Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Life history complementarity and the maintenance of biodiversity

Abstract

Life history, the schedule of when and how fast organisms grow, die and reproduce, is a critical axis along which species differ from each other1,2,3,4. In parallel, competition is a fundamental mechanism that determines the potential for species coexistence5,6,7,8. Previous models of stochastic competition have demonstrated that large numbers of species can persist over long timescales, even when competing for a single common resource9,10,11,12, but how life history differences between species increase or decrease the possibility of coexistence and, conversely, whether competition constrains what combinations of life history strategies complement each other remain open questions. Here we show that specific combinations of life history strategy optimize the persistence times of species competing for a single resource before one species overtakes its competitors. This suggests that co-occurring species would tend to have such complementary life history strategies, which we demonstrate using empirical data for perennial plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Life history differences among related, co-occurring species.
Fig. 2: Simulation supports theory, and data support importance of life history for species pairs.
Fig. 3: Complementarity boosts diversity, and competition filters effective population size.
Fig. 4: Life history strategies in a plant community are complementary, but not neutral.

Similar content being viewed by others

Data availability

Data needed to generate Figs. 2b and 4 are available in the publicly accessible COMPADRE database61. Synthetic matrices used to generate Figs. 2a and 3 have been uploaded to the Zenodo repository86.

Code availability

Code samples of both a pairwise competition model and the metacommunity model used to generate Fig. 3 are provided via the Zenodo repository86 as R scripts (R version 4.2.2 using reshape2 version 1.4.4, dplyr version 1.0.10, and tidyr version 1.2.1.). This upload also contains annotations to help viewers run the code and sample sets of properly formatted matrices.

References

  1. Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).

    Article  CAS  PubMed  Google Scholar 

  2. Stearns, S. C. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. Calder, W. A. Size, Function, and Life History (Courier Corporation, 1996).

  4. Charnov, E. L. & Berrigan, D. Dimensionless numbers and life history evolution: age of maturity versus the adult lifespan. Evol. Ecol. 4, 273–275 (1990).

    Article  Google Scholar 

  5. MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

    Article  Google Scholar 

  6. MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).

    Article  CAS  PubMed  Google Scholar 

  7. Chesson, P. Macarthur’s consumer-resource model. Theor. Popul. Biol. 37, 26–38 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  8. Chase, J. M. & Leibold, M. A. Ecological Niches (Univ. Chicago Press, 2009).

  9. Caswell, H. Community structure: a neutral model analysis. Ecol. Monogr. 46, 327–354 (1976).

    Article  Google Scholar 

  10. Hubbell, S. P. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203, 1299–1309 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  12. Rosindell, J., Hubbell, S. & Etienne, R. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).

    Article  PubMed  Google Scholar 

  13. Hubbell, S. P. et al. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554–557 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. O’Dwyer, J. P. & Cornell, S. J. Cross-scale neutral ecology and the maintenance of biodiversity. Scientific Reports 8, 10200 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Hubbell, S. P. Neutral theory in community ecology and the hypothesis of functional equivalence. Func. Ecol. 19, 166–172 (2005).

    Article  Google Scholar 

  17. Etienne, R. S. & Alonso, D. Neutral community theory: how stochasticity and dispersal-limitation can explain species coexistence. J. Stat. Phys. 128, 485–510 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Rubio, V. E. & Swenson, N. G. Functional groups, determinism and the dynamics of a tropical forest. J. Ecol. 110, 185–196 (2022).

    Article  Google Scholar 

  19. O’Dwyer, J. & Chisholm, R. in Encyclopedia of Biodiversity 510–518 (Elsevier, 2013).

  20. Fisher, C. K. & Mehta, P. The transition between the niche and neutral regimes in ecology. Proc. Natl Acad. Sci. USA 111, 13111–13116 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. D’Andrea, R., Gibbs, T. & O’Dwyer, J. P. Emergent neutrality in consumer-resource dynamics. PLoS Comput. Biol. 16, e1008102 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Nee, S. The neutral theory of biodiversity: Do the numbers add up? Funct. Ecol. 19, 173–176 (2005).

    Article  Google Scholar 

  23. O’Dwyer, J., Sharpton, T. & Kembel, S. Backbones of evolutionary history test biodiversity theory in microbial communities. Proc. Natl Acad. Sci. USA 112, 8356–8361 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Chisholm, R. A. et al. Temporal variability of forest communities: empirical estimates of population change in 4000 tree species. Ecol. Lett. 17, 855–865 (2014).

