Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lost world of complex life and the late rise of the eukaryotic crown

Abstract

Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent ‘protosterol biota’ that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This ‘Tonian transformation’ emerges as one of the most profound ecological turning points in the Earth’s history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geological time chart comparing the molecular fossil, microfossil and phylogenetic records of early eukaryote evolution.
Fig. 2: Juxtaposition of biological and geological hopanoids and steroids, and the evolution of the sterol biosynthetic pathway through time.
Fig. 3: The succession of fossil steroids and bacterial hopanoids through time.

Similar content being viewed by others

Data availability

All processed data generated during this study are included in this published article and its supplementary information files. Raw data are available from the corresponding author on reasonable request.

References

  1. Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015).

    Article  Google Scholar 

  2. Gueneli, N. et al. 1.1-Billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. Proc. Natl Acad. Sci. USA 115, E6978–E6986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bloch, K. in Blondes in Venetian Paintings, the Nine-Banded Armadillo, and Other Essays in Biochemistry 14–36 (Yale Univ. Press, 1994).

  5. Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chernikova, D., Motamedi, S., Csuros, M., Koonin, E. & Rogozin, I. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes. Biol. Direct 6, 26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Javaux, E. & Knoll, A. Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Palaeontol. 91, 199–229 (2017).

    Article  ADS  Google Scholar 

  10. Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).

    Article  Google Scholar 

  11. Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Porter, S. M. & Knoll, H. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26, 360–385 (2000).

    Article  Google Scholar 

  14. Welander, P. V. Deciphering the evolutionary history of microbial cyclic triterpenoids. Free Radical Biol. Med. 140, 270–278 (2019).

    Article  CAS  Google Scholar 

  15. Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Zumberge, J. A., Rocher, D. & Love, G. D. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid-Neoproterozoic marine communities. Geobiology 18, 326–347 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Desmond, E. & Gribaldo, S. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evol. 1, 364–381 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grantham, P. J. & Wakefield, L. L. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Org. Geochem. 12, 61–73 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Hoshino, Y. et al. Cryogenian evolution of stigmasteroid biosynthesis. Sci. Adv. 3, e1700887 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pawlowska, M. M., Butterfield, N. J. & Brocks, J. J. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41, 103–106 (2013).

    Article  ADS  CAS  Google Scholar 

  21. Porter, S. M., Agić, H. & Riedman, L. A. Anoxic ecosystems and early eukaryotes. Emerg. Top. Life Sci. 2, 299–309 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen, K. et al. Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: Searching across a marine redox gradient in mid-Proterozoic habitability. Geobiology 17, 247–260 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Porter, S. M. Insights into eukaryogenesis from the fossil record. Interface Focus 10, 20190105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7, 1–7 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Brocks, J. J. The transition from a cyanobacterial to algal world and the emergence of animals. Emerg. Top. Life Sci. 2, 181–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Jarrett, A. J. M. et al. Microbial assemblage and paleoenvironmental reconstruction of the 1.3 Ga Velkerri Formation, McArthur Basin, northern Australia. Geobiology 17, 360–380 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bloch, K. E. Sterol structure and membrane function. CRC Crit. Rev. Biochem. 14, 47–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Dufourc, E. J. Sterols and membrane dynamics. J. Chem. Biol. 1, 63–77 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Paleoproterozoic sea. Nature 437, 866–870 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Summons, R. E. et al. Distinctive hydrocarbon biomarkers from fossiliferous sediments of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim. Cosmochim. Acta 52, 2625–2637 (1988).

    Article  ADS  CAS  Google Scholar 

  32. van Maldegem, L. M. et al. Geological alteration of Precambrian steroids mimics early animal signatures. Nat. Ecol. Evol. 5, 169–173 (2021).

    Article  PubMed  Google Scholar 

  33. Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gold, D. A., Caron, A., Fournier, G. P. & Summons, R. E. Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature 543, 420–423 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Wei, J. H., Yin, X. & Welander, P. V. Sterol synthesis in diverse bacteria. Front Microbiol 7, 990–990 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang, X., Paoletti, M., Izon, G., Fournier, G. & Summons, R. Isotopic evidence of photoheterotrophy in Palaeoproterozoic Chlorobi. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2444442/v1 (2023).

  37. Knoll, A. H., Javaux, E., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. B 361, 1023–1038 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson, R. H. et al. Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Rep. 37, 110008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Michellod, D. et al. De novo phytosterol synthesis in animals. Science 380, 520–526 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Gold, D. A. The slow rise of complex life as revealed through biomarker genetics. Emerg. Top. Life Sci. 2, 191–199 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Koumandou, V. L. et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373–396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dupont, S., Beney, L., Ferreira, T. & Gervais, P. Nature of sterols affects plasma membrane behavior and yeast survival during dehydration. Biochim. Biophys. Acta 1808, 1520–1528 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Rogowska, A. & Szakiel, A. The role of sterols in plant response to abiotic stress. Phytochemistry 19, 1525–1538 (2020).

    Article  CAS  Google Scholar 

  44. Santalova, E. A. et al. Sterols from six marine sponges. Biochem. Syst. Ecol. 32, 153 (2004).

    Article  CAS  Google Scholar 

  45. Tillmann, U. Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquat. Microb. Ecol. 32, 73–84 (2003).

    Article  Google Scholar 

  46. Brocks, J. J. et al. Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Galea, A. M. & Brown, A. J. Special relationship between sterols and oxygen: were sterols an adaptation to aerobic life? Free Radical Biol. Med. 47, 880 (2009).

    Article  CAS  Google Scholar 

  48. Canfield, D. E. Oxygen—A Four Billion Year History (Princeton Univ. Press, 2014).

  49. Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Mentel, M. & Martin, W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Phil. Trans. R. Soc. B 363, 2717–2729 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).

    Article  PubMed  Google Scholar 

  52. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Hoffman, P. F. et al. Snowball Earth climate dynamics and Cryogenian geology–geobiology.Sci. Adv. 3, e1600983 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Porter, S. M., Meisterfeld, R. & Knoll, A. H. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J. Paleontol. 77, 409–429 (2003).

    Article  ADS  Google Scholar 

  55. Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2017).

    Article  ADS  Google Scholar 

  56. Butterfield, N. J., Knoll, A. H. & Swett, K. A bangiophyte red alga from the Proterozoic of arctic Canada. Science 250, 104–107 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Butterfield, N. J. Proterozoic photosynthesis—a critical review. Palaeontology 58, 953–972 (2015).

    Article  Google Scholar 

  58. Beghin, J. et al. Microfossils from the late Mesoproterozoic–early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res. 291, 63–82 (2017).

    Article  ADS  CAS  Google Scholar 

  59. French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jarrett, A., Schinteie, R., Hope, J. M. & Brocks, J. J. Micro-ablation, a new technique to remove drilling fluids and other contaminants from fragmented and fissile rock material. Org. Geochem. 61, 57–65 (2013).

    Article  ADS  CAS  Google Scholar 

  61. Brocks, J. J. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: live-oil escape or fingerprint of contamination? Geochim. Cosmochim. Acta 75, 3196–3213 (2011).

    Article  ADS  CAS  Google Scholar 

  62. Schinteie, R. et al. Impact of drill core contamination on compound-specific carbon and hydrogen isotopic signatures. Org. Geochem. 128, 161–171 (2019).

    Article  ADS  CAS  Google Scholar 

  63. Schinteie, R. & Brocks, J. J. Evidence for ancient halophiles? Testing biomarker syngeneity of evaporites from Neoproterozoic and Cambrian strata. Org. Geochem. 72, 46–58 (2014).

    Article  ADS  CAS  Google Scholar 

  64. Brocks, J. J., Grosjean, E. & Logan, G. A. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochim. Cosmochim. Acta 72, 871–888 (2008).

    Article  ADS  CAS  Google Scholar 

  65. Brocks, J. J. & Hope, J. M. Tailing of chromatographic peaks in GC–MS caused by interaction of halogenated solvents with the ion source. J. Chromatogr. Sci. 52, 471–475 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Holba, A. G. et al. Application of tetracyclic polyprenoids as indicators of input from fresh-brackish water environments. Org. Geochem. 34, 441–469 (2003).

    Article  ADS  CAS  Google Scholar 

  67. Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide Vol. 2, 2nd edn (Cambridge Univ. Press, 2004).

  68. Wang, X. et al. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. Am. J. Sci. 317, 861–900 (2017).

    Article  ADS  CAS  Google Scholar 

  69. Zhang, S. et al. Sufficient oxygen for animal respiration 1,400 million years ago. Proc. Natl Acad. Sci. USA 113, 1731–1736 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.J.B. acknowledges funding support from Australian Research Council grants DP160100607, DP170100556 and DP200100004, and P.A. and P.S. acknowledge funding support from the Centre National de la Recherche Scientifique and the Université de Strasbourg. B.J.N. acknowledges doctoral and postdoctoral fellowships by the Australian National University, CSIRO Office of the Chief Executive, and the Central Research and Development Fund of the University of Bremen. A.J.M.J. publishes with the permission of the Executive Director, Northern Territory Geological Survey. The authors thank D. Edwards and the organic geochemistry team at Geoscience Australia (GA) for oil samples from the National Collection; and the Geological Survey of Western Australia (GSWA), the Northern Territory Geological Survey (NTGS), M. Brasier, N. Butterfield, J. Chen, T. Gallagher, E. Grosjean, K. Kirsimae, A. Lapland, M. Moczydłowska, S. Porter, N. Sheldon, E. Sperling and S. Zhang for rock specimens and extracts.

Author information

Authors and Affiliations

Authors

Contributions

J.J.B. and B.J.N. interpreted the data and wrote the paper with contributions from C.H. and all co-authors. B.J.N., A.J.M.J., N.G., T.L. L.M.v.M, J.M.H. and J.J.B. conducted the biomarker analyses. B.J.N. and J.M.H. conducted pyrolysis and ring-opening experiments. P.A. and P.S. synthesized standards, conducted RuO4 oxidation experiments and assisted with compound identification. J.J.B. conceived the project and compiled data and figures.

Corresponding authors

Correspondence to Jochen J. Brocks or Benjamin J. Nettersheim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks James Sáenz, Paula Welander and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Diagenetic and pyrolysis products of ur- and protosterols.

Chemical structures in purple and cyan are biogenic precursors. Structures in black are fossil lipids detected in mid-Proterozoic sedimentary rocks and generated in pyrolysis experiments of the respective biolipids. Green arrows signify biosynthetic reactions, black dashed arrows point to products of diagenesis (and laboratory pyrolysis). Note that the dashed arrows do not imply direct product-precursor relationships as diagenetic reactions commonly involve numerous intermediates and complex reaction networks. All structures in black, apart from X, were found in mid-Proterozoic bitumens. TAS = triaromatic steroids, MAL = monoaromatic lanosteroids, DAL = diaromatic lanosteroids. ‘x,4,24-Me3TAS’ signifies a TAS methylated at C-4, C-24 and at an unknown position x.

Extended Data Fig. 2 Mass spectra and elution behaviour of cyclosterane and its cleavage products in a severely biodegraded migrabitumen (12Z083, drill core MY4, 103.3 m).

a, M/z 412 to 300 partial ion chromatograms of cyclosterane and successive side-chain cleavage products. ‘x’ indicate absence or low concentration of pseudohomologs indicative of side-chain branching positions. R is the pentacyclic core of cyclosterane, ‘*’ denotes a chiral centre. b, Total ion current (TIC) of the saturated hydrocarbon fraction of the biodegraded oil, highlighting the biodegradation resistance of the two cyclosterane isomers k1 and k2. ‘~’ marks truncated signal of internal standard. c, Mass spectra of the cyclosterane side-chain cleavage products. See text for explanation of red and blue dashed lines. d, Juxtaposition of the mass spectra of cyclosterane isomer k2 (upper panel) and cycloartane from the NIST 95 library (lower panel) (the mass spectrum of k1 is not shown as it is nearly identical to k2). e, Suggested major MS fragmentation of hypothetical cyclosterane structure I and cycloartane.

Extended Data Fig. 3 Mass chromatograms and spectra of protosteranes.

a, M/z 259 partial mass chromatograms of a co-injection experiment of Eocene bitumen Y2 containing 8β(H),9α(H)- lanostane l4 (see text) and 1,640 Ma Barney Creek Fm (B03178). b, MRM 414 → 259 showing the elution positions of lanostane isomers l1 to l4, and the results of pyrolysis experiments on cycloartenol, lanosterol and euphenol (3β,13α,14β,17α-lanost-8-en-3-ol). c, Mass spectra of signal m3 of euphenol pyrolysis, l4 in BCF sample B03178 and lanostane in the Y2 standard. d, e, MRM chromatograms highlighting the relative elution positions of stigmastanes, lanostane, cyclosteranes and C27 hopanes in (d) the 1,440 Ma Tieling Fm (sample 17B101) and (e) an Ordovician oil from Australia (GA#299). TTP1 and 2 are Tetracyclic Terpane isomers66. Note that 8β(H),9α(H)-lanostane l4 co-elutes with TTP2, but that its presence can be recognized by an elevated TTP2 peak or a shoulder trailing the peak. The chromatograms are identified by MRM precursor → product transitions and relative signal heights in % relative to the highest signal.

Extended Data Fig. 4 Mass chromatograms and spectra of monoaromatic lanosteroids (MAL).

a, M/z 379 mass chromatogram identifying the 20S and 20R isomers of C29 MAL in sample B03163 from the 1,640 Ma Barney Creek Fm (black) and coinjection experiment with an authentic MAL standard on a DB-5MS capillary column (red). b, Authentic C29 MAL standard. c, C28 MAL of sample 14B211 from the 725 Ma Kanpa Fm showing an immature isomer distribution (S << R). d, C28 MAL generated through pyrolysis of lanosterol (sample BEX20150624). e, C28 MAL of sample B03163 from the 1,640 Ma Barney Creek Fm showing a mature isomer distribution (S ≈ R). seco-hop = monoaromatic 8,14-secohopanoids (see Extended Data Fig. 8a). f, Mass spectra of signals labelled in (a) to (e). a1 to a4 are chromatographic signal identifiers for geological bitumens, and A1 to A4 identifiers for corresponding authentic standards and pyrolysis products. Ancient bitumen chromatograms are in black, standard chromatograms in blue.

Extended Data Fig. 5 Mass chromatograms of diaromatic lanosteroids (DAL).

a, d, g, M/z 404, 375 and 361 mass chromatograms identifying isomers of C28, C29 and C30 DAL generated through pyrolysis of cycloartenol. b, e, h, C28, C29 and C30 DAL of sample 14B211 from the 725 Ma Kanpa Fm showing an immature isomer distribution (20S << 20R). c, f, i, C28, C29 and C30 DAL of sample B03162c from the 1,640 Ma Barney Creek Fm with a mature isomer distribution (20S ≈ 20R). b1 to b10 are chromatographic signal identifiers for geological bitumens, and B1 to B10 identifiers for pyrolysis products of authentic standards in blue.

Extended Data Fig. 6 Mass spectra of DAL given in Extended Data Fig. 5.

b1 to b10 are chromatographic signal identifiers for geological bitumens, and B1 to B10 identifiers for pyrolysis products of cycloartenol. Vertical labels ‘13 Aug 18 35’ are unique identifiers for individual GC-MS experiments. Signals marked ‘x’ are from coeluting compounds.

Extended Data Fig. 7 Mass chromatograms of triaromatic steroids (TAS).

a, M/z 259 mass chromatogram of TAS with two methylations in the ring system (Me2TAS) in sample 13N14 from the 1,100 Ma El Mreïti Group, and b, in the pyrolysate of an enrichment mixture of cycloartenol (CA) and 24-methylene cycloartenol (MCA). c, M/z 245 chromatogram of A-ring methylated TAS (MeTAS) of the pyrolyzed CA and MCA mixture, d, of sample 10J093 of the ~750 Ma Chuar Group, e the El Mreïti Gr (as above), and f, the Phanerozoic-based AGSOSTD oil reference standard. TAS dinosteroids in grey. g, M/z 231 mass chromatogram of TAS without methylations in the ring system of the Chuar Gr, h, the El Mreïti Gr and i, the AGSOSTD (samples as above). j, M/z 253 chromatogram of monoaromatic steroids (MAS) of sample 14B212 of the ~725 Ma Kanpa Fm and k, the AGSOSTD. Colour coding as in panel (e). MAS compound identification and roman numeral nomenclature follows Figure 13.107 and 13.108 in ref. 67.

Extended Data Fig. 8 Mass chromatograms of aromatic hopanoids in the 1,640 Ma Barney Creek Fm (12B117), and thermal maturity evaluation of the sample set.

Mass chromatograms of a, m/z 365 identifying regular aromatic 8,14-secohopanoids, b, m/z 351 regular 28-nor-8,14-secohopanoids, c, m/z 414 8,14-secohopanoids with a fluorene moiety, d, m/z 416 and e, m/z 402 8,14-secohopanoids with an acenaphthene moiety, and f, m/z 191 benzohopanoids. g,h, Evaluation of possible bias in the aromatic steroid and hopanoid record caused by thermal maturity based on cross plots of thermal maturity indicator Rc(MPR) against (g) sample age, and (h) the relative abundance of aromatic hopanoids and steroids (H/(H+S)). Rc(MPR) = computed vitrinite reflectance (Rc) based on the Methyl Phenanthrene Ratio (MPR, see Supplementary Table 1).

Extended Data Fig. 9 Confirmation of the elution position of S and R 4,24-dimethyl triaromatic cholesteroids in SIR m/z 245 traces on DB-5MS (left) and VZ-200 (right) gas chromatographic columns.

a, c, The AGSOSTD standard, b, e, the ~1,300 Ma Velkerri Formation, Roper Group (sample 230692, drill core Altree-2, 410.55 m). Note that the 20S-isomer of the 4,24-dimethyl triaromatic cholesteroid co-elutes with the 20R-isomer of 4-methyl triaromatic cholesteroid on the DB-5MS capillary column, but is resolved on VZ-200. d, A-ring methylated 24-methly triaromatic cholesteroid standard formed by pyrolysis of ergosterol (Supplementary Methods). 4,24-dimethyl triaromatic cholesteroids were also generated through pyrolysis of the C31 ursterol 24-methylene cycloartenol (Extended Data Fig. 7c).

Extended Data Table 1 Information on Cryogenian to Palaeoproterozoic geological samples

Supplementary information

Supplementary methods and discussion

Reporting Summary

Peer Review File

Supplementary Table 1

Aromatic biomarker data. Relative abundance data of all aromatic steroids, protosteroids and hopanoids used to assemble Figs. 1a and 2b, including a key to the colours and reference to individual compounds identified in Extended Data Figs. 1–9. Also included is methylphenanthrene-based thermal maturity data.

Supplementary Table 2

Saturated biomarker data. Relative abundance data of all saturated steranes, protosteranes and hopanes used to assemble Fig. 2a, including a key to the colours, definition of ratios, and references to data taken from the literature.

Supplementary Table 3

Geological Samples. Characterization of all samples analysed in this study from the Palaeoproterozoic to the Cenozoic, including sample names, ages, basins, regions, groups, formations, drill core and outcrop names, sample depths and a brief description of lithology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brocks, J.J., Nettersheim, B.J., Adam, P. et al. Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767–773 (2023). https://doi.org/10.1038/s41586-023-06170-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06170-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing