The spectrum for graphite aligned with hBN was calculated by treat-
ing the periodic moiré potential as a perturbation applied to only  
the top graphene layer. We followed the standard procedure19,  
using the mirror-symmetric superlattice coupling Hamiltonian 
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layer components of the graphite film wavefunction, where Pauli matri-
ces σ operate on top-layer sublattices and τ operates on valleys, 
g πδ a= {0, 4 /(3 )}m π m( −1)/3R  are six reciprocal lattice vectors of super-
lattice (where R is a rotation matrix), δ = 0.018 is a lattice mismatch, a 
= 1.42 Å is carbon–carbon distance, and we use the parameters 
U0 = 8.5 meV, U1 = −17 meV and U3 = −14.7 meV (refs. 44,45). The results 

do not significantly depend on the values of superlattice couplings, 
and it was sufficient to restrict the momentum space to the first star 
of the superlattice reciprocal lattice vectors to achieve convergence.

At low fields (B < 1 T), the onset of 2.5D QHE is strongly altered by the 
kaleidoscopic band structure of the surface states (Fig. 1e). We compare 
the low field transport for aligned (D1) and non-aligned (D4) devices 
of similar graphite thickness (approximately 8  nm) (Extended Data 
Fig. 2a–d). In a non-aligned graphite device, we observe that a Landau 
fan develops for finite densities |nb| > 1012 cm−2, and all QHE states can 
be traced back to nb ≈ 0 as B approaches 0. By contrast, for aligned 
graphite similar QHE features are also overlaid by oscillations emanat-
ing from LTs at |n| ≈ 2.0 and 3.7 × 1012 cm−2 resulting in the diamond-like 
features in σxx occurring at flux fractions ϕ/ϕ0 = p/q. Comparison of 
low field conductivity as a function of tuning aligned and non-aligned 
interfaces in the same device also shows pronounced differences, as 
shown in Extended Data Fig. 2e,f, where the most visible features occur 
only at |nb| > 2 × 1012 cm−2, independent of nt doping.

To highlight Brown–Zak oscillations across a large range of magnetic 
fields, we also calculated Δσxx by subtracting a smooth background 
from the σxx data. In comparison to graphene–hBN systems in which 
the background conductivity can be fitted with polynomials21, we find 
that even-higher-order (>10) polynomials are insufficient as many 
oscillatory artefacts are present. Instead, we use a two-carrier Drude 
model of σxx(B) and σxy(B) and fit both simultaneously to yield carrier 
densities and mobilities nh = 2.2 × 1012 cm−2, μh = 24,000 cm2 V−1 s−1, 
ne = 2.8 × 1012 cm−2 and μe = −19,000 cm2 V−1 s−1 for zero gate bias at 
T = 60 K. This two-carrier model fit, σ B( )xx

fit , is then used to calculate 
σ n B σ n B σ B∆ ( , ) = ( , ) − ( )xx xx xxb b

fit . Oscillations in Δσxx occurring at B q1/  
visible for q ≤ 11 (Fig. 2b and Extended Data Fig. 3a) were cross-examined 
against raw σxx data to confirm they were not introduced by the subtrac-
tion process.

Bulk states in graphite films in the presence of a surface moiré 
superlattice
To model the transport gaps in our aligned devices at high B and low 
T, we treat moiré superlattice potential as a weak perturbation; each 
2.5D QHE Landau level (Fig. 4b) is split into q subbands, at a given 
ϕ/ϕ0 = p/q. Levels in Fig. 4b were calculated from the tight-binding 
description of Landau bands in graphite from ref. 26 using the same 
set of SWMC parameters as stated above, with an adjustment to the 
splitting between Landau bands 0 and 1 attributed to the effects of 
self-energy in high-B fields46,47. Hofstadter’s butterfly for a honeycomb 
lattice (Fig. 4a) was calculated from the finite-difference equation in 
ref. 36, in which the energy scale has been normalized, and is given in 
arbitrary units, ε = ±1. A limit of q ≤ 100 was used for the computation 
to give a balance between plot density and speed. However, this results 
in the apparent absence of states near ϕ/ϕ0 = 1, 1/2 and 1/3 (Fig. 4a,c), 
and it should be noted that this is a feature of the computation, not 
gaps in the spectra.

Analysis of the thermal activation of gaps for device D3 at B = 13.5 T 
(Fig. 3e) indicates the largest fractal gaps are ΔEfractal ≈ 0.1 meV. We 
assign ΔEfractal to the largest gap in Hofstadter’s butterfly at the flux 
value ϕ/ϕ0 = 0.57 (corresponding to B = 13.5 T; Fig. 4a, dashed line), 
which spans 0.32 < ε < 0.56. This yields a scaling factor S = 0.42 meV. 
The full spectrum is then calculated using equation (2) and shown in 
Fig. 4c, in which we use the periodicity of Hofstadter’s butterfly (such 
that ε(ϕ/ϕ0 + ρ) = ε(ϕ/ϕ0) for any integer ρ) to plot states at ϕ/ϕ0 > 1.

For comparison, the fractal energy spectrum was also computed 
for device D2, which has a different alignment to hBN and layer parity 
to that of device D3 (device D2 is 21 layers in thickness and aligned 
to only one encapsulating hBN). Odd-layer parity lifts the ±KH valley 
degeneracy in 2.5D QHE in graphite26 and, therefore, the gap size is 
significantly reduced (Extended Data Fig. 6a–c) and the maximal gap 
size is about 0.9 meV (compared with 1.8 meV in device D3; Fig. 3e). In 
Extended Data Fig. 6d, we focus on the evolution of gap size at filling 
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ν = 0 between two level crossings at B = 10 T and B = 16 T, with a maxi-
mal observed gap of about 0.48 meV. Extended Data Fig. 6f shows the  
Landau levels without moiré perturbation for the 21-layer graphite. Both 
the extent of the ν = 0 gap (8.5 T < B < 17 T) and its maximal size (1.3 meV) 
in the model are notably larger than those observed in the experiment. 
On application of Hofstadter’s butterfly to each Landau level (using the 
same S = 0.42 meV as in Fig. 3e), each level has effectively broadened and 
thus the ν = 0 gap in the model is reduced to about 0.6 meV (Extended 
Data Fig. 6g), in closer agreement with our experiments. However, the 
broadening of energy levels from Hofstadter’s butterfly leads to many 
overlapping states and hence gap closures, which were not observed 
in our experiment. This is probably because of inadequate treatment 
of moiré perturbation to states hosted on even and odd layers. As the 
moiré reconstruction is limited to a very short penetration depth, the 
perturbation will be much larger on the outermost layer (odd) than on 
subsequent layers. We plot a revised model with S = 0.42 meV for odd 
layers and S = 0.12 meV for even layers (Extended Data Fig. 6h), yield-
ing fewer gap closures, whereas the same ν = 0 gap remains, which is in 
overall better agreement with our experiment (Extended Data Fig. 6e).

Surface states in non-aligned graphite films in finite B fields
In the B field, surface states manifest in the capacitance spectra as 
pronounced magnetocapacitance oscillations (Extended Data Fig. 7a). 
For bulk Landau bands that cross the Fermi level, the associated sur-
face states would coexist and mix with them. However, bulk Landau 
bands away from the Fermi level can become occupied at the surface 
when electrostatically doped, giving rise to surface Landau levels. On 
filling these surface Landau levels, regions of high compressibility 
appear as peaks in the capacitance spectra. Note that the width of these 
high-compressibility regions does not correspond to integer degen-
eracy (>4), because some fraction of gate-voltage-induced charge is 
sunk into the bulk to support the self-consistent screening potential 
near the surface (Extended Data Fig. 8b).

Having determined the geometric capacitance from the fitting of 
zero field data, we can convert C(n) into DOS(U1) using U1 = eVb − e2n/CG 
(ref. 40). As shown in Extended Data Fig. 7b, peaks in the DOS cor-
respond to metallic-surface Landau levels, which are separated by 
relatively low DOS regions (cyclotron gaps of the surface states). In 
contrast to true 2D systems, the DOS in these cyclotron gaps is non-zero, 
because charges can be injected into the bulk graphite. At 12 T, three 
minima are further developed on top of most peaks, indicating that 
the fourfold degeneracy (spin and valley) of the surface Landau levels  
is lifted.