    Article  PubMed  Google Scholar 

  25. Fung, T., O’Dwyer, J. P., Rahman, K. A., Fletcher, C. D. & Chisholm, R. A. Reproducing static and dynamic biodiversity patterns in tropical forests: the critical role of environmental variance. Ecology 97, 1207–1217 (2016).

    Article  PubMed  Google Scholar 

  26. Sæther, B.-E. Pattern of covariation between life-history traits of european birds. Nature 331, 616–617 (1988).

    Article  ADS  PubMed  Google Scholar 

  27. Promislow, D. E. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).

    Article  Google Scholar 

  28. Charlesworth, B. et al. Evolution in Age-Structured Populations Vol. 2 (Cambridge Univ. Press, 1994).

  29. Sæther, B.-E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).

    Article  Google Scholar 

  30. Enquist, B. J., West, G. B., Charnov, E. L. & Brown, J. H. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907–911 (1999).

    Article  ADS  CAS  Google Scholar 

  31. Ricklefs, R. E. & Wikelski, M. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–468 (2002).

    Article  Google Scholar 

  32. Lande, R., Engen, S. & Sæther, B.-E. Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations. Proc. Natl Acad. Sci. USA 114, 11582–11590 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Purves, D. W. & Turnbull, L. A. Different but equal: the implausible assumption at the heart of neutral theory. J. Anim. Ecol. 79, 1215–1225 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. O’Dwyer, J., Lake, J., Ostling, A., Savage, V. & Green, J. An integrative framework for stochastic, size-structured community assembly. Proc. Natl Acad. Sci. USA 106, 6170–6175 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Xiao, X., O’Dwyer, J. P. & White, E. P. Comparing process-based and constraint-based approaches for modeling macroecological patterns. Ecology 97, 1228–1238 (2016).

    Article  PubMed  Google Scholar 

  36. D’Andrea, R. & O’Dwyer, J. P. The impact of species-neutral stage structure on macroecological patterns. Theor. Ecol. 10, 433–442 (2017).

    Article  Google Scholar 

  37. Ostling, A. Do fitness-equalizing tradeoffs lead to neutral communities? Theoretical Ecology 5, 181–194 (2012).

    Article  Google Scholar 

  38. Zhang, D.-Y. et al. Demographic trade-offs determine species abundance and diversity. J. Plant Ecol. 5, 82–88 (2012).

    Article  Google Scholar 

  39. Caswell, H. Matrix Population Models Vol. 1 (Sinauer Sunderland, 2000).

  40. Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).

    Article  CAS  PubMed  MATH  MathSciNet  Google Scholar 

  41. Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Felsenstein, J. Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 68, 581–97 (1971).

    Article  CAS  PubMed  PubMed Central  MathSciNet  Google Scholar 

  43. Hill, W. G. Effective size of populations with overlapping generations. Theor. Popul. Biol. 3, 278–289 (1972).

    Article  CAS  PubMed  Google Scholar 

  44. Caswell, H. Stage, age and individual stochasticity in demography. Oikos 118, 1763–1782 (2009).

    Article  Google Scholar 

  45. Snyder, R. E. & Ellner, S. P. Pluck or luck: does trait variation or chance drive variation in lifetime reproductive success? Am. Nat. 191, E90–E107 (2018).

    Article  PubMed  Google Scholar 

  46. Lande, R. & Barrowclough, G. F. Effective population size, genetic variation, and their use in population management. Viable Pop. Conserv. 87, 87–124 (1987).

    Article  Google Scholar 

  47. Frankham, R. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 66, 95–107 (1995).

    Article  Google Scholar 

  48. Waples, R. S., Luikart, G., Faulkner, J. R. & Tallmon, D. A. Simple life-history traits explain key effective population size ratios across diverse taxa. Proc. R. Soc. B 280, 20131339 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Waples, R. S. Tiny estimates of the Ne/N ratio in marine fishes: Are they real? J. Fish Biol. 89, 2479–2504 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Gillespie, J. H. Natural selection for within-generation variance in offspring number. Genetics 76, 601–606 (1974).

    Article  CAS  PubMed  PubMed Central  MathSciNet  Google Scholar 

  51. Gillespie, J. H. Natural selection for within-generation variance in offspring number ii. discrete haploid models. Genetics 81, 403–413 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  53. Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).

    Article  Google Scholar 

  54. Adler, P. B., Ellner, S. P. & Levine, J. M. Coexistence of perennial plants: an embarrassment of niches. Ecol. Lett. 13, 1019–1029 (2010).

    PubMed  Google Scholar 

  55. Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Holland, J. N. & DeAngelis, D. L. A consumer-resource approach to the density-dependent population dynamics of mutualism. Ecology 91, 1286–1295 (2010).

    Article  PubMed  Google Scholar 

  58. Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).

    Article  Google Scholar 

  59. Bartomeus, I. & Godoy, O. Biotic controls of plant coexistence. J. Ecol. 106, 1767–1772 (2018).

    Article  Google Scholar 

  60. Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).

    Article  ADS  PubMed  Google Scholar 

  61. Salguero-Gómez, R. et al. The compadre plant matrix database: an open online repository for plant demography. J. Ecol. 103, 202–218 (2015).

    Article  Google Scholar 

  62. Salguero-Gómez, R. et al. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).

    Article  ADS  PubMed  Google Scholar 

  63. Menges, E. S. & Quintana-Ascencio, P. F. Population viability with fire in Eryngium cuneifolium: deciphering a decade of demographic data. Ecol. Monogr. 74, 79–99 (2004).

    Article  Google Scholar 

  64. Quintana-Ascencio, P. F., Menges, E. S. & Weekley, C. W. A fire-explicit population viability analysis of Hypericum cumulicola in Florida rosemary scrub. Conserv. Biol. 17, 433–449 (2003).

    Article  Google Scholar 

  65. Maliakal Witt, S. Microhabitat Distribution and Demography of Two Florida Scrub Endemic Plants with Comparisons to their Habitat-Generalist Congeners. PhD thesis, Louisiana State Univ. and Agricultural and Mechanical College (2004).

  66. Damuth, J. Population density and body size in mammals. Nature 290, 699–700 (1981).

    Article  ADS  Google Scholar 

  67. Pianka, E. R. On r-and K-selection. Am. Nat. 104, 592–597 (1970).

    Article  Google Scholar 

  68. Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).

    Article  Google Scholar 

  69. Reznick, D., Bryant, M. J. & Bashey, F. r-and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83, 1509–1520 (2002).

    Article  Google Scholar 

  70. Huston, M. & Smith, T. Plant succession: life history and competition. Am. Nat. 130, 168–198 (1987).

    Article  Google Scholar 

  71. Iles, D. T., Salguero-Gómez, R., Adler, P. B. & Koons, D. N. Linking transient dynamics and life history to biological invasion success. J. Ecol. 104, 399–408 (2016).

    Article  Google Scholar 

  72. Lande, R. Genetics and demography in biological conservation. Science 241, 1455–1460 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Pywell, R. F. et al. Plant traits as predictors of performance in ecological restoration. J. Appl. Ecol. 40, 65–77 (2003).

    Article  Google Scholar 

  74. Kimura, M. & Ohta, T. The age of a neutral mutant persisting in a finite population. Genetics 75, 199–212 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ewens, W. Concepts of substitutional load in finite populations. Theor. Popul. Biol. 3, 153–161 (1972).

    Article  CAS  PubMed  MATH  Google Scholar 

  76. Johnson, S. G. The nlopt nonlinear-optimization package. http://github.com/stevengj/nlopt (2014).

  77. Runarsson, T. P. & Yao, X. Search biases in constrained evolutionary optimization. IEEE Trans. Syst. Man Cybernet. C 35, 233–243 (2005).

    Article  Google Scholar 

  78. Cipriotti, P. A. & Aguiar, M. R. Direct and indirect effects of grazing constrain shrub encroachment in semi-arid Patagonian steppes. Appl. Veg. Sci. 15, 35–47 (2012).

    Article  Google Scholar 

  79. Eckstein, R. L., Danihelka, J. & Otte, A. Variation in life-cycle between three rare and endangered floodplain violets in two regions: implications for population viability and conservation. Biologia 64, 69–80 (2009).

    Article  Google Scholar 

  80. Esparza-Olguín, L., Valverde, T. & Mandujano, M. C. Comparative demographic analysis of three Neobuxbaumia species (Cactaceae) with differing degree of rarity. Popul. Ecol. 47, 229–245 (2005).

    Article  Google Scholar 

  81. Forbis, T. A. & