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Translation regulation s critical for early mammalian embryonic development.
However, previous studies had been restricted to bulk measurements?, precluding
precise determination of translation regulation including allele-specific analyses.
Here, to address this challenge, we developed a novel microfluidic isotachophoresis

(ITP) approach, named RIBOsome profiling viaITP (Ribo-ITP), and characterized
translationin single oocytes and embryos during early mouse development. We
identified differential translation efficiency as a key mechanism regulating genes
involved in centrosome organization and N°-methyladenosine modification of RNAs.
Our high-coverage measurements enabled, to our knowledge, the first analysis of
allele-specific ribosome engagementin early development. These led to the discovery
of stage-specific differential engagement of zygotic RNAs with ribosomes and reduced
translation efficiency of transcripts exhibiting allele-biased expression. By integrating
our measurements with proteomics data, we discovered that ribosome occupancyin
germinal vesicle-stage oocytes is the predominant determinant of protein abundance
inthe zygote. The Ribo-ITP approach will enable numerous applications by providing
high-coverage and high-resolution ribosome occupancy measurements from ultra-low
input samples including single cells.

The early gene expression landscape is shaped by post-transcriptional
regulation of maternal transcripts due to the absence of transcription
from later stages of oocyte maturation through the early divisions of the
embryo®*. Consequently, RNA expression and proteinabundanceare only
modestly correlated until the late morulastage, emphasizing the need to
elucidate post-transcriptional regulation during initial stages of embryo-
genesis™*®. In particular, translational control of specific transcripts is
essential for oocyte maturation and the oocyte-to-embryo transition™,

Transcriptome-wide mRNA translation can be measured by
high-throughput sequencing of RNA fragments protected by ribo-
somes from nuclease digestion®°. However, the conventional ribosome
profilingapproachinvolves multiple steps with substantial loss of input
material, restricting its application to samples with large numbers
of cells. Consequently, many important questions related to transla-
tional control remain to be addressed owing to limited availability of
biological material.

Toovercome this constraint, we developed amethod leveraging the
principles of microfluidic on-chip ITP for isolation of ribosome pro-
tected fragments (RPFs).ITP has previously been applied for extraction
of nucleicacids fromblood, urine and cell culture samples'. Compared
with conventional RNA extraction approaches, ITP offers faster pro-
cessing times, no requirement of liquid transfers and high yield with
low RNA inputs'*®, Despite these advantages, ITPis considered to lack
the ability to deliver the stringent size selection that would be required
for applications such as ribosome profiling'".

Ribo-ITP

Here we designed and manufactured a custom microfluidic polydi-
methylsiloxane (PDMS) chip to recover ribosome footprints from
nuclease-digested lysates with high yield using a specialized technique
named Ribo-ITP (Fig.1a,b, Extended Data Fig.1a,b and Supplementary
Video 1). We implemented numerous innovations that enable a chem-
istry required to achieve single-cell ribosome profiling by coupling ITP
with an optimized on-chip size selection. Specifically, we leveraged
pretreatment of the channel withbenzophenone to enable light-induced
polymerization of polyacrylamide inside PDMS chips'. To aid visu-
alization, we included DNA oligonucleotide markers containing a5’
fluorophore and 3’ dideoxycytosine (ddC) modification to prevent
marker amplification in downstream library preparation (Extended
Data Fig. 1c). An on-chip buffer exchange allowed the purified RNAs
to be directly compatible with 3’ dephosphorylation, the first step in
sequencinglibrary preparation of RPFs (Extended DataFig.1d). Finally,
we adopted an efficient single-tube library preparation chemistry that
relies onatemplate switching reverse transcriptase and incorporation of
unique molecularindexes at the 5’ end of the RPFs. Collectively, Ribo-ITP
reduces sample requirements by many orders of magnitude while simul-
taneously reducing sample processing time to deliver ribosome occu-
pancy measurements from ultra-low input samples, including single
cells. Adetailed protocolincluding video instructions of the described
Ribo-ITP method may be accessed at https://ceniklab.github.io/ribo_itp.
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Fig.1|Schematic of Ribo-ITP. a, Schematic of the generation of RPFs.
Following RNase digestion, RPFs are isolated with the conventional or Ribo-ITP
approach. b, Schematic of the conventional ribosome profiling protocol and the
Ribo-ITP process for extraction of RPFs. In Ribo-ITP, marker oligonucleotides
witha5’ fluorophore (greencircle) and 3’ ddC blocking modification (black
circle), which encapsulate the size range of RPFs, are added to the digested

Ribo-ITP RNA extraction and size selection

Given that atypical mammalian cell contains approximately 10-40 pg
of RNA, an approach capable of generating ribosome occupancy meas-
urements from such limiting amounts needs to maintain consistently
high yield of RPF recovery with inputs in the picogram range. We first
compared therecovery of RNAs that span the typical size range of RPFs
(approximately 21-35 nucleotides (nt)) achieved by the conventional
gelextraction-based method versus Ribo-ITP. When using 20 nginput
samples, Ribo-ITPyielded 94 + 3.5% (s.e.m.) recovery in contrast to only
38 +10.9% for the conventional gel extraction approach (Extended Data
Fig.1le,f). We then adopted a radioactive labelling assay to visualize
and quantify the recoveries from ultra-low RNA inputs (40 pgto 2 ng).
Witha2 ngRNAinput, 87.5 + 3.2% yield was achieved by Ribo-ITP com-
pared with 35.3 +11.4% by conventional gel extraction (Fig. 2a). When
RNAinputs were decreased furtherto 400 pgand 40 pg, therecovery
by Ribo-ITP remained high at 74 + 6.1% and 67.5 £ 10.6%, respectively
(Fig.2a). Gel extraction had negligible yield with these samples. Thus,
the consistently high RNAyields obtained with Ribo-ITP demonstrate
that this method empowers high-yield extraction even at ultra-low
inputs.

To analyse the efficiency of our method to exclude RNA fragments
larger than RPFs (more than 36 nt), we digested total RNA fromahuman
myelogenous leukaemia cell line (K562) with micrococcal nuclease
(MNase), purified the sample and subjected it to Ribo-ITP (Fig. 2b). We
achieved 94% exclusion of the unwanted large RNA fragments (more
than 36 nt) (Fig. 2b). Finally, to verify the ability of Ribo-ITP to extract
RNAs from complex cellular lysates, we spiked RPF-sized synthetic
RNAs (17,21,25and 29 nt) into total cellular lysates from approximately
1,000 K562 cells. Ribo-ITP of this sample recovered the spiked RNAs
with stringent size selection and high yield (Extended Data Fig. 1g,h).
Collectively, these results indicate that Ribo-ITP can simultaneously
extract and size select RPF-size RNAs from cellular lysates with high
yield.

Ribo-ITP single-cell ribosome occupancy

To validate the quality of ribosome profiling data, we performed
Ribo-ITP from single and 100 K562 cells as well as conventional
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cellularlysate. Lysate contents are loaded into the channel (¢,), thenanelectrical
currentisapplied toaselectively focus species of aspecific electrophoretic
mobility range, enabling nucleic acid extraction by ITP. Nucleicacids are
extractedinanarrow ITPband and thensize selected as they migrate through
5% (t,) and 10% (t,) polyacrylamide gels, respectively. At the end of the run,
purified and size-selected RNAs are collected (¢).

ribosome profiling using the gold-standard method of monosome
isolation"” from 10 million K562 cells (Fig. 2c). Ribosome occupancy
measurements from 100 cells obtained using Ribo-ITP were highly
reproducibleacross replicates (Fig. 2d, Extended Data Fig. 2a,b and Sup-
plementary Table1). The footprints displayed enrichments at annotated
translationstart and stop sites (Extended Data Fig. 2c,d). The majority
of transcript mapping reads originated from the coding sequences
(CDS) and displayed 3-nt periodicity that was highly enriched over the
distribution expected from random fragmentation (Chi-squared test,
P<2.2x107%; Extended Data Fig. 2e,f). Critically, ribosome profiling
measurements from 100 cells generated by Ribo-ITP recapitulated the
conventional ribosome profiling measurement (Spearman correlation
coefficient of 0.88; P<2.2 x107; Fig. 2d). These results reveal that
ribosome occupancy can be accurately measured from as few as 100
human cells using Ribo-ITP.

Next, we applied Ribo-ITP and RNA sequencing (RNA-seq) to char-
acterize the translation changes of single oocytes at germinal vesicle
and metaphase Il (MII) stages and single embryos from the one-cell
zygote to eight-cell stages in mice (Fig. 3aand Supplementary Table1).
Inparticular, theinitial division of zygotes occursin the absence of new
RNA synthesis, rendering the translation of stored maternal transcripts
absolutely essential for the early stages of development.

In our single-cell ribosome occupancy data—the germinal vesicle,
MIl and one-cell stages—we observed a median of 48,017 unique mol-
ecules originating from the coding regions of transcripts, leading to
the detection of an average of 5,064 genes per cell (range 4,076-6,679;
Extended Data Fig. 3a,b). Single-oocyte and single-embryo ribosome
profiling data demonstrated the expected enrichment of footprints
mappingto codingregions and characteristicenrichments at the start
and stop sites (Fig. 3b,c and Extended Data Fig. 3¢,d). Replicate meas-
urements of ribosome occupancy were highly correlated (Fig. 3d and
Extended Data Fig. 3e).

To validate the quality of our single-cell ribosome profiling meas-
urements, we compared our results to a previous study that col-
lected approximately 500-600 germinal vesicle-stage and Mll-stage
oocytes and validated changes in polysome association with quan-
titative reverse transcription-PCR experiments for 29 transcripts®.
Our single-cell ribosome profiling measurements recapitulated the
previously identified changes in ribosome association for 28 out of 29
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Fig.2|Characterization of the Ribo-ITP method and validation of efficacy in
ultra-lowinputribosome profiling. a, Representative gelimages highlighting
inputs (I), RNAsrecovered by Ribo-ITP (R) and gel electrophoresis (G) are
shown (left). Four RNAs of17,21,25and 29 nt (Z) used in the experiment were
radioactively labelled at their 5 end. The per cent yield was calculated for the
25ntRNA (right). b, Representative gel image of asize selection experiment
(n=3fromtwoindependent experiments). Of MNase-digested RNA from K562
cells (D),100 ng was used as aninput (I) for Ribo-ITP after the addition of the
two fluorescent marker oligonucleotides (M). Inatypical experiment, we
collected the sample flanked by the two fluorescent nucleotide markers
(fraction2). Here we also collected the RNAs that eluted before the arrival of
theshorter fluorescent marker (fraction1) as well as the RNAs that were located
behind the longer fluorescent marker (fraction 3), which typically remaininthe
channel. The per centyield of RNAs larger than the longer fluorescent marker
oligonucleotide (more thanapproximately 36 nt) (blue) and RNAs flanked by
the markers (orange), corresponding to the size range of RPFs, are plotted for
eachfraction.c, Schematic of the sequencinglibrary preparation protocol.Ina
single-tubereaction, isolated RPFs are 3’ dephosphorylated and poly(A)-tailed.
Atemplate-switching reverse transcriptase (RT) creates templates that
incorporate unique molecularindex-containing adapters. d, Pairwise correlation
ofgene-level ribosome occupancy measured in conventional ribosome profiling
and Ribo-ITP from human K562 cells (right plot). The left plot highlights two
replicates of conventional ribosome profiling experiments from approximately
10 million cells. The middle plotis from two replicates of Ribo-ITP with
approximately 100 cells. For the right plot, we used the mean number of counts
permillionreads for each gene. The Spearman correlation coefficients between
the gene-level ribosome occupanciesareindicatedinthetop left corner.

RNAs (Fig.3e and Extended Data Fig. 4). Together, our results indicate
that Ribo-ITP enables highly consistent and high-quality ribosome
occupancy measurements fromsingle cells and single embryos during
early mouse development.