Experimental results are better visualized and more informative 
when presented as a C(n, B) map (Extended Data Fig. 7c). The branches 
of surface states spawn out from the neutrality points at B = 7.5 T, 3 T, 2 T 
and so on. These B fields correspond to the critical fields above which 
the bulk Landau bands no longer cross the Fermi level and appear as 
only surface Landau levels. For instance, according to our SWMC model, 
at 7.5 T, the bulk Landau band 2+ is just above the Fermi level (Extended 
Data Fig. 7d). Thus, a branch of surface states spawned out around 
this field is labelled as S2+. The same happens with the electron bulk 
Landau band 3+ at 3 T and hole bulk Landau band 2− at 2 T (Extended 
Data Fig. 7c).

We observed oscillations down to B ≈ 0.1 T (Extended Data Fig. 8a), 
which sets a lower bound of approximately 100,000  cm2  V−1  s−1 for 
surface-charge carrier mobility. The high electronic quality of sur-
face states also enables fractional features in the Landau quantiza-
tion of charge carriers. A graphite capacitor device was fabricated to 
investigate fractional QHE features, with a thicker hBN dielectric to 
reduce the inhomogeneity of electrostatic potential from the metal 
electrode. At a high magnetic field, B = 20 T, we observe the forma-
tion of two minima on top of singly degenerate surface states of S2+ 
(Extended Data Fig. 9a,b). The Δν between the fractional gap is around 
0.27, which is lower than the expected Δν = 1/3 for fractional QHE.  

To further investigate these fractional QHE states, we used thin (6 nm) 
graphite (device D9) and studied transport under an applied displace-
ment field, D = (nt − nb)e/2ε0. At D = 0.24 V nm−1, B–n regions can be 
found in which the energy level of surface states locates in the bulk 
gap (Extended Data Fig. 9c,d). In these regions, the surface states are 
isolated from the bulk completely, and vanishing σxx and quantized 
σxy indicate the development of fractional QHE with a 1/3 degeneracy. 
The difference between the capacitance and transport measure-
ments can be reconciled by considering the negative compressibility 
of the fractional states: the chemical potential of the surface states 
reduces with the injection of n, acquiring additional charges from  
the bulk48–50.

Conventional interpretation of Brown–Zak oscillations
The classical dynamics of the electron is set by eB= ˆ ×p z ṙ ̇  and 
r v pṗ ∇ ε≡ = ( ), which implies that the real-space trajectories can be 
obtained from constant energy contours in momentum space by a 90° 
rotation and rescaling by 1/eB. Near Van Hove singularities, caused by 
the saddle points in the dispersion of electrons, the change of the sign 
of the band mass occurs, which is known as the LT. At the LT, closed 
cyclotron orbits of electrons transform into open trajectories, forming 
a network, which, because of the C3 symmetry of graphite film, looks 
like a Kagome pattern. This leads to delocalized electron orbits result-
ing in high conductivity even at strong magnetic fields, even though 
the electron ballistic motion along such a network has a stochastic 
element: when reaching the saddle points in dispersion, electron paths 
can switch between electron- and hole-like segments (Extended Data 
Fig. 4a,b). This process, known as the magnetic breakdown of cyclotron 
motion, can be captured51–54 by transmission amplitudes, S↼⎯
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These magnitudes of S∣⇀∣ and S∣↼⎯∣ are comparable to each other in the 
magnetic breakdown55 interval of energies, proportional to reB πħ/(2 ), 
which is determined by the strength of B field and Gaussian curvature 
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window around ELT, where the LT network of trajectories is relevant for 
electron transport.

For any pair of points in the network, there are several distinct 
equal-length paths connecting them. These paths consist of an equiv-
alent set of segments passed in a different order (for example, green 
and brown paths in Extended Data Fig. 4b), which—because of the 
periodicity of the Kagome network—ensures independence of the 
interference phase between partial waves following those paths, on 
the exact energy of electrons (similar to the physics of weak localiza-
tion). As a result, broadening of the Fermi step does not lead to 
self-averaging of constructive and destructive interference contribu-
tions generated by electrons at various energies (as happens with the 
interference-induced mesoscopic fluctuations). The length of each 
segment of the trajectory scales as 1/B. So, for low B, only the shortest 
possible trajectories retain ballistic propagation (see Extended  
Data Fig. 4b for examples of such pairs of trajectories). The area, 
A = =
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, between the pairs of such trajectories is related—by 

rescaling with B field—to the actual Brillouin zone area, A A= (2π) /BZ
2

0,  
of the superlattice, where A0 is the unit supercell area. Multiplied by 
the magnetic field, this determines the encircled magnetic flux φ A B= 0  
and the Aharonov–Bohm phase, φ ħeAB ħ= = = 2πA eB
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ence between partial waves that undergo ballistic propagation along 
the Kagome trajectories and stochastic switching at the Kagome net-
work sites produce conductivity oscillations,
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which are 1/B periodic. At low magnetic fields, the length of the paths, 
B B( ) ∝ −1L , would be longer than the shortest of the mean free path and 

coherence lengths, ℓ, which is captured by the exponential factor in 
equation (6). Here ρ is the thermodynamic density of states and the 
width, δn, of the doping interval around LT in which the oscillations 
are expected to be visible is determined by both T and B. Note that the 
described oscillations are related to the ability of the electron to prop-
agate across the superlattice rather than its density of states. Thus, 
they appear in the conductivity measurements but would be absent in 
quantum capacitance measurements. We also note that for a graphite 
surface aligned with hBN, LTs start to appear in surface and mixed 
bulk-surface bands after surface doping reaches 2 × 1012 cm−2. With 
increasing doping, there is a cascade of LTs (Extended Data Fig. 4a,b). 
As a result, the interval of densities, in which the above-described 
1/B-periodic oscillations are visible, is broadened.

The mean free path, ℓ, appearing in the denominator of the exponent 
of our expression for the amplitude of oscillations in equation (6) is 
usually assumed to depend on only the temperature, and equation (6) 
produces an exponential decay, L( )exp − 2

ℓ , of oscillations at low mag-
netic fields. However, in the case of graphite, there are a lot of Fermi 
contours of bulk bands nearer to the K point and the increasing mag-
netic field could result in magnetic breakdown scattering from the 
surface to the bulk bands. This additional scattering decreases the 
lifetime of electrons on surface-state Fermi contours, effectively 
decreasing the mean free path, ℓ, with growing B. This mechanism may 
lead to non-monotonic dependence of the amplitude of oscillations 
on 1/B (Extended Data Fig. 4e), reflecting the complexity of our 3D 
twistronics system.

Raman spectroscopy of aligned graphite films
To characterize the effect of surface superlattice potential on hBN- 
encapsulated graphite, we performed Raman spectroscopy measure-
ments. A graphite flake with an extended monolayer graphene (MLG) 
region was selected to benchmark the alignment of the entire graphite 
film (Extended Data Fig. 10a,b). Raman spectra of MLG/hBN superlat-
tices have been well studied56, and the alignment can be traced by the 
width of the 2D peak of MLG. The 2D peak of MLG broadens with better 
alignment because of the increased strain inhomogeneity caused by the 
moiré periodic potential of the hBN substrate. Similar broadening of  
the 2D peak was also observed in the bilayer graphene–hBN superlattice 
system57, indicating that the superlattice potential of the hBN substrate 
can propagate through graphene bilayers, and is therefore detectable by  
Raman spectroscopy. However, how far this superlattice potential can 
penetrate the bulk of graphite remains unclear.

To clarify this, we fabricated two hBN/graphite/hBN heterostruc-
tures at the same time, by transferring graphite onto two adjacent but 
intentionally misoriented hBN flakes. The graphite flake is controlled 
to be aligned with one of the hBNs, and as a consequence is misaligned 
with the other (Extended Data Fig. 10c). The flake alignment is char-
acterized by the full width at half maximum (FWHM) of the MLG 2D 
peak (Extended Data Fig. 10e). Each spectrum was averaged over ten 
spectra acquired at different positions and normalized by the intensity 
of the E2g hBN peak at 1,363 cm−1. The FWHM is 21 cm−1 and 35 cm−1 for 
non-aligned and aligned regions of the MLG, respectively, which agrees 
well with the results in ref. 56. Broadening of the 2D peak is expected if 
the superlattice potential at the interface can propagate through the 
bulk graphite crystal. We found no appreciable difference on the Raman 
map of 2D FWHM between aligned and non-aligned graphite regions 
(Extended Data Fig. 10d,e). This implies that the surface superlattice 
potential of the hBN substrate does not penetrate through graphite, 
at least for films of thickness at least 2.6 nm.

Data availability
All data are available from the corresponding authors upon reason-
able request.

Code availability
The codes generated in this work to compute surface states of graphite 
multilayers with and without coupling to aligned hBN are available at 
https://github.com/slizovskiy/GraphitehBN.
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Extended Data Fig. 1 | DoS spectroscopy of surface states of graphite in  
zero magnetic field. a, Capacitance (C) vs carrier density (n) for device D6 at 
T = 0.3 K. Inset shows optical micrograph of a typical capacitor device, scale  
bar 20 μm. b, Density of states (DoS) and quantum capacitance (Cq) vs surface 
potential (U1) from calculations based on effective-mass model (black line). 
Coloured symbols are experimental data from four different devices (D5, D6, 
D8, D11). Inset is calculated U1 vs n. c–f, Calculated dispersions of a 20-layer-thick 
graphite film for hole/electron dopings n = −6, −4, 4, 6 × 1012 cm−2 as a function 
of in-plane momentum k x,ky (horizontal axes) and energy E (vertical axis). Red 
(green) colour indicates surface states having high probability density of the 
wavefunction at the first (second) graphene bilayer. Upper outer surfaces with 

larger radius correspond to Type 1, and lower inner surface with a smaller 
radius correspond to Type 2. Blue colour indicates bulk states, and yellow 
contour highlights the Fermi level. g, same as c–f, calculated for zero doping 
where no distinct surface states are observed. h,i, Dispersion for propagating 
(Im k z = 0, black lines) and evanescent modes (Im kz ≠ 0, orange lines) for bulk 
graphite as a function of complex kz for fixed ħνk = 0.04 eV (panel h, 1D metal 
regime with Type 2 evanescent modes) and 0.15 eV (panel i, 1D semiconductor 
regime with Type 1 evanescent modes), respectively. Fermi level is at 0 eV. Green/ 
blue arrows indicate evolution of surface states from propagating modes into 
evanescent modes for electron/hole doping.
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Extended Data Fig. 2 | Transport in aligned vs non-aligned interfaces at small 
magnetic fields. a, c, σxx,σxy as a function of B and nb for aligned device D1 at 
T = 0.24 K. Landau level features emanate from LTs (|n| ≈ 2.0 and 3.7 × 1012 cm−2) 
and from zero doping. b, d, σxx,σxy as a function of B and nb for non-aligned 
device D4 at T = 0.22 K. e, Comparison of low field σxx line traces for the two 

interfaces of the single aligned D1, where aligned interface (nb) hosts many 
features related to the LTs which are notably absent in non-aligned interface (nt) 
response. f, Mapping of σxx for D1 as a function of nb and nt, highlighting that the 
vertical features related to LTs are independent of nt throughout the measured 
range. B = 0.3 T, T = 1.8 K, and the colour scale is black to white, 5 to 18 mS.
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Extended Data Fig. 3 | Brown-Zak mappings in aligned devices. a, Extended 
range plot of Fig. 2b in the main text for device D1; ∆σxx (conductivity minus a 
smooth background) as a function of B and nb at T = 60 K. Inset, σxx(ϕ0/ϕ) trace 
at nb = 3.53 × 1012 cm−2 highlighting higher order Brown-Zak oscillation at ϕ0/ϕ =  
5/2. b, Extended range plot of Fig. 2c in the main text; σxx as a function of B and nb 
at T = 20 K. Inset, conductivity averaged across a carrier density range nb = 2.00 
to 3.84 × 1012 cm−2, ‹σxx(nb)›, plotted as a function of ϕ0/ϕ showing oscillations 
continuing down to experimental mapping resolution (Bstep = 1 mT). c–h High 

temperature mappings of σxx(nt, B) (panels c & g) and σxx(nb, B) (panels d & h)  
for doubly aligned device D3 (c–d) and singly aligned device D2 (g–h). 
Measurements were conducted at T = 60 K, colour scale black to white is 80  
to 190 μS for c & d, 49 to 154 μS for g and 64 to 97 μS for h. Panels e & f show 1st 
and 2nd derivatives, respectively, calculated from d. Horizontal dashed lines 
show the significant flux fractions φ φ/ 0 from 1/2 to 1/8 fitted to the data. 
Colour scale for e is blue to red −40 to 40 μS T−1 and in f is black to white −100  
to 100 μS T−2.



Extended Data Fig. 4 | Classical interpretation of Brown-Zak oscillations 
and conductivity enhancement. a, Dispersion in the SBZ plotted up to Fermi 
energy for doping 2.1 × 1012 cm−2 (left) and 3.8 × 1012 cm−2 (right) respectively.  
b, networks of classical trajectories accessible to surface state electrons at the 
same dopings in a. Examples of shortest interfering paths of equal length are 
shown by green and brown arrows. The area enclosed between these paths 
equals ABZ/(eB)2 irrespective of energy. c, Conductivity enhancement at high B 
field in aligned Corbino devices; σxx as a function of single gate induced carrier 
density for non-aligned device (D10, black curve, bottom gate tuned), singly 
aligned device (D2, red curve, top gate tuned) and doubly aligned device  

(D3, blue curve, bottom gate tuned) all in Corbino geometry, measured at 
T = 0.3 K and B = 18 T. Shaded regions highlight surface Landau band features. 
d, Conductivity at zero B field in aligned (D1) vs non-aligned (D9) Hall bar 
devices. Increased scattering due to alignment results in reduced conductivity 
in the bulk at B = 0 T. Here the top (non-aligned interface) gate is swept for D1. 
T = 0.3 K. e, Brown-Zak oscillations in σxx differ in amplitude non-monotonically 
as a function of ϕ0/ϕ in aligned Hall bar device D1. Measured at nb = 2.6 × 1012 cm−2, 
where T = 60 K curve is from the same dataset used to generate Fig. 2b and 
Extended Data Fig. 2a.
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Extended Data Fig. 5 | Existence of fractal states throughout the bulk.  
a, σxx(nt, nb) of device D2 as a function of top and bottom gates, nb and nt, 
measured at high field B = 15.6 T, T = 0.3 K, colour scale: brown to yellow, 0 to 
59 μS. b, Wannier diagram depicting the QHE and fractal QHE gaps in the bulk 
as diagonal grey and purple lines, respectively. High doping for top (bottom) 

gate results in horizontal (vertical) features that correspond to surface states 
accessing the +2 and −2 Landau bands from the opposite graphite surfaces 
(highlighted by orange shading). c, σxx(nt, nb) of device D3, measured at high 
field B = 13.6 T, T = 0.3 K, colour scale: brown to yellow, 0 to 98 μS. d, The same 
as b but for D3.
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Extended Data Fig. 6 | Gap size hierarchy in device D2. a, Upper panel, σxx  
as a function of integer QHE filling factor ν at various temperatures, B = 15.2 T. 
Lower panel, bubble plot of extracted gap size from Arrhenius fits to the σxx 
minima. Gap size scales with area (60 μeV to 0.9 meV), and grey bubbles are 
integer gaps (labelled by ν) and purple bubbles are fractal gaps (labelled by s, t). 
b,c, Examples of Arrhenius plots of ln[σxx] as a function of reciprocal 
temperature for integer QHE gap at ν = 5 and fractal QHE gap of integers (s,t) = 
(−1,7), respectively. The linear regions are fitted to yield a slope of ≈ ½Egap.  
d, Gap size extracted from Arrhenius fits as a function of B for the ν = 0 gap.  
e, Conductivity map for device D2, same data as in Fig. 3a in the main text, 

except plotted as a function of filling factor ν of main QHE sequence. Colour 
scale: brown to yellow, 0 to 80 μS. f, Allowed energy levels resulting from 
quantised states from 0 (1) Landau bands shown in red (grey), calculated for 
21-layer-thick graphite film without a moiré perturbation26. Zeeman splitting 
has been included, as indicated by light and dark lines for spin up and spin 
down, respectively. g, Combination of panels f and Fig. 4a in the main text by 
applying Hofstadter’s butterfly as a small perturbation (S = 0.42 meV) to each 
energy level, Eq. 2. h, Same as g but with S = 0.42 meV for odd layer states and 
S = 0.12 meV for even layer states.
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Extended Data Fig. 7 | Magnetocapacitance oscillations and Landau fan 
diagram of the surface states. a, Typical C(n) at 0.6 T (bottom black curve), 
5.1 T (middle blue curve) and 12 T (top red curve), respectively, in capacitor 
device D6 at T = 0.3 K. Bottom insets are magnifications of the marked areas.  
b, DoS vs U1 at 5.1 T, 0.3 K. c, Surface Landau fan diagram C (n, B) at 0.3 K. Colour 

scale: navy to white, 254.7 fF to 270.0 fF. Dashed line marks the critical field 
B = 7.5 T, where bulk Landau band 2+ leaves the Fermi level and graphite enters 
the UQR. d, Dispersion relation for bulk Landau bands calculated using the 
SWMC model at B = 7.5 T26.



Extended Data Fig. 8 | Low field quantum oscillations. a, Oscillations of Δρxx 
in device D7 obtained by subtracting a smooth background while sweeping  
the gate voltage (Vb) at 0.1 T, 0.3 K using excitation I = 1 μA. The encapsulated 
graphite with a thickness of 20 nm is defined to Hall bar geometry for this 

measurement. b, dns/dn as a function of n at 0.6 T, where ns is the carrier density 
injected into the surface states, n is the total electrostatically induced carrier 
density. It is deduced from the curve shown in Extended Data Fig. 7a, based on 
the periodicity of the oscillations.
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Extended Data Fig. 9 | Fractional surface states in non-aligned graphite. 
a,b, Fractional surface states measured in capacitance (device D8). a, C(n) at 
B = 20 T, T = 0.3 K. Inset magnifies the encircled region, but plots as C(ν).  
b, dC/dν (ν, B) of S2+ in high B region. Colour scale: blue to red, −6 to 6 fF. Right- 
top inset shows the corresponding C (n, B) map. Colour scale: orange to red, 
254.3 to 260 fF. c, Longitudinal conductivity σxx (B, n) measured at D = 0.24 V/nm 

in a Hall bar device D9, T = 0.3 K, I = 20 nA. The white shaded areas are guides to 
the eye for the surface states. Boundaries of one such surface states are marked 
by white dotted curves. Logarithmic colour scale: navy to orange, 0.1 to 118.2 μS. 
d, σxx cut profile (black curve) of the white dashed line in c and the corresponding 
Hall conductivity σxy (red curve).



Extended Data Fig. 10 | Raman characterization of aligned and non-aligned 
ABA graphite. a, Optical image and b, AFM profile of graphite flake used in 
Raman measurement (area shown in the black box in a). The flake contains both 
regions of MLG and graphite with thickness around 10 layers. Scale bar 10 um.  
c, Optical image of the stack fabricated for Raman measurements. The aligned 
and non-aligned regions are marked by blue and red dashed lines. Scale bar 

10 um. d, Raman map of full width half maximum (FWHM) of 2D peak. The  
MLG and graphite regions are colour-coded in grayscale and red-to-purple, 
respectively. e, Comparison of 2D peak between aligned and non-aligned 
regions in MLG (up) and graphite (down). Each spectrum shown here is averaged 
over ten spectra at different spots. The intensity is normalized by that of hBN 
peak at 1363 cm−1.
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Extended Data Table 1 | Details of the studied devices
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