Ribo-ITP allele-specific translation

In mouse development, we currently do not know when zygotically
synthesized RNAs engage with ribosomes and whether there exist any
gene-specific and allele-specific differences in these dynamics. We first
addressed the question of allele-specific expression following zygotic
genome activation. Both deterministic and stochastic differences in
allele expression ratios are believed to contribute to differentiation
and normal development, although studies have been limited to the
level of epigenetics and transcription in the early mouse embryo'*?°.
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Fig.3|Ribo-ITP enablessingle-cell and single-embryo measurements of
ribosome occupancy. a, Schematic of the mouse experiments. Unfertilized
oocytes (germinal vesicle (GV) and Mllstage) from the C57BL/6) strainalong
withzygotes to the eight-cell-stage embryos from a crossbreed of two strains
(C57BL/6) and CAST/Ei)) were collected for RNA expression and ribosome
occupancy measurements. b, Ribosome occupancy around the translation start
andstopsitesinarepresentative zygote (one cell; left) and an eight-cell-stage
embryo (right). Translation start (or stop) sites are denoted by the position 0.
Aggregatedread counts (yaxis) relative to the start (or stop) sites are plotted
after A-site correction (Methods). ¢, Distribution of reads across transcript
regions (5’ UTR,CDS and 3’ UTR) are shown (left). The distribution of the lengths
oftheseregions weighted by their ribosome occupancy are also depicted (right).
Theerrorbarsindicate the standard error of the mean percentages. d, Pairwise
correlation of gene-level ribosome occupancy insingle cells (GV mouse oocyte
(left), MIImouse oocyte (middle) and one-cellmouse embryo (right)) are plotted
along with Spearman correlation coefficients (top left). e, The standard error
and mean of the centred log ratio of the ribosome occupancy (y axis) were
plotted for representative transcripts that were previously shown to have
increased polysome association in GV-stage (e) or Mll-stage (f) oocytes'
(remaining genes are shownin Supplementary Fig.12). f, Translation efficiency
was calculated by dividing ribosome occupancy by RNA expression for germinal
vesicle-stage and MlI-stage oocytes. For the selected transcripts, the log ratio
oftranslation efficiency between these two stagesis plotted along with the
standard error of the mean acrossreplicates.

To distinguish RNA molecules derived from the maternal and
paternal alleles, we analysed embryos from a cross of two mouse
strains (C57BL/6) x CAST/EiJ). Using strain-specific single-nucleotide
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polymorphisms (SNPs) to distinguish maternal and paternal RNAs,
we detected 229,991 unique parent-of-origin-specific RPFs mapping
to coding regions (Methods).

To monitor allele-specific ribosome engagement alongside cor-
responding RNA expression?, we specifically focused on the pater-
nal allele, which, unlike RNA of maternal origin, is a proxy of newly
synthesized transcripts (Methods). We analysed the global pattern
of ribosome engagement of paternally derived RNAs, that is, pater-
nal allele ratios, by aggregating reads across all detected genes. We
found that, coinciding with the activation of zygotic transcription, the
paternal ratio of ribosome occupancy steadily increased from 7.1% in
the two-cell-stage embryos to 47.7% in the eight-cell-stage embryos
(Fig. 4a and Extended Data Fig. 5a,b). We discovered that the ratio of
paternal alleles across these stages was statistically indistinguishable
between ribosome occupancy and RNA expression (¢-test; P> 0.14 for
all stages; Fig. 4a). This result indicates that ribosome engagement
is overall concurrent with the synthesis of paternal RNAs via zygotic
genome activation.

We next considered whether there are any gene-specific exceptions
tothe observed global pattern of equal allelic ratios in RNA expression
andribosome occupancy inthe early mouse embryo. As expected, the
majority of genes exhibited a similar ratio of paternal reads in both
RNA expression and ribosome occupancy (Extended Data Fig. 5c,d).
An example gene, Hsp90abl, had eight distinct coding SNPs differ-
entiating the two alleles across multiple replicates in RNA-seq and
Ribo-ITP. The high similarity of paternal allele ratios in RNA expres-
sionand ribosome occupancy was consistently observed for multiple
replicates and supported by distinct SNPs (Fig. 4b and Extended Data
Fig. 6a).

We also identified 24 genes that had differential ribosome engage-
ment in an allele-specific manner compared with RNA expression
(two-sample test for the equality of proportions; Methods). These
24 genes were clustered into four groups based on the patterns of
allele-specific expression (Fig. 4c). Although cluster I and cluster I
encompass genes that display consistent allele-specific ribosome occu-
pancy bias throughout early development (Extended Data Fig. 6b,c),
genesintheothertwo clusters displayed allele-specific ribosome occu-
pancy in a stage-dependent manner.

Inparticular, several genes including Eif3d displayed delayed engage-
ment of newly transcribed paternal RNA with ribosomes. Specifically,
the paternal allele was robustly expressed in four-cell embryos, yet
ribosome association of the paternal allele was delayed until the
eight-cell stage (Fig. 4d and Extended Data Fig. 6d (cluster III)). This
observation suggests that specific transcripts may either have slow
kinetics of nuclear export or are sequestered in translationally inac-
tive compartments until their subsequent association with ribosomes
occursinthe eight-cell stage.

Genesinthelastgroup (cluster V) included Cdk1, akey regulator of
the cell cycle, and Bazla, a chromatin remodelling factor (Fig. 4e and
Extended Data Fig. 6e,f). Together, our results reveal that for most
transcripts, ribosome engagementis concurrent with zygoticactivation
and paternal RNA expression. Yet, asmall number exhibit allele-specific
ribosome engagement during different stages.

To uncover potential genetic mechanisms of allele-specific trans-
lation efficiency, we determined SNPs that are predicted to alter
RNA-binding protein (RBP) motifs or other potential translation
regulatory sequences (Extended Data Fig. 7a-c and Supplemen-
tary Table 2). We identified 27 SNPs (13 out of 24 genes in Fig. 4¢)
that altered RBP motifs in an allele-specific manner. These included
changes in binding motifs of several translational regulators (DAZL,
CPEB1 and PUMI) previously implicated in early mouse embryonic
development'®?26, We also identified allele-specific motifs for SRSF1
that are associated with higher ribosome occupancy in Tsen2 and
Eif3d. Our RNA expression and ribosome profiling data revealed that
SRSF1is robustly expressed in early embryos. Given the established
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role of SRSF1 as a translational activator in other contexts”, our data
suggest this RBP as a potential translation regulator in early mouse
development. Furthermore,aSNPin the 5’ untranslated region (UTR)
of Tmppe was predicted to support translation of an upstream open
reading frame (UORF) on the C57BL allele (Extended Data Fig. 7b). We
observed lower ribosome occupancy of Tmppe from the C57BL allele
consistent with the known inhibitory role of uORFs?. Together, these
results suggest thata multitude of mechanisms probably underlie dif-
ferential allele-specific ribosome engagement, including changes to
RBP binding.
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RNA-seq experimentsare plotted for the highlighted genes. All replicate
measurements from the given developmental stage are shown. d, Enrichment
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Differential translation efficiency during development
We next characterized transcript-specific changes in translation across
the studied developmental stages. Transcripts with the highest vari-
ability of ribosome occupancy revealed two major transitions: one
between germinal vesicle-stage and MIl-stage oocytes and another
between two-cell-stage and four-cell-stage embryos (Fig. 5a). We then
focused onidentifying the set of transcripts with differences at the
translational level, that is, with differential translation efficiency, as
defined by significant changes in ribosome occupancy while control-
ling for RNA abundance (Methods).

We uncovered a large number of genes that exhibited translation
efficiency changes during oocyte maturation from germinal vesicle
to Mll stage, as well as upon fertilization (Fig. 5b, Extended Data Fig. 7

Spearman correlation

Morula

0.30 -0.04  -0.10 0.53

P<0.0001; Supplementary Table 5) and annotated with oRNAment*° RBPs.
RBPs that share the same consensus motifare comma-delimited, and RBPs with
nodetectable expression are marked with an asterisk. TE, translation efficiency.
e, Transcripts were grouped by their mean poly(A) tail length in the zygote
intosix equal-sized bins. The distribution of their corresponding translation
efficiencies (Methods) is visualized using boxplots. The horizontal line
correspondsto the median, thebox represents the interquartile range and

the whiskers extend to1.5times the interquartile range. f,g, Sankey diagrams
depicttherelationships between protein abundance with RNA expression

and ribosome occupancy. The colour and thickness of the links connecting
thenodes are proportional to the strength of the corrected Spearman rank
correlation (Methods).

and Supplementary Table 3). Among the 129 genes that were transla-
tionally upregulated upon fertilization, 126 had no statistically signifi-
cantchanges in RNA expression (false discoveryrate of less than 0.01;
one-cell embryo versus MllI-stage oocyte; Fig. 5b,c). These genes were
significantly enriched for cytoskeleton organization (Fisher’s exact test
oddsratio of 4.67; P=8.5 x10%; Supplementary Table 4), and include
Apcalongwith several other genesinvolved in centrosome organization
(for example, Cenpe, Cep120, Camsapl and Numal). The first mitotic
divisionin mammalsis both longer and more error-prone than somatic
mitoticevents®. Furthermore, fertilization demarcates the beginning of
atransition from multipolar acentrosomal division to the typical bipo-
lar spindles organized by the centrosomes®. Critically, Apc activation
is required for this reorganization and the dynamics of its activation
underlies the prolonged first mitosis of mouse embryos®. Our results
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Fig. 6 | Translation efficiency of transcripts with allele-specific biasin RNA
expression. a, Foreach transcript, we aggregated RNA expressionacross
replicatesand phased SNPs to determine the ratio of reads supporting the
paternal allele to the total. Genes are coloured by allelic bias in RNA expression
infour-cell-stage (x axis) and eight-cell-stage (y axis) embryos. b, For the
four-cell-stage and eight-cell-stage embryos, translation efficiency (thatis,
ribosome occupancy divided by RNA expression) of allele-biased and biallelic
genes was compared using two-sided Wilcoxon rank sum tests. ¢, Translation
efficiency of biallelic genes was compared with those that are monoallelically
expressed (paternal ratio of 0 or1).In the boxplots, the horizontal line
corresponds to the median, the box represents the interquartile range and

the whiskersextendto1.5times theinterquartile range.

reveal differential translation efficiency as a key regulatory mechanism
of this class of transcripts in the absence of any transcription.

Next, we considered the relationship between translation regulation
and RNA stability in this developmental transition. Given that no new
transcription takes place, any reduction in RNA expression can spe-
cifically be attributed to degradation. We found a significant overlap
between RNAs that are significantly reduced in expression and RNAs
translationally downregulated in the zygote (Fisher’s exact test odds
ratio of 5.87; P=2.24 x107%; Extended Data Fig. 8), suggesting that these
two gene expression modalities may function synergistically.

When we compared two-cell embryos to the zygote, we found a sig-
nificant enrichment for RBPs among genes that had increased trans-
lational efficiency (Fisher’s exact test odds ratio 0of 2.93; P=3.1 x107;
Supplementary Table 3). These include three genes that function as
‘readers’ of N°-methyladenosine RNA modifications (Hnrnpa2bl, Ythdf2
and YthdclI; Fig.5b,c). Recent work has revealed all three of these genes
tobe required for successful early embryonic development® 3, Mater-
nal depletion of Ythdf2inmice causes cytokinesis defectsand arrest at
the two-cell stage®. Similarly, reduced Hnrnpa2bl expression delayed
embryonic development after the four-cell stage®. A recent analysis
of Hnrnpa2b1 expression during preimplantation development had
revealed negligible differencesin RNA expression between the zygote
and two-cellmouse embryos, despite adramaticincreaseinits protein
abundance in two-cell embryos®. Our analyses suggest that enhanced
translation of Hnrnpa2blis probably responsible for this observation.
Although N®-methyladenosine ‘readers’ displayed increased transla-
tion efficiency intwo-cellembryos, the key demethylase that removes
Né-methyladenosine, AlkbhS (ref. 36), was one of the most significantly
downregulated genesin terms of translation efficiency (Fig. 5c; adjusted
P=8.4 x10°%). Together, our results reveal translational regulationas a
shared mode of co-regulation of genes involved in N°-methyladenosine
modification of RNAs.

To explore potential mechanisms associated with differential transla-
tion efficiency, we carried out an unbiased analysis for enrichment or
depletion of heptamer motifs in differential genes (Methods; Supple-
mentary Table 5). Several of the heptamers matched a RBP consensus
motifand displayed consistent enrichment or depletionin differential
genes across stages, suggesting their involvement in shaping expres-
sionduring early development (Fig. 5d, Extended Data Fig. 7f and Sup-
plementary Table 5). In particular, we discovered that transcripts with
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DAZL-binding sites within their 3" UTRs were translationally down-
regulated in the transition from zygote to the two-cell stage (Fig. 5d).
DAZL has previously beenimplicated as atranslational activator during
gametogenesis'®?*>*, The one-cell to two-cell embryonic transition
demarcates a marked reduction in DAZL abundance coinciding with
the translational downregulation of genes with DAZL-binding sites in
their 3’ UTRs'®?, These findings suggest that DAZL may also have an
important regulatory role in the context of preimplantation develop-
ment in addition to its known role during gametogenesis.

Changesinpoly(A) taillengthisanimportant regulatory mechanism
controlling translation efficiency during meiotic maturation of mouse
oocytes* and early development of Xenopus and zebrafish®**°, We used
TAIL-seq measurements in mouse embryos from one-cell and two-cell
stages*, and found that poly(A) tail length is significantly associated
with translation efficiency in the zygote (Fig. 5e; Spearman rank cor-
relation of 0.32; P < 2.2 x107). However, the coupling between poly(A)
taillength and translation efficiency is completely lost by the two-cell
stage coinciding with the activation of the zygotic genome (Extended
DataFig.8b; Spearmanrank correlation of 0.001; P= 0.9; Extended Data
Fig.10). Previous work*° had postulated that poly(A) tail length would
be expected to regulate translation in systems in which transcription
is repressed and cytoplasmic polyadenylation is active. Our analysis
validates this prediction in a mammalian organism, consistent with
findings in zebrafish and frog embryos*°.

To explore why the strong coupling between poly(A) tail length and
translation efficiency breaks down in later stages of development,
we analysed PABPC1 expression, which mediates the effect of poly(A)
tail length on translation*. We found that PABPCl is itself regulated
translationally and that its mean poly(A) tail is markedly extended
in two-cell-stage embryos compared with zygotes (Extended Data
Fig. 8c). These findings implicate the limiting presence of PABPCl1in
zygotes as a potential explanation for the coupling between poly(A)
taillength and translation efficiency, consistent with findings in Xeno-
pus oocytes®. Collectively, our results indicate a conserved role for
poly(A) taillength in dictating translation efficiency in the early stages
of mouse embryogenesis.

Translation efficiency contribution to protein
abundance

The proteome of the zygote is composed of maternally deposited pro-
teins and those newly synthesized after fertilization'. Here we assessed
the contribution of translation in determining protein abundance
using mass spectrometry measurements from approximately 8,000
embryos from each stage of mouse preimplantation development®.
Out of morethan 5,000 genes detected in our single-embryo ribosome
profiling and RNA-seq experiments, 3,287 genes had been quantified
at the protein level®.

We found that the zygotic proteome is only modestly correlated
with RNA expression of the zygote (Spearmanrank correlation of 0.34;
P<2.2x107"), in agreement with previous work that reported weak
correlation between RNA expression and protein abundance®**. By
contrast, zygotic protein abundanceis significantly better correlated
with zygotic ribosome occupancy and translation efficiency than RNA
expression (Spearman rank correlations of 0.45and 0.41 versus 0.34;
P<2.2x107%; Fig. 5fand Extended Data Fig. 9d-f).

Critically, we discovered that translation efficiency of the germinal
vesicle-stage oocytes had the strongest relationship with the zygotic
protein abundance (Fig. 5f and Extended Data Fig. 9d-g; Spearman
rank correlation of 0.53, P < 2.2 x 107%). This key contributionis unde-
tectable at the level of RNA expression as RNA abundance in germinal
vesicle-stage oocytes is much more weakly associated with zygotic
proteinabundance (Spearman rank correlation of 0.31; P < 2.2 x107%).
Our results reveal that maternal translation is the predominant con-
tributor to the zygotic proteome.



The coupling of rapid degradation of maternally deposited RNAs and
the onset of zygotic transcription fundamentally remodels the RNA
content of the developing embryo. Consequently, the four-cell-stage
embryos have a very different RNA composition compared with
one-cell-stage and two-cell-stage embryos. Neither ribosome occu-
pancy nor RNA expression is positively correlated with protein abun-
danceat the four-cell or the eight-cell stage (Fig. 5g and Extended Data
Fig.8h).Instead, we found that ribosome occupancy and RNA expres-
sion at four-cell-stage and eight-cell-stage embryos are much more
strongly associated with the protein abundance at the morula stage
(Fig. 5g; Spearman rank correlation of 0.66 versus 0.50 at the four-cell
stage and 0.69 versus 0.53 at the eight-cell stage; P < 2.2 x107¢). These
resultsreveal that the interplay between protein stability and produc-
tion contribute to the dynamics of protein abundance during mouse
preimplantation embryonic development.

Translation efficiency of transcripts with allelic bias

The parent-of-origin-specific expressionis critical for earlymammalian
embryonic development**°. However, little is known about the trans-
lational control of genes that display allele-biased expression. By the
four-cell stage, most genes are transcribed from both alleles in a nearly
equalratio (biallelic expression; Fig.4a). Wefirstidentified the set of genes
that deviate from this pattern such that one of the alleles accounted for
more than 70% of the total transcripts (allele-biased; Fig. 6a). We discov-
ered that genes that display allele-biased expression were significantly
less efficiently translated in both four-cell-stage and eight-cell-stage
embryos (Fig. 6b; Wilcoxon rank sum test P< 2.7 x 10™; median fold
change = 0.55). The most extreme formof allelic bias is monoallelic expres-
sion. The translation efficiency of such monoallelically expressed genes
were evenmore reduced than biallelic genes (P< 4.6 x 107™; median fold
change < 0.2, respectively). Furthermore, the observed differenceintrans-
lation efficiency was consistent regardless of whether ageneis expressed
ina paternally or maternally biased manner (Extended Data Fig. 9a,b).

Identification of allele-biased expression from RNA-seq data can suf-
fer from technical biases*®. To address potential artefacts, we carried
out several additional controls. First, we defined a higher confidence
set of genes whose allele-biased expression is supported by multiple
SNPs. This group had similarly lower translation efficiency (Extended
DataFig.9c; P<1.4 x10™; median fold change = 0.57). Next, to rule out
potential confounding due to differences in RNA expression or cod-
ing sequence length, we selected subsets of biallelic expressed genes
such that their RNA abundance and CDS length distribution matched
those of allele-biased genes in their respective embryonic stages. The
observed differencein translation efficiency remained significant when
the matched sets were compared (Extended Data Fig. 9d; P< 6.3 x1075;
median fold change < 0.68).

Finally, we tested whether the observed difference in translation
efficiency is restricted to the stage of development in which genes
have allele-biased expression, or due to intrinsic features that lead to
poor translation. When comparing genes with allele-biased expres-
sionto those that are biallelically expressed in the four-cell-stage and
eight-cell-stage embryos, we found that their translation efficiencies
inMII-stage oocytes and the zygote were indistinguishable (Extended
Data Fig. 9e-h; Pvalues of 0.41and 0.33). These findings suggest that
transcripts were poorly translated specifically in the stage of devel-
opment in which their RNA expression is allele-biased. Together, our
analyses identify a relationship between allele-biased transcription
and translation.

Discussion

Translational control of gene expression has animperative role in the
early stages of mouse embryonic development. However, technological
limitations precluded analysis of allele-specific translation regulation

due tolack of single-cell and single-embryo resolution. Here we over-
camethis critical limitation by developing a microfluidic ITP technique
named Ribo-ITP.Ribo-ITPisolates RPFs fromindividual cells viaa novel
technology in comparison with arecent study that applied single-cell
RNA-seq approaches in combination with an RNase digestion step®.

Our high-coverage data enabled the characterization of differential
translation efficiency and the first analysis of allele-specific ribosome
occupancy in mouse preimplantation development. In particular, we
discovered that APC/C and several components of the centrosome are
translationally upregulated upon fertilization. The zygote relies on
maternally deposited mRNAs to initiate a mitotic program by remodel-
ling the cellular environment, transitioning away from meiotic divisions
that proceed without centrosomes. Hence, the initial preimplanta-
tion mitosis occurs under fundamentally different cellular conditions
compared with somatic divisions®. Our results revealed translational
upregulation of key components involved in this transition®.

Single-celland single-embryo quantitation of ribosome occupancy
avoids the heterogeneity contributed by bulk analysis of embryos.
This resolution precisely allowed us to detect genes that exhibit
allele-specific ribosome engagement. Our analyses suggest differen-
tial RBP sites as one possible contributor to allele-specific ribosome
occupancy differences. We speculate that preferential use of maternal
ribosomes could contribute to the observed differencesin translation
of maternally and paternally derived RNAs*. Future work will differen-
tiate potential parent of origin from sequence-specific differences.

Finally, we assessed the contribution of translation in determin-
ingthe proteome of mouse preimplantation embryos. We discovered
temporal dynamics that eluded previous RNA expression-based analy-
ses. Examples of similar temporal disconnection between the RNA
and protein abundance had previously been observed in Drosophila
and Xenopus®>*. Our work extends these studies by experimentally
determining the contribution of translation in a mammalian system.
Specifically, we found that the ribosome occupancy of germinal
vesicle-stage oocytes, and not the zygote, is the strongest predictor
ofzygotic protein abundance. Future efforts thatincorporate protein
and RNA stability measurements would be required to address the
remaining unexplained variation in protein abundance. This study
demonstrates the kind of new biological insights that we can expect
fromthe application of Ribo-ITP, which will help to answer fundamen-
tal questions in translational control relevant to samples with limited
input amounts, including embryonic tissues, cancer stem cells and
transient populations.
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Methods

PDMS chip fabrication

Moulds were 3D-printed by Proto Labs with WaterShed XC 11122 at high
resolution (Supplementary Fig.1). Reusable moulds were assembled by
taping 3D-printed molds to glass slides (57 x 4”; Ted Pella). Sylgard 184
PDMS monomer and curing agent (4019862, Ellsworth Adhesives) were
mixed ata10:1(w/w) ratio. The mixture was degassed using a desicca-
tor connected toavacuum pump, poured over the mold and degassed
again until there were no air bubbles. The mold was incubated for at
least 16 h at 50 °C. Individual PDMS chips were cut along the lines
that form the outer rectangle on the design in Extended Data Fig. 1a.
The 5-mm diameter elution well and trailing electrolyte and lead-
ing electrolyte reservoirs were made with a biopsy punch (Extended
Data Fig. 1b). Before the plasma treatment, glass slides (4” x 3”;
Ted Pella) and the feature side of the PDMS slabs were thoroughly
cleaned with tape to remove any dust particles. PDMS chips and glass
slides were plasma cleaned with a115 V Expanded Plasma Cleaner
(Harrick Plasma) connected to a Dry Scroll Pump (Agilent) for 2 min
athighradiofrequencylevel. The plasma-treated surfaces of the glass
and PDMS slabs were immediately brought together to forma covalent
bond. Bonded chips were heated at 80 °C on a heat block for at least
2 hto enhance bonding.

PDMS chip preparation for Ribo-ITP experiments

To ensure clean, RNAse-free chips, we pre-treated the channels and
reservoirs of the Ribo-ITP chip by sequential treatment with the fol-
lowing solutions: RNaseZap (100% concentrate), nuclease-free water,
1MNaOH, nuclease-free water,1 MHCI, nuclease-free water, 10% (w/v)
benzophenonein acetone (for 10 min, replenishing channels as needed
to avoid bubble accumulation), methanol and 0.1% Triton X-100. The
channel was completely dried after final treatment by fully vacuuming
out any remaining liquid in the channel. After securing the chipstoa
ProteinSimple 302/365nm UV Transilluminator with tape, we added
10% polyacrylamide prepolymer mix (Supplementary Table 6) to the
size-selection channel throughthe elution well. Similarly, 5% polyacryla-
mide prepolymer mix was loaded into the extraction channel through
branch channel 2. To catalyse the polymerization of polyacrylamide
on chip, we used a photoactivatable azo-initiator, 2,2’-azobis[2-me
thyl-N-(2-hydroxyethyl)propionamide] (VA-086, Wako Chemicals), at
0.5% final concentration in the prepolymer mixes. UV-driven polym-
erization (wavelength of 365 nm) was performed for 1 min followed
by a 30-s break. This on-off UV cycle was repeated two more times
for a total UV exposure time of 3 min. UV intensity was measured as
approximately 8.9 mW cm™ using a G&R Labs Model 200 UV Light
meter witha365-nm probe. To avoid dehydration of the polyacrylamide
gels after polymerization, we filled any open channels and reservoirs
with storage buffer (Supplementary Table 6) until use. The chips were
protected from light and used within 6 h of preparation.

ITPsetup

The prepared ITP chip was placed on a Dark Reader blue light tran-
silluminator (Clare Chemical) and secured with tape. Storage buffer
was removed from the channels and reservoirs using a vacuum. Lead-
ing electrolyte pluronic solution (LEp) and MOPS trailing electrolyte
pluronic solution (TEp) (Supplementary Table 6) were kept onice
throughout the loading procedure. Pipet tips (200 pl) were kept at
-20 °C until the time of the experiment to facilitate manipulation of
the pluronic-containing LEp and TEp solutions, which solidify within
aminute above 4 °C. Of LEp, 80 pl was loaded in leading electrolyte
reservoir 3, filling the reservoir to the top as well as the small section of
the channel between the elution well and leading electrolyte reservoir
3 (Extended Data Fig. 1b). Leading electrolyte reservoir 2 was filled
with 30 pl LEp, ensuring contact with the polyacrylamide gel present
inbranch channel 2. The elution well was filled with 20 pl of running

buffer (RB). Fluorescent marker oligonucleotides containinga 5’ ATTO
fluorophore and 3’ ddC blocking modification (Supplementary Table 7)
were added to the sample followed by dilution with sample dilution
buffer. The mixture was loaded into the lysate channel through lead-
ing electrolyte reservoir 1. Finally, leading electrolyte reservoir 1 was
filled with30 pl LEp and 70 pl TEpwas added to the trailing electrolyte
reservoir. The negative electrode was placed in the trailing electrolyte
reservoirand the positive electrode in the leading electrolyte reservoir.
Positive and negative electrodes were placed in leading electrolyte res-
ervoir 3 and the trailing electrolyte reservoir, respectively. A constant
current of 300 mA with a maximum voltage of 1.1 kV (Keithley 2410
Sourcemeter) was applied to the channel. Once the trailing end of the
fluorescent markers entered the 5% polyacrylamide gel, the branch
channel electrode—withalower current output due to a 510 kQ (Xikon)
resistor on a custom circuit board—was manually applied in leading
electrolyte reservoir 1for approximately 10 s. When the leading edge
ofthe shorter fluorescent marker reached the end of the size-selection
channel, the current was suspended. The elution reservoir was thor-
oughly washed twice with 30 pl nuclease-free water and refilled with
10 pldephosphorylation buffer (Supplementary Table 6). Current was
applied again until the longer fluorescent marker began to enter the
elution well. Finally, the purified sample with a 10-pl volume was col-
lected fromthe elution wellinto alow-bind PCR tube and immediately
stored at—80 °C.

PAGE and conventional extraction of RNA

Control inputs were prepared as a master mix then aliquoted. For gel
extraction samples, input RNA was first processed using Qiagen miRNe-
asy MicroKit per the manufacturer’sinstructions. RNAs were separated
by electrophoresis using 15% TBE-urea polyacrylamide gel (EC6885BOX,
Invitrogen). Gel slices were excised and crushed using sterile pestles,
followed by soaking in gel extraction buffer” (Supplementary Table 6)
ondryicefor30 min.Samples were thenincubated overnight atroom
temperature, gently transferred on a tabletop shaker and protected
from light. Residual gel pieces were removed by centrifugation for1 min
at21,130gthrough a Corning 0.22-pm sterile filter tube. The recovered
eluate was precipitated overnight at —20 °C (300 mM sodium acetate
(pH5.2),5 mMMgCl,, 1.5 pl Glycoblue and 75% ethanol). Samples were
pelleted by centrifugation at4 °Cfor1hat21,130g.

Gelimaging and quantification

To quantifyyield, samples were runona15% TBE-urea polyacrylamide
gel and visualized using the fluorescent marker oligonucleotides or by
SYBR gold staining. Specifically, gels wereimaged using Typhoon FLA
9500 (GE Healthcare) with a 473-nm excitation wavelength and low
pass band filter compatible with ATTO 488 fluorophore and SYBR gold
stain. For high-resolutionimaging, pixel size was minimized (10-25 pm)
and photomultiplier tube (PMT) settings were optimized by using the
scanning feature of Typhoon to avoid image oversaturation, typically
resultingin avalue between250 and 500 V. Theimages were analysed
using ImageJ software v.1.52 (NIH). The raw integrated density (RID)
forbackgroundsignal (RIDy,cgr0ung) Was measured by quantifying aver-
age RIDs fromrepresentative blank areas. RIDy,g0und Was normalized
to account for the ratio of the target (A,,,) to the background area
(Abackground) SUCh that

Backgroundnormalized = RlDbackgmund x (Asample )/(Abackground)

The normalized background value was subtracted from all sam-
ples to quantify normalized sample RID values. The percent yield
was defined as the ratio of the normalized RID values to the mean of
background-normalized input samples. For display purposes only,
the contrast and brightness of some images were adjusted in Image)
and exported as tiff files for figures. The full scans are displayed in
Supplementary Fig. 1.
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Yield comparison between on-chip method and conventional
RNA extraction

Input controls and experimental samples were prepared with a final
total amount of 40 ng, 20 ng, 2 ng, 400 pg or 40 pg of ZR small RNA
ladder (R1090, Zymo Research) including17,21,25and 29-nt RNA oligo-
nucleotides. Ribo-ITP was performed as described, with afinal elutionin
12 pIRB.Samples for gel extraction were first processed with the miRNe-
asy Microkit (Qiagen), followed by extraction using the crush-and-soak
approach®. Only the 25-nt and 29-nt bands were extracted. For 40 ng
and 20 ng samples, fluorescent marker oligonucleotides were spiked
into each sample and a final 15% TBE-urea polyacrylamide gel was run
asdescribed above. Only the 25-nt and 29-nt bands were quantified to
determine the final yield.

To quantify yield for the ultra-low input samples (2 ng, 400 pg and
40 pginputs), allexperimental and input control samples were brought
to 16 pl with nuclease-free water. Subsequently, 2 ul T4 polynucleotide
kinase (PNK) buffer, 1l T4 PNK (NEB) and 1 pl ATP [y-32P]-3000 Ci mmol™
(10 mCi ml™) (NEGOO2A500UC, Perkin Elmer) were added and incu-
bated for30 minat37 °C. Afterincubation, unincorporated nucleotides
were removed with the RNA Clean and Concentrator-5kit (R1013, Zymo
Research) accordingto the manufacturer’sinstructions. RNA was eluted
with 14 pl nuclease-free water, mixed with 2x denaturing gel loading
dye (Supplementary Table 6) and denatured for 90 s at 80 °C. The sam-
ples were electrophoresed, then the gel was incubated in nuclease-free
water for 5 min followed by a 30 min incubation in a 30% methanol and
5% glycerolsolution. Both incubations were done onarocking platform
atroomtemperature. After the incubations, the gel was placed between
pre-wetted cellophane sheets (1651779, Bio-Rad) and dried for 2hina
GelAir drying system (Bio-Rad). The dried gelin cellophane was exposed
foratleast12 htoaBAS-IPMS phosphorscreen (28956475, GEHealthcare).
The phosphor screen was imaged witha Typhoon FLA 9500 (GE Health-
care) using 500 VPMT at 50-pmresolution. Theimage was visualized and
quantified using ImageJ software; only the 25-nt band was quantified as
described above. Allsamples were processed in quadruplicate, with the
exceptionoftheRibo-ITP sample withanRNA ladderinput of 20 ng(n=3).

Cell culture

Human K562 cells were grown in RPMI 1640 medium (Gibco) supple-
mented with 10% fetal bovine serum (Gibco) and 1% penicillin-strep-
tomycin (Gibco) and incubated at 37 °C with 5% CO, to a density of
approximately 2.5 x 10° cells per ml. Cells were regularly tested for
mycoplasma contamination. The identity of the K562 cell line was
authenticated using short tandem repeat profiling from the American
Type Culture Collection.

Size selection of purified RNA

Todemonstrate the size-selection capacity of our on-chip approach, we
prepared an MNase-digested RNA sample from K562 cells. Inbrief, 3 pl
MNase (M0247S,NEB) was added to a clarified K562 lysate from approxi-
mately Smillion cells and digested for 30 min at 37 °C, followed by RNA
extraction with the miRNeasy Micro kit (Qiagen) per the manufacturer’s
instructions. Ribo-ITP inputs contained 100 ng of the digested, puri-
fied RNA. Ribo-ITP was performed as described, with modifications
to the collection method. Once the fluorescent marker band reached
the interface of the 5% and 10% polyacrylamide gels, the current was
suspended and RB was replaced with12 pl of fresh RB. Ribo-ITP contin-
ued until the first fluorescent marker reached the edge of the elution
well. The 12 pl of RB in the elution well was collected as fraction 1. The
well was washed twice with RB then refilled with 12 ul RB. Current was
applied again until the front edge of the trailing fluorescent marker
began to enter the elution well, and the 12 pl RB elution was collected
asfraction2. The elution well was refilled with 12 I RB and Ribo-ITP was
continued for 2 min. The final 12 pl elution was collected as fraction 3.
Controlinputs were prepared with the same amounts of bulk RNA and

fluorescent markers, then brought to 12 pl with RB. Gel electrophoresis,
imaging and quantification were performed as described.

Ribosome profiling sample preparation and monosome
isolation
Approximately 10 million K562 cells were pelleted, washed twice with
PBS and immediately flash-frozeninliquid nitrogen. Cells were lysed in
400 pl cold lysis buffer (Supplementary Table 6) for 10 min onice and
pipetted to homogenize. The lysates were clarified by centrifugation
at1,300g for 10 min at 4 °C. Clarified supernatants were digested with
5 plMNase (M0247S, NEB) and incubated for 30 minat 37 °C. Digestions
were stopped with 20 mM ribonucleoside vanadyl complex (S1402S,
NEB). The samples were thenloaded onto 20-50% sucrose gradients and
ultracentrifugedin aSW41Tiswinging-bucket rotor (331362, Beckman)
at 38,000 rpm for 2.5 h at 4 °C. The samples were fractionated using a
Biocomp gradient fractionator. RNA was extracted from the monosome
fractions with the miRNeasy Micro kit (Qiagen). One-third of the eluate
was electrophoresed through a15% TBE-urea polyacrylamide gel. The
ribosome footprints of approximately 17-35 nt were gel extracted using
the crush-and-soak method as described. Final sample resuspension
after ethanol precipitation wasin18 pl of nuclease-free water. The puri-
fied RNA was dephosphorylated with 1 pl of T4 polynucleotide kinase
(NEB) in1x T4 PNK buffer for1 hat 37 °C. Dephosphorylated ribosome
footprints were then ethanol precipitated (300 mM sodium acetate, 2.5
volumes of ethanol and 1.5 pl of GlycoBlue) overnight at —20 °C. Precipi-
tated RNAwaselutedin10 pl nuclease-free water. The RNA was normal-
izedto 350 ngin 6 pl of nuclease-free water before library preparation.

For 100-cell ribosome profiling experiments, K562 cells were pel-
leted, washed twice with PBS and diluted to 100 cells in 5 pl cold lysis
buffer containing cycloheximide. MNase stock (2,000 gel units per
microlitre; NEB) was diluted 1:50 and 1 pl of the dilution was added to
thesamples. Digestion was performed for 30 minat37 °Cinathermal
cyclerwithaheatedlid. EGTA (1 pul) was added to afinal concentration
of 10 mMtoinhibit further digestion. Samples were placed onice until
processing through Ribo-ITP. Three replicates each were prepared for
conventional ribosome profiling and Ribo-ITP.

Forsingle-cell Ribo-ITP experiments, cells were pelleted at 300g for
5 min. The cells were washed with 1x PBS and resuspended to achieve
approximately 1x 10° cells in1 ml of PBS containing 0.1% BSA (Sigma)
with 1 g mI™ DAPIL. The cells were passed through a strained cap to
attainasingle-cell suspension and sorted with the Sony MA9000 Cell
Sorter or BD FACSAria Fusion Flow Cytometer into EppendorfLoBind
96-well plates containing 5 pl cold lysis buffer with cycloheximide.
Singlet cells were defined by gating on FSC-A/SSC-A, SSA-H/SSC-W,
FSC-A/FSC-H and FSC-A/histogram. Live cells were selected using
DAPI-negative gating. The plates were sealed and flash frozen in lig-
uid nitrogenimmediately after the sort was completed. The lysate was
incubated at37 °Cwith 1 plofal:150 dilution of MNase stock (2,000 gel
units per microlitre; NEB) for 30 min or1plofa1:300 dilution of RNase
1(100 U pl™%; Ambion) for 15 min. The MNase digestion was stopped by
adding EGTA toafinal concentration of 10 mM. Sodium dodecyl sulfate
was added to a final concentration of 0.1% to samples digested with
RNasel. Thelysates were held onice until processing through Ribo-ITP.

Mouse oocyte isolation

Allexperiments using mice by the Mouse Genetic Engineering Facility
were approved by the Institutional Animal Care and Use Committee at
the University of Texas at Austin (protocol ID: AUP-2022-00114). Mice
were housed at 22 °C (range 20-24 °C) under 12 h of light-dark cycles.
The humidity was not controlled. Oocytes were collected from supero-
vulated C57BL/6) female mice (approximately 8 weeks old) as previously
described®. One hour after human chorionic gonadotropin (hCG) injec-
tion, the ovaries were placed in a 3-cm dish containing FHM medium
(F1114, Cytospring), and germinal vesicle-stage oocytes were released
by scrapingthe surface of the ovaries with #5 Dumont forceps (Roboz).



MiIl-stage oocytes were isolated from the oviducts approximately 14 h
after hCG injection. Cumulus cells were removed from the oocytes by
treatment with1 mg ml™ hyaluronidase (H3884, Sigma) in FHM medium.
Both germinal vesicle-stage and MII-stage oocytes wererinsed through
three drops of FHM medium and then through three drops of 20 mg ml™
BSA (A3311, Sigma) in PBS (SH30028.02, Hyclone). The oocytes were
placedindividuallyin 0.2-mIPCR tubes using afinely pulled glass pipette
under astereomicroscope and flash frozeninliquid nitrogen. The liquid
volume transferred with the oocytes wasless than 0.5 pl. No statistical
analyses were used to determine sample size. Given the observational
nature of the study, no randomization or blinding was used.

Invitro fertilization using CAST/Ei) sperm

Sperm was frozen from CAST/Ei) male mice as previously described®®
and stored in liquid nitrogen. For in vitro fertilization, oocytes were
isolated from C57BL/6) female mice approximately 15 hafter hCG injec-
tion, and in vitro fertilization was performed using thawed CAST/EiJ
sperm®. One-cell, two-cell, four-cell and eight-cell embryos were col-
lected 21.5,39, 62 and 69 h after hCGinjection, respectively. Fertilized
oocytes were cultured overnight to the two-cell stage ina150 pl drop of
HTF medium (mHO113, Cytospring). For development to the four-cell
and eight-cell stages, two-cell embryos were cultured in KSOM medium
(K0114, Cytospring). Embryos were placed individually into 0.2-mIPCR
tubes and flash frozen in liquid nitrogen. All samples were processed
with Ribo-ITP within 48 h of collection.

A working lysis buffer solution was prepared by adding 1 pl of the
MNase (NEB) (1:50 dilution) per 5 pl lysis buffer. To lyse the mouse
samples, 6 pl of working lysis buffer was added directly to the frozen
cell-containing droplet. Digestion was immediately performed for
30 min at 37 °Cin a thermal cycler with a heated lid. EGTA (1 pl) was
added to a final concentration of 10 mM to inhibit further digestion.
Samples were placed onice until processing through Ribo-ITP.

Ribosome profiling library preparation and sequencing
Conventional ribosome footprint libraries following monosome iso-
lation (that is, 350 ng RNA samples in 6 pl nuclease-free water) were
generated using the Clontech SMARTer smRNA-seq kit using eight
PCR cycles (Takara Bio). Of the PCR, 30 pl was purified with AMPure
XPbeads (A63880, Beckman Coulter) according to the manufacturer’s
instructions and eluted with 30 pl nuclease-free water. The final size
selection was performed with the BluePippin system (Sage Science)
using 3% dye-free agarose cassettes (BDQ3010, Sage Science).

For Ribo-ITP experiments withhumanK562 cellsand mouse samples,
the D-PlexSmallRNA-seq kit (C05030001, Diagenode) with minor modifi-
cations was used as detailed below. The dephosphorylation reaction was
supplemented with 0.5 pl T4 PNK (NEB) and the reaction was incubated
for 25 min. For reverse transcription, the template switching oligo was
diluted 1:2 in nuclease-free water. All100-cell human samples and three
of the MlI-stage oocytes were processed using the single index module;
whereas the other mouse samples were processed using the unique dual
index module. Half of the complementary DNA (cDNA) was amplified
for17 PCR cycles and a1:4 dilution of the resulting library was assessed
by the Agilent Bioanalyzer High Sensitivity DNA kit. The concentrations
of the target peaks were used to pool samples with approximately equi-
molar representation. AMPure XP bead cleanup (1.8x) was performed
followed by size selection using 3% agarose, dye-free gel cassettes with
internal standards (BDQ3010, Sage Science) on the BluePippin platform.
Tight parameter settings of the 173-207-bp range were used for samples
prepared with the single index module. Tight parameter settings of the
183-217-bp range were used for samples prepared with the unique dual
indexmodule. Forthe RNasel-digested single-cell libraries, final size selec-
tion was performed by PAGE purification of 200-bp products. Samples
were sequenced onanlllumina NovaSeq 6000. For mouse samples, five,
five, five, three, three and four biological replicates were used for germinal
vesicle, MIl, one-cell, two-cell, four-cell and eight-cell stages, respectively.

Single-cell and single-embryo RNA-seq

Total RNA-seq libraries were prepared with Smart-seq3 V.3 (ref. 60), with
modifications. Unfertilized mouse samples (germinal vesicle and MII)
and in vitro-fertilized mouse samples (one-cell, two-cell, four-cell and
eight-cell stage) were lysed and reverse transcribed as described. cDNA
was pre-amplified with 13 PCR cycles and bead purified with AMPure XP
(1.8x) with afinal elution in 5 pl nuclease-free water. Of pre-amplified
cDNA, 1 pul was assessed by the Bioanalyzer High Sensitivity DNA kit to
confirmsuccessful pre-amplification and proper size profile. Another 1 pl
was assessed on Qubit using the double-stranded DNA high sensitivity
(HS) assay to quantify the pre-amplified cDNA. Samples were diluted with
nuclease-free water and normalized to 600 pg inputs (100 pg pl™) and
subjected totagmentation and post-tagmentation PCR. The tagmentation
and subsequent PCR were scaled up 6x: precisely, 600 pg pre-amplified
cDNAwastagmented with 6 pl of tagmentation mix, 9 pl of Nextera Index
primerswere added and 18 pl of tagmentation PCR mix was used. Sixteen
PCRcycles were performed followed by equivolume sample pooling (12 pl
of each PCR product) and AMPureXP purification at a 1x ratio. The final
library size distribution and concentration were assessed with the HS
DNA Bioanalyzer. Sequencing was performed with Nova Seq 6000 with
paired-end reads (using 100 cyclekits: 60 + 40). For germinal vesicle, Mll,
one-cell, two-cell, four-cell and eight-cell stages, four, four, four, four, two
and four biological replicates were sequenced, respectively.

Computational processing of ribosome profiling data

Ribosome profiling datawere processed using RiboFlow®'. We extracted
thefirst12 ntfromthe 5’ end of the reads using UMI-tools®? version1.1.1
with the following parameters: “umi_tools extract -p “*(?P<umi_1>.
{12})(?P<discard_1>.{4}).+$"-extract-method=regex”. The 4 nt down-
stream of the unique molecular indexes (UMIs) are discarded as they
areincorporated during the reverse transcription step. Conventional
ribosome profiling samples did not include UMIs.

Next, we clipped the 3’ adapter AAAAAAAAAACAAAAAAAAAA, from
the Ribo-ITP data, using cutadapt® version 1.18 with the parameters
“-a AAAAAAAAAACAAAAAAAAAA-overlap=4-trimmed-only”. For
conventional ribosome profiling data, we removed the poly(A) tails
and the first 3 nt of the reads using “cutadapt -u 3 -a AAAAAAAAAA-
overlap=4-trimmed-only”.

After UMl extraction and adapter trimming, reads were aligned to
ribosomal and transfer RNAs using Bowtie2 (ref. 64) version 2.3.4.3. The
unaligned reads were mapped to a manually curated transcriptome.
Weretained alignments with mapping quality greater than 2 followed
by deduplication using UMI-tools when applicable. In deduplication
of external libraries without UMIs, a set of reads with the same length
that were mapped to an identical nucleotide position were collapsed
intoasingleread. Asthelast step, .ribo files were created using RiboPy®
version 0.0.1. All subsequent analyses used ribosome footprints that
were 29-35 ntinlength.

For analyses involving nucleotide-resolution data, we determined
the A-site offset for each ribosome footprint length using translation
stop site metagene plots. Specifically, for each read length, we identi-
fied the highest peak upstream of the translation stop site and used
the distance to the annotated stop site as the offset.

Toassignribosome footprints to coding reading frames (0,1and 2),
we first calculated the distance between the 5’ end of the footprint and
the first nucleotide of the coding sequence and took modulo 3 of the
distance. Next, ribosome footprints were partitioned by their length
and the 2 ntupstream and 1 nt downstream of the 3’ end of the footprint.
Foreachgroup, we determined the total number of reads, assigned to
each reading frame, giving us three numbers (S,, S, and S,) where S, is
the total number of footprintsin the frame i. We cyclically shifted these
numbers so that the maximum number was assigned to the first com-
ponent. After cyclic shifts, we aggregated all triplets component-wise.
Theresultingtriplet (T, 7;and T,) provides the adjusted reading frames
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where T;is the corrected number of footprints in the frame i. We com-
pared the resulting reading frame distribution (T, 7; and T,) to the
randomly distributed frames, where the expected valueis (T, + T, + T,)/3
foreach frame (Chi-squared statistic, P< 2.2 x 10 ¢ for all experiments).

Computational processing of RNA-seq data
The 5’ adapter sequence ATTGCGCAATG’ was clipped from the first
read in the pair using cutadapt®®version 1.18. Clipped reads shorter than
8 nt were removed using: ‘cutadapt -j 4-trimmed-only -m 8 -g ATTGCG-
CAATG. We then extracted the next 8 nt corresponding to the UMIs from
the first read in the pair and appended them to the headers (of FASTQ
files) of both read pairs using UMI-tools with the following parameters:
‘umi_tools extract-bc-pattern NNNNNNNN’. After UMI extraction, we
used the second read in the pair (40 nt) for all subsequent analyses.
After filtering out reads aligning to areference of rRNAs and tRNAs,
the remaining reads were aligned to a transcriptome reference in which
SNPswere masked with Ns (see the next section for details); thereafter,
weretained only the alignments with mapping quality greater than 2.
Wethen collapsed reads thataligned to the same transcript using their
respective UMIs: ‘umi_tools dedup-per-contig-per-gene’. For each
transcript, we counted the number of reads aligning to the coding
sequence. We used Bowtie2 (ref. 64) for all alignments and SAMtools®
version 1.11 for processing BAM files.

Comparison with polysome profiling

The transcripts with validated changes in polysomal association
between germinal vesicle-stage and MII-stage oocytes were obtained
from Supplementary Figs. 2and 3 of Chen et al.'®. Of the 29 genes with
quantitative reverse transcription PCR-validated changesin polysomal
association, 28 had the reported direction of effect when comparing
the mean of the centred log ratio (clr)®® across the replicates. Specifi-
cally, let Mbe the geometric mean of all the genes with non-zero counts
andletgbe the raw counts for aspecific gene. Then, clr of gis computed
asclr(g) =In.

Therelationship between RNA expression and poly(A) taillength
Previously, poly(A) tail length in germinal vesicle-stage mouse oocytes
was measured using both short-read sequencing (TAIL-seq)® and
PacBio sequencing (PAlso-seq)®®. The processed data were obtained
from http://ftp.ebi.ac.uk/pub/databases/microcosm/tailseek/ and
https://github.com/niehu2018/GV_oocyte_PAlsoSeqAnalysis/tree/
master/results. For each gene, we averaged the poly(A) tail measure-
ments across replicates and transcripts.

To determine the effect of oligo(dT) priming on our RNA expres-
sion measurements, we reanalysed the only publicly available data
from mouse zygotes that did not use poly(A) selectioninits RNA meas-
urements (SUPeR-seq)®. We downloaded the gene-level expression
data from GSE53386 and calculated the mean fragments per kilobase
per million mapped reads across the five replicate experiments from
wild-type mouse zygotes. We quantified the differencein RNA expres-
sionbetween these measurements and ours using the log, ratio of the
normalized values.

Wefoundaveryweak correlationbetweenmeasured poly(A) taillength
and our RNA expression measurements from germinal vesicle-stage
oocytes (Spearman correlation of —0.04 for Tail-seq and 0.07 for
PAlso-seq; Extended DataFig.10a,b). To rule out the possibility that the
observed weak correlation may be due to poor reliability of the poly(A) t
ailmeasurements, we compared PAlso-seq and Tail-seq measurements
and found that they were moderately correlated with each other for
the set of transcripts that were measured more than once (Spearman
correlation coefficient of 0.42; P<2.2 x107),

Eventhough poly(A) tail length does not systematically confound meas-
ured RNA expression, the abundance of transcripts with extremely short
poly(A) tails can still be underestimated. Indeed, the subset of genes with
the shortest average poly(A) tail length (less than 35 nt corresponding

to the lowest 1% in TAIL-seq and the lowest 3.7% in PAlso-seq) had sig-
nificantly lower RNA expression measurements (Extended DataFig. 10c;
Wilcoxon rank sum test P< 2.2 x 107%; Extended Data Fig.10c).

The observed lower expression of transcripts with the shortest
poly(A) tails could stem from a technical artefact of using poly(A)
selection. Alternatively, mRNAs with the shortest poly(A) tails may
have intrinsically lower expression. To differentiate these two alterna-
tives, we compared our measurements with SUPeR-seq, amethod that
doesnotrely on poly(A) selection®. As expected, SUPeR-seq measure-
ments were highly correlated with our own measurements (Spearman
correlation coefficient of 0.82; P < 2.2 x 107'%; Extended Data Fig.10d).
More importantly, when comparing the difference in measured RNA
abundance between the two methods, there was only a minimal asso-
ciation as a function of poly(A) tail length (Extended Data Fig. 10e;
Kruskal-Wallis rank sum test; P value of 0.016).

Together, these results suggest that there is not a systematic bias
in Smart-seq3-based RNA expression measurements as a function of
poly(A) tail length. However, the expression of genes with the shortest
poly(A) may be slightly underestimated.

The relationship between translation efficiency and poly(A) tail
length

Mouse embryos from early one-cell, two-cell and eight-cell stages were
previously used to determine poly(A) tail length using an improved
version of TAIL-seq (https://doi.org/10.5281/zenodo.2640028)*. This
HDF5file contained tag counts aggregated by poly(A) tail lengths. We
calculated the mean poly(A) tail length of each gene using the instruc-
tions by the authors and rhdf5 package version 2.42.0 (https://github.
com/grimbough/rhdf5).

For each gene and embryonic stage, we first calculated the density
of ribosome footprints and RNA-seq reads across the coding region.
These values were then normalized using the centred log ratio®® and
were averaged across replicates. Translation efficiency of a gene in
agiven embryonic stage was defined as the ratio of the normalized
ribosome occupancy to RNA expression. The bootstrap confidence
intervalfor translation efficiency was calculated by sampling with the
replacement of the replicate Ribo-ITP and RNA-seq experiments and
repeating the described calculation.

Allele-specific ribosome occupancy and RNA expression analysis
Given that mouse embryos were obtained by crossing the strains
C57BL/6) (maternal) and CAST/Ei) (paternal), we used known
strain-specific SNPs to determine the parental origin of the RNA mol-
ecules. This allowed us to determine whether the ribosome occupancy
or RNA expression of a gene exhibits a maternal or paternal (that s,
allele-specific) bias as detailed below.

Alist of strain-specific SNPs was obtained in VCF format from https://
github.com/sandberg-lab/Smart-seq3/blob/master/allele_level_expres-
sion/CAST.SNPs.validated.vcf.gz®°. We extracted 210,004 distinct SNPs
that overlapped with transcript annotations. To avoid alignment biases,
we modified our transcriptome reference sequences by masking SNP
positions with Ns. Mouse sequencing data were aligned to this masked
transcriptome reference.

For allele-specific analyses, we considered the 85,339 SNPs within
the coding sequences of transcripts. Given that transcripts in oocytes
should solely contain maternal SNPs, we used the data from the
MiIl-stage oocytes to construct a simple error correction model. Spe-
cifically, 2.67% and 0.40% of reads contained non-maternal sequences
inribosome profilingand RNA-seq experiments, respectively. These val-
ueswere used as estimates of the sequencing error percentage (error).

We define the paternal ratio as

Number of reads from paternal alleles + 1
Number of reads from paternal alleles + 1

+number of reads from maternal alleles + 1
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For one-cell to eight-cell embryos, we then calculated the error-

corrected paternalratio, paternal . ..,as:

300 x paternal .4 —€rror x100
300 -4 xerror

paterna]corrected =

where, paternal . . .4is theuncorrected percentage. We derived this
equation fromthe below model under the assumptionthat sequencing
errors are random:

100 - error

paternal =paternal 100

observed corrected

100 - error

+ (100 - paternal 3100

X
corrected)

For eachembryonicstage, to identify the transcripts whose paternal
ratios are significantly different in ribosome profiling compared with
RNA-seq, we first aggregated all SNP-containing reads for each tran-
script across replicates. We retained transcripts with more than ten
readsinboth ribosome profiling and RNA-seq experiments including
atleast three maternal and paternal reads. We used a two-sample test
for the equality of proportions with continuity correction (prop.test
inR; see chapter 3 of ref. 70 for details).

Transcripts with 95% confidence intervals of difference in paternal
ratios (derived from the test for the equality of proportions), overlap-
pingwiththeinterval (-0.05,0.05), were filtered out. After adjusting the
Pvalues using the false discovery rate method, we retained the transcripts
withadjusted P < 0.2. We further removed transcripts with paternal reads
in the Mll stage as these probably indicate positions that are prone to
alignmenterrors. As the final step, we applied bootstrapping to establish
robustness of the conclusions. Specifically, we randomly sampled rep-
licates with replacement and repeated the statistical testing procedure
described above. Twenty-four transcripts with afalse discovery rateless
than0.2inatleast 66 out of 100 bootstrap samples were deemed as hav-
ingdifferential allelic ratios. There were a total of 187 coding region SNPs
differentiating the two alleles among this set of 24 of these transcripts.
Alist of these SNPs is provided in Supplementary Table 6.

For the analyses described in Fig. 6 and Extended Data Fig. 9, we
considered RNA expression data from four-cell and eight-cell embry-
onic stages. We discarded the genes with fewer than ten parent-of-
origin differentiating reads across all replicates of the given embry-
onicstage. To define genes that display allele-specific bias in expres-
sion, we used a bootstrapping approach. For each sample, we
randomly selected two or four replicates with replacement from the
four-cell and eight-cell RNA expression data, respectively. Reads
were then combined across replicates and SNP positions. Agene was
deemed paternally or maternally biased if the ratio of the
paternal-to-maternal allele supporting reads were greater than 70%
inatleast 800 out of 1,000 bootstrap samples. The remaining genes
were considered as biallelic (or unbiased). In total, we identified
2,239 and 3,707 biallelic, 191 and 334 maternally biased and 103 and
253 paternally biased genesin four-cell and eight-cell stages, respec-
tively. Furthermore, 37 and 47 genes had expression from only one
oftheallelesin the four-cell and eight-cell stages, respectively. This
subset of allele-specific genes was defined as monoallelic. Finally,
to define a more high-confidence set of allele-biased genes, we

required support from multiple SNPs such that the ratio of SNPs with
Number of reads from paternal alleles + 1 >0.5was

Number of reads from paternal alleles + 1+ number of reads from maternal alleles + 1

atleast 60%. We found that 195 and 323 genes were supported by
multiple SNPs in four-cell and eight-cell stages, respectively. To com-
pare the translation efficiency distribution of different gene groups,
we used the non-parametric Wilcoxon rank sum test. To estimate the
magnitude of the effect size, we report fold changes defined as the
ratio of the median translation efficiency of the allele-specific genes
to that of biallelic genes.

Differential expression and translation efficiency analysis
Reads that aligned to coding regions were extracted for all experi-
ments. To determine transcripts with the highest variability in ribo-
some occupancy across developmental stages, a variance-stabilizing
transformation (VST), as described in ref. 71, was applied to centred
log ratio of ribosome occupancies (‘FindVariableFeatures’ function
withtheselection method ‘vst’inthe Seurat package v4 (ref. 72)). Using
thethreshold ‘vst.variance.standardized’ > 4.8, we obtained 50 genes.
Forevery pair of consecutive developmental stages, differential RNA
expression and translation efficiency was determined using DESeq2
(ref. 73). For calculation of differential translation efficiency, we used
theinteraction term between the developmental stage and the meas-
urement modality (ribosome profiling or RNA-seq). Default parameters
were used for read count normalization and estimation of gene-specific
dispersion. Effect size moderation was carried out using the approxi-
mate posterior estimation for ageneralized linear model™. The adjusted
Pvalue cut-off was set to 0.01 to determine a set of transcripts with
significant changes in RNA expression and translation efficiency.
Gene set enrichment analyses for gene ontology terms were carried
out using FuncAssociate (http://llama.mshri.on.ca/funcassociate/)
with default settings™.

Proteomics dataand comparison with RNA-seq and ribosome
profiling

Tandem Mass Tag-labelling-based proteomics abundance data for
one-cell to morula-stage embryos were obtained from Gao et al.®. Meas-
urementsin all three modalities were available for 3,287 proteins and
were used in further analysis. Ribosome occupancy and RNA expression
were converted to read density by dividing the read counts by the length
ofthe codingregion of each transcript. These values were normalized
using a centred log-ratio transformation asimplemented in Seurat v4
(ref.72). The translation efficiency was defined as described above. The
similarity between RNA expression, ribosome occupancy, translation
efficiency and protein abundance was measured using rank correlation
with Spearman’s correction”®””. The measurement reliability for each
modality was estimated using replicate to replicate correlation coef-
ficients (0.53 for translation efficiency, 0.71 for ribosome profiling,
0.79 for RNA-seq and 0.8 for mass spectrometry®).

Weighted transcript region length distribution
For the transcript regions, 5’ UTR, CDS and 3’ UTR, the distribution of
weighted region lengths was calculated as follows. First, for each tran-
script, we determined the ratios of region lengths to the transcript
length. Next, we multiplied these ratios with the number of ribosome
occupanciesinthetranscript, giving us weighted ratios of the regions.
Then, for each region, we calculated the sum of their weighted ratios
across transcripts. Finally, let wy 1, Weps and ws, 1z be the weighted
(w) sums of the regions 5’ UTR, CDS and 3’ UTR, resu[})ectively. Fora
regionr, the weighted length percentage of ris [ T—— 100.
Characterization of SNP effects on allele-specific ribosome
occupancy
All SNPs differentiating the paternal allele from the maternal allele
were extracted for the set of transcripts with evidence of differential
allele-specific ribosome occupancy (Fig. 4c). These were annotated
by their position within the transcript (5’ UTR, CDS and 3’ UTR) and
various functional classes as detailed below using bedtools version
v2.29.2 (ref. 78) with the following options: ‘bedtools intersect-wa-wb’.
SNPs within 5" UTRs were annotated as candidates for generat-
ing translation initiation sequences by matching a 9-nt sequence
centred around the SNP to the regular expression ‘[ATCG]+[AG]{1}
[ATCGI{2}[ACGH{I} TG[AGH{I}[ATCG]+ with R base::grepl. SNPsin which
either the maternal or paternal allele matched the regular expression
were selected. A mouse PD-31 FACS-seq dataset reporting efficiency
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of non-canonical translation initiation sequences for —4 to +4 (ref. 79)
was used to score the efficiency of candidate 5’ UTR initiation sites.

Analyses of RBP motifs

Enrichment or depletion of RBP heptamer motifs was determined
by the Transite v1.16.0 k-mer transcript set motif analysis method™
(Benjamini-Hochberg P < 0.0001; Supplementary Table 5) and anno-
tated with oRNAment* RBPs with consensus sequences matching the
heptamer. RBP synonyms in the oRNAment database were replaced
with their standard gene names (DAZ3: DAZL; SF2: SRSF1; B52: SRSF6;
Fusipl: SRSF10; and ZNF326: ZFP326).

SNPs were intersected with the BED file of oRNAment motifs using
bedtools’v2.29.2 after subtracting one from the BED start coordinate
toensure that sequences had the same length as the oRNAment position
weight matrices. We filtered 102 out of 1,403 SNPs that intersect RBP
motifs due to multiple SNPs being in close proximity (less than 5 nt).
Thematernal and paternal sequences were scored using the oRNAment
matrix similarity scorein R v4.0.4. For RBPs with more than one position
weight matrix, the maximum of the absolute difference in scores was
computed to identify the consensus motif most impacted by a given
SNP. Then, RBPs sharing the same consensus motif and overlapping
the same SNP were collapsed into a single annotation by computing
the median difference in score. Robust standardization of the median
difference in score was performed (centre to median, divided by the
interquartile range). SNPs predicted to alter RBP binding were selected
using the 95th percentile of the absolute, standardized score difference.
Finally, RBPs were discarded if they had no mouse homologue or had
no detectable expression during the stages of development analysed
(AICF,BOLL, ELAVL4, MSI1, KHDRBS3, PABPC5, RBM4B, TIAL, EIF4G2,
RBFOX3, BRUNOL6, RBM23 and SRSF8).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Sequencing files for ribosome profiling and RNA-seq experiments
are available at the Gene Expression Omnibus (accession number:
GSE185732). The oRNAment database files were downloaded from
http://rnabiology.ircm.qc.ca/oRNAment (unspecified version, down-
loaded on 2 December 2021) for RBPs in the Mus musculus transcrip-
tome. The following public datasets were used in this study: GSE53386,
GSE78634 and GSE162060. Previously generated poly(A) tail length
measurements were downloaded from http://ftp.ebi.ac.uk/pub/data-
bases/microcosm/tailseek/, https://github.com/niehu2018/GV_oocyte_
PAlsoSeqAnalysis/tree/master/results and https://doi.org/10.5281/
zenodo.2640028. A list of strain-specific SNPs was obtained in VCF
format from https://github.com/sandberg-lab/Smart-seq3/blob/mas-
ter/allele_level_expression/CAST.SNPs.validated.vcf.gz.

Code availability

The code usedinthe study is available at https://github.com/CenikLab/
ribo-itp_paper.

57. Green, M. R. & Sambrook, J. Isolation of DNA fragments from polyacrylamide gels by the
crush and soak method. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot100479
(2019).

58. Takeo, T. & Nakagata, N. Combination medium of cryoprotective agents containing
L-glutamine and methyl-B-cyclodextrin in a preincubation medium yields a high fertilization
rate for cryopreserved C57BL/6J mouse sperm. Lab. Anim. 44,132-137 (2010).

59. Takeo, T. & Nakagata, N. Reduced glutathione enhances fertility of frozen/thawed C57BL/6
mouse sperm after exposure to methyl-B-cyclodextrin. Biol. Reprod. 85, 1066-1072
(201M).

60. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution
using Smart-seq3. Nat. Biotechnol. 38, 708-714 (2020).

61. Ozadam, H., Geng, M. & Cenik, C. RiboFlow, RiboR and RiboPy: an ecosystem for
analyzing ribosome profiling data at read length resolution. Bioinformatics 36, 2929-2931
(2020).

62. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique
molecular identifiers to improve quantification accuracy. Genome Res. 27, 491-499
(2017).

63. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing
reads. EMBnet.journal 17,10-12 (2011).

64. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods
9, 357-359 (2012).

65. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giabO08
(2021).

66. Quinn, T.P,, Erb, I, Richardson, M. F. & Crowley, T. M. Understanding sequencing data as
compositions: an outlook and review. Bioinformatics 34, 2870-2878 (2018).

67. Morgan, M. et al. mRNA 3 uridylation and poly(A) tail length sculpt the mammalian
maternal transcriptome. Nature 548, 347-351(2017).

68. Liu, Y., Nie, H., Liu, H. & Lu, F. Poly(A) inclusive RNA isoform sequencing (PAlso-seq)
reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat. Commun. 10,
5292 (2019).

69. Fan, X. etal. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in
mouse preimplantation embryos. Genome Biol. 16, 148 (2015).

70. Fleiss, J. L. Statistical Methods for Rates and Proportions (Wiley, 2003).

71.  Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell
RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296
(2019).

72. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29
(2021).

73. Love, M. I, Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

74. Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count
data: removing the noise and preserving large differences. Bioinformatics 35, 2084-2092
(2019).

75. Berriz, G. F., Beaver, J. E., Cenik, C., Tasan, M. & Roth, F. P. Next generation software for
functional trend analysis. Bioinformatics 25, 3043-3044 (2009).

76. Csardi, G., Franks, A., Choi, D. S., Airoldi, E. M. & Drummond, D. A. Accounting for
experimental noise reveals that mRNA levels, amplified by post-transcriptional processes,
largely determine steady-state protein levels in yeast. PLoS Genet. 11, €1005206 (2015).

77. Spearman, C. The proof and measurement of association between two things. Am. J.
Psychol. 15, 72-101(1904).

78. Quinlan, A. R. &Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics 26, 841-842 (2010).

79. Diazde Arce, A. J., Noderer, W. L. & Wang, C. L. Complete motif analysis of sequence
requirements for translation initiation at non-AUG start codons. Nucleic Acids Res. 46,
985-994 (2018).

Acknowledgements We thank W. Shawlot and the UT Austin Mouse Genetic Engineering Facility
for their contributions; and A. Johnson, S. Vokes, B. Cenik and E. Sarinay Cenik for their critical
evaluation of the manuscript. Certain commercial equipment, instruments or materials are
identified in this paper to specify the experimental procedure adequately. Such identification
is not intended to imply recommendation or endorsement by the National Institute of Standards
and Technology (NIST), nor is it intended to imply that the materials or equipment identified
are necessarily the best available for the purpose. This work was supported in part by NIH grants
CA204522 and HD110096, and Welch Foundation grant F-2027-20200401to C.C.C.C.isa
CPRIT Scholar in Cancer Research supported by CPRIT grant RR180042. C.M.H. acknowledges
support from the NIST NRC Postdoctoral Associateship Program and support from the NIST
Joint Initiative for Metrology in Biology at Stanford University.

Author contributions H.O., TT., C.M.H. and C.C. co-wrote the original manuscript. H.O., TT.,
C.M.H., l.H., S.R., M.S. and C.C. participated in reviewing and editing the manuscript. C.M.H.,
M.S. and C.C. conceptualized the study design. H.O., TT., A.S., |.H. and C.C. generated the
figures for the manuscript. C.M.H. and C.C. designed the Ribo-ITP chip and enabled on-chip
polyacrylamide polymerization with help from D.C. Gel concentrations were optimized by TT.
and C.C. TT. performed and analysed size selection and RNA yield experiments, optimized

RNA digestion conditions for Ribo-ITP, performed Ribo-ITP and library preparation of mouse
and 100-cell K562 samples, and performed mouse RNA-seq experiments. A.S., V.G. and S.R.
performed Ribo-ITP and library preparation of single-cell K562 samples. C.M.H. and DT. optimized
the collection procedure of Ribo-ITP through conductivity and pH experiments. H.O. and C.C.
formally analysed all Ribo-ITP and RNA-seq data, and performed quality control analysis of
sequencing data, differential translation efficiency and protein abundance analyses. H.O.
developed the RNA-seq analysis pipeline, processed all the sequencing data, developed the
SNP analysis software and performed allele-specific analyses. |.H. conducted the RBP analysis.
C.C. provided study oversight and acquired funding. All authors approved the final manuscript.

Competing interests US patent application no. 63/286,531, entitled ‘Ribosome profiling via
isotachophoresis’ by C.C. and C.M.H., and international patent application no. PCT/US2022/
080982 based on US serial no. 63/286,531, entitled ‘Ribosome profiling via isotachophoresis’ by
C.C.and C.M.H. were filed in the Name of Board of Regents, The University of Texas System et al.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/101038/s41586-023-06228-9.

Correspondence and requests for materials should be addressed to Can Cenik.

Peer review information Nature thanks the anonymous reviewers for their contribution to the
peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185732
http://rnabiology.ircm.qc.ca/oRNAment
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53386
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78634
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162060
http://ftp.ebi.ac.uk/pub/databases/microcosm/tailseek/
http://ftp.ebi.ac.uk/pub/databases/microcosm/tailseek/
https://github.com/niehu2018/GV_oocyte_PAIsoSeqAnalysis/tree/master/results
https://github.com/niehu2018/GV_oocyte_PAIsoSeqAnalysis/tree/master/results
https://doi.org/10.5281/zenodo.2640028
https://doi.org/10.5281/zenodo.2640028
https://github.com/sandberg-lab/Smart-seq3/blob/master/allele_level_expression/CAST.SNPs.validated.vcf.gz
https://github.com/sandberg-lab/Smart-seq3/blob/master/allele_level_expression/CAST.SNPs.validated.vcf.gz
https://github.com/CenikLab/ribo-itp_paper
https://github.com/CenikLab/ribo-itp_paper
https://doi.org/10.1101/pdb.prot100479
https://doi.org/10.1038/s41586-023-06228-9
http://www.nature.com/reprints

28 515 95 —
C= O
o O
C Q @\ R25
b
TE ) . . Elution O TEp
; Lysate Extraction Size-selection
reservoir channel channel channel well [ Cell lysate
C T TRy M X1 5% PA
LE [X 10% PA
Branch channel 1 Branch channel 2 reservoir 3 [ Elution buffer
LE reservoir 1 LE reservoir 2 H LEp
c e
20 ng 40 ng
marker 2 ' ‘ :
- |34nt 20 1t ‘-—-- b.- - - -
29nt| = .
25 nt o | 26nt 25 nt - -
21 nt - marker 1 ‘
17 nt -
17 i TR es (Saaeew
g Z M S G G G G
ITP migration after 1st collection (mm) f
75 100
0.08 o < 75 Input
= s N Ribo-ITP
0.07 { © i 50 ® Gel extraction
_0.06 o7 > 25 . .
£ o o 0
o 0.05 | 20 40
= T Amount (ng)
£0.04 | Sg i i h
= « Replicate 1 Replicate 2
3] g : e
2 0.03 4 X 6.5 || — | @ | marker 2 100
c vl [ ¢
o} 29 nt | . - -~ . < 75
O 0.02 : ) <
p 8 25nt| ‘ - ¢ | o 50
0.01 ] 21 nt 1| - . 2
o 7 nt * . ’ marker 1 %= 25
0 T T T 6 i i i
2.5 5 7.5 10 Ribo-ITP

Extended DataFig.1|Ribo-ITP design enables efficient RNA extractionand
sizeselection.a, The top view of the ITP chip layout designed with SOLIDWORKS
(unitsin mm). The thickness of the channel features was 375 umand that of the
rectangularbase was1.5 mm. Linear tapering was applied from the rectangular
basetotheouteredge (roundedrectangle). b, Microfluidic device setup;
indicatinglysate, extraction, and size-selection channels; trailing electrolyte (TE)
andleadingelectrolyte (LE) reservoirs; and elution well. Buffers corresponding
to eachchannelandreservoir are color coded. Marker oligonucleotide
fluorescenceis denoted by green. ¢, Gel image displays the relative mobilities
of fluorescent markersusedin Ribo-ITP (M) along with the Zymo Research
R1090 smallRNA ladder (Z) and synthetic RNA oligonucleotides (S) (n=1).

d, Given that pHis the critical factor determining dephosphorylation efficiency,
we determined the impact of Ribo-ITP collection on the conductivity and pH of
the dephosphorylation buffer. We found negligible pH change (right axis, blue)
andonly a11.0% +1.83% (SEM) change in conductivity (left axis, green) for

the collectiondistance (Smm, denoted by the vertical line) used in Ribo-ITP.

e, Representative gelimages of controlinputs (I), Ribo-ITP elutions (R), and gel
extraction (G) samples. Four RNA species (17,21,25,and 29 nt) were used with
totalinputs of20 and 40 ng. Fluorescent marker oligonucleotides were spiked
into controland gel extraction samples prior to gel visualization. f, Gelimage
quantification of controlinputs (gray), Ribo-ITPelutions (orange), and gel
extraction (purple) samples (n =4). Minimum, maximum, and average values
arerepresented by thebox and the horizontal bar. Only the25and 29 nt RNA
marker bands were quantified for the yield calculation. g, Inputs (I, gray) were
prepared by adding 40 ng of RNA to lysates from-1,000 K562 cells. The RNA
consisted of four speciesranging from17to 29 ntinlength. Fluorescent marker
DNAs were added to Ribo-ITP samples (R) inaddition to EGTA (10 mM). RNA
extraction and isolation was done with Ribo-ITP followed by visualization using
gelelectrophoresis. h, Yield of the 25and 29 nt RNAs was quantified and plotted
for tworeplicates (84% and 91%).
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Extended DataFig.2|Comparisonbetween Ribo-ITP and conventional
ribosome profiling. Ribo-ITP experiments from -100-cells were compared to
the conventional ribosome profiling from-10M cells for all panels. a, Transcripts
with atleast one count per million (cpm) in atleast two out of threereplicates
were selected. Log, of mean cpm (x-axis) was plotted against the square root of
the standard deviation of cpm (y-axis). Green (Ribo-ITP) and red (conventional)
pointsrepresentindividual transcripts with meanlog,(cpm) >2.b, The
percentage of clipped reads that mapped to ribosomal RNAs was calculated
using RiboFlow®. The mean andits standard error were shown (n = 3; see also
Supplementary Table 1). ¢, Inthe metagene plots, position O correspondsto the
start (left, light green) or stop (right, dark green) site. Ribosome footprints
were adjusted according to their A-site offsets. One representative replicate

foreach methodis plotted. d, The mean percentage of specific read lengths
amongthe total mapped readsis plotted. Ribbons around thelines represent
standard error of the mean. e, The percentage of ribosome profiling reads
mappedtothe CDSisindicated for each experiment (left). Single cell data from
K562 cells were generated using either RNase I digestion (1-1,1-2,1-3) or MNase
(1-4,1-5). The sum of weighted counts across transcripts were plotted for
comparison (right). The weighted sum was calculated for each transcript by
multiplyingits region length by the total number of ribosome footprints.
f,Ribosome footprints from Ribo-ITP and the conventional method were used
tocalculate the mean fraction of reads mapping to eachreading frame (Methods).
Errorbarsindicate thestandard error of the mean of replicates.
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Extended DataFig. 3| Quality Control for single cell and single embryo
measurements of ribosome occupancy and RNA expression. a, The number
of reads (x-axis) is plotted against the number of detected genes (y-axis). Three
representative replicates are shown for each stage of development used for
single cell ribosome profiling experiments and from GSE162060 (Pro02_
TCGTCAGTAC, ProO5_CCAATCCAGG and DisO1_TCGCTCTGCT). The three
mouse cells highlighted from GSE162060 were selected to represent median
coverageinthatstudy. The totalnumber of detected genes using all CDS
mappingreadsisindicated along withgenes detected with1.25k, 2.5k, 5k, 10k,
20k, 30k and 40k sub-sampled coding regions mapping UMIs. The inset plot
shows the zoomed-in version of the same datain the x-axis from O to 5k.

b, Ribosome footprints from n=15single cell Ribo-ITP samples from GV, MIl
and1-cell stages were used to calculate the fraction of reads mappingtoeach

reading frame (Methods). Error barsindicate thestandard error of the mean
of replicates. c, Metagene plots of translation start and stop sites froma
representative RNA-Seq experiment. In contrast to the ribosome profiling
data, thereisno detectable peak observed at translation start or stop sites.
d, Metagene plots of translation start and stop sites from arepresentative
Ribo-ITP experiment using a2-cell or a4-cell stage mouse embryo. Start sites
(lightgreen, left) and stop sites (dark green, right) are at position O on the x-axis.
Positions of the aligned reads are adjusted according to their A-site offsets.
e, CDS-mapping read counts fromeach transcript were used to compute the
Spearman correlation coefficient. Ribo-ITP (orange) and RNA-Seq (blue)
experiments are ordered by developmental stage. The colorsindicate the
strength of the correlation.
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Extended DataFig. 4 |Ribosome occupancy in GV-and MII-stages of

transcripts with previously identified differential polysome association.
a, Themean of centered log-ratio of ribosome occupancy (y-axis) was plotted
alongwith the standard error of the mean. These transcripts were identified as
havingincreased polysome association in the Mll-stage compared to GV-stage'®.

b, Similar to panelawith the exception that these transcripts were found to

display decreased polysome association in the MIl-stage compared to the

GV-stage'®. ¢, log, ratio of translation efficiencies (ribosome occupancy/RNA

expression) for the highlighted genesin GV compared to Ml stage oocytes are
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plotted along with their standard error. The vertical bar separates genesin
panelafromb.
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Extended DataFig.7|See next page for caption.



Extended DataFig.7 | Differential translational efficiency and enrichment
of RBP motifs across stagesinoocyte and embryonic development.a, The
oRNAment matrix similarity score* was computed for maternal and paternal
SNPs thatintersect RBP motifs, and the max absolute difference in scores was
determined. SNP-motifsinthe 95th percentile of the absolute differences are
shown. A positive difference (yellow) indicates the paternal SNP more closely
matches the RBP motif, while a negative difference (blue) indicates abetter
match for the maternal SNP. RBPs with a shared motif are comma-delimited.
SNP coordinates are relative to the mm10 build. b, Schematic of a predicted
upstream openreading frame (UORF) in Tmppe. uORF value and intensity

of fillindicate the efficiency of the corresponding non-canonical translation
initiation sites from mouse PD-31 cells”. ¢, The meanratio of allele-specific reads
inribosome profiling (n =4) toRNA-seq (n =4) was plotted after aggregating
dataacross SNPs and experiments. Each experimentis normalized to 10k

SNP-informative reads to account for differences in sequencing depth. The
error bars correspond tothe 80% confidence interval calculated using bootstrap
sampling of replicates. A pseudocount of 0.5 was added to both normalized
RNA-seq and ribosome profiling counts. d,e, Volcano plots depict the statistical
significance (y-axis) and log, fold-change (x-axis) in translation efficiency
between the GV-to MlIl-stage oocytes and between the 2-cell to 4-cell stage
embryos. The purple and blue pointsindicate transcripts with a significant
differencein translation efficiency between the compared stages (FDR<0.01).
f,Enrichmentand depletion of RBP motifsin genes withincreased TEbetween
MIland GV stages was determined by Transite® (Benjamini-Hochberg adjusted
p-value <0.0001, Supplementary Table 5) and annotated with oRNAment*®
RBPs.RBPs that share the same consensus motif are comma-delimited, and
RBPswithno detectable expression are marked with an asterisk.
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Extended DataFig. 8 |Relationship between RNA expression, translation plotted for PABPClalong withits mean poly(A) lengthin1-cell (n=5Ribo-ITP;
and protein abundance across embryonic stages. a, Venndiagram of the n=4RNA-Seq) and 2-cellembryos.d,e,f, Pairwise correlation between protein
overlap between thesets of transcripts that arereduced in RNA abundance or abundanceandd, RNA expression or e, Ribosome occupancy or f, Translation
translational efficiency upon fertilization (MII-oocyte to the zygote transition).  efficiency. Spearman correlation coefficient with Spearman’s correctionis

b, The mean poly(A) tail length and translation efficiency was calculated using reported inside the heatmaps. g,h, Sankey diagrams depict the relationships
datafrom2-cell stage embryos (n =3 Ribo-ITP; n =4 RNA-Seq; see Methods). between translation efficiency and protein abundance. The color and the
Theboxes correspond tointerquartile range and the horizontal lines indicate thickness of the paths connecting the nodes are proportional to the correlation
the median. ¢, Mean translation efficiency and its 90% confidence interval are coefficient.
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Extended DataFig. 9| Translation efficiency of genes with allelic-biased
RNA expression. For all plots, boxes correspond to interquartile range and the
horizontallinesindicate the median. The whiskers extend from the hinge to
atmost 1.5 times the interquartile range. P-values are calculated using the
two-sided Wilcoxon rank sum test. Translation efficiency is defined by average
ribosome occupancy (MlIn=5,1-celln=5,4-celln=3,8-celln=4) divided

by average RNA expression (MIIn=4,1-celln=4,4-celln=2,8-celln=4)

a, Translation efficiency is plotted for two bi-allelic genes (Anapc7 and PlppS5),
two maternally biased genes (Tesc and Tubg2) and two paternally biased genes
(Prkczand Shc3). Vertical bars indicate 95% confidence intervals of bootstrap
sample based variability in translation efficiency. Horizontal lines depict the
median translation efficiency of all bi-allelic genes. b, Translation efficiency of
unbiased (bi-allelic), paternally and maternally biased genes are plotted. ¢, We

define a high-confidence set of allelic-biased transcripts that are supported by
more than one SNP (Methods). The scatter plot, on the left, shows the paternal
ratios of the genesin 4-cell (x-axis) and 8-cell (y-axis) stages. Genes are colored
by their allelic bias and unbiased genes are colored ingray. d, Anearest neighbor
matching method was used to select asubset of bi-allelic genes with matched
distribution of RNA expression and CDS length compared to the allele-specific
genes (Methods). e,f, The genes with allele-biased expression at the 4-celland
8-cellstages were compared to other genes withrespect to their translation
efficiency atthe 1-celland MlI stages. The bi-allelic genes were matched to allele-
specificones withrespect to RNA expression levels and CDS lengths. g,h For
each transcript, the x-axis represents the mean RPKM in RNA-seq and the y-axis
isthe corresponding mean translation efficiency. Genes with allelic expression
biasare colored.
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Extended DataFig.10 | RNA expression measurements using Smart-seq3
donotexhibitasystematicbias as afunction of poly(A) tail length.

poly(A) tail length of transcripts from mouse GV-stage oocytes wereretrieved
from two previous studies a, Tail-Seq (n = 3)*” or b, PAlso-seq (n=2)*®. Spearman
rank correlation coefficients between our RNA-Seq measurements and poly(A)
taillengthwasshowninthe top left corners highlighting the lack of astrong
relationship between the two variables for both Tail-Seq and PAlso-seq.

¢, Transcripts with shortest poly(A) tails (<35nt corresponding to the lowest 1%
in TAIL-Seq and the lowest3.7% in PAlso-seq) were compared to all other
transcripts withrespectto RNA expression measured by Smart-Seq3. The
median ofthe distributionis shown with the horizontalline. The box depicts

theinterquartile range, the whiskers extend from the hinge to at most 1.5 times
theinterquartile range.d, Our RNA-seq measurements from zygotes using
Smart-seq3 (n=4), which uses oligo(dT) priming, was compared to measurements
using SUPeR-Seq (n =5)°, which provides poly(A) independent quantification.
Spearman rank correlation between the two approaches is shown (p-value<2.2
x107%). e, The log, ratio of SUPeR-Seq to Smart-seq3 expression values (y-axis)
were calculated for eachgene and grouped by their respective poly(A) tail lengths
(x-axis) as previously reported*. While there is not a systematic bias in expression
measurements asafunction of poly(A) tail length, transcripts with the shortest
tails (<17nt) were slightly underestimated in Smart-seq3 (Kruskal-Wallis rank
sumtest; p-value 0.016).
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Sequencing files for ribosome profiling and RNA-seq experiments, together with additional supplemental files, are available at GEO (accession number: GSE185732).
The oRNAment database files were downloaded from http://rnabiology.ircm.qc.ca/oRNAment (unspecified version, downloaded December 2, 2021) for RNA-
binding proteins in the Mus musculus transcriptome.
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The following public datasets were used in this study: GSE53386, GSE78634, GSE162060. Previously generated poly(A) tail length measurements were downloaded
from ftp://ftp.ebi.ac.uk/pub/databases/microcosm/tailseek/, https://github.com/niehu2018/GV_oocyte_PAlsoSegAnalysis/tree/master/results and doi:10.5281/

zen0do.2640028. A list of strain-specific SNPs was obtained in VCF format from https://github.com/sandberg-lab/Smart-seq3/blob/master/allele_level expression/
CAST.SNPs.validated.vcf.gz.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. The number of replicates were chosen to assess the reproducibility of the
measurements.

Data exclusions  Ribo-ITP libraries were excluded from analysis if the percentage of reads mapping to CDS was less than 60%. This criteria was pre-established
based on our experience with previous ribosome profiling experiments. Among human Ribo-ITP experiments, no libraries were removed for
100-cell and 10 million cell experiments. For single cell experiments one out of six libraries was excluded.

Initial optimizations of Ribo-ITP experiments for mouse samples were conducted using oocytes. Ribo-ITP libraries from one GV-stage and nine
Mll-stage oocytes were excluded. All attempts were successful for single embryo Ribo-ITP experiments from zygotes and 8-cell stage. Four
libraries from 2-cell and one from 4-cell stages were excluded.

Replication In mouse ribosome profiling samples, 5, 5, 5, 3, 3, and 4 biological replicates were used for GV, Mll, 1-cell, 2-cell, 4-cell and 8-cell stages,
respectively. In mouse RNA-Seq samples, 4, 4, 4, 4, 2 and 4 biological replicates were used in GV, Mll, 1-cell, 2-cell, 4-cell and 8-cell stages.
For experiments with K562 cells, we used 5 single cells, and 3 biological replicates each for the 100-cell and 10M-cell samples.

RNA recovery quantifications in Extended Data Fig. 1f were from four independent experiments. Size selection stringency (Fig. 2) was
calculated from three experiments on two independent days.

Randomization  No randomization was performed. This is an observational study and there was no active manipulation of an independent variable.

Blinding Data collection and analyses were carried out by different researchers. Blinding was not relevant due to the observational nature of the study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) We used K562 human cell lines.
Authentication The identity of K562 cell line was validated using STR profiling from ATCC.

Mycoplasma contamination Periodically tested for lack of mycoplasma contamination (at least every six months).
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Commonly misidentified lines  There are no misidentified lines.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals We used the two mouse strains: C57BL/6J (female) and CAST/EiJ (male). Mice were ~8 weeks old at the time of the experiment.
Wild animals There are no wild animals involved in this study.
Field-collected samples  There are no field-collected samples in this study.

Ethics oversight All experiments using mice were done at the Mouse Genetic Engineering Facility and were approved by the Institutional Animal Care
and Use Committee at the University of Texas at Austin.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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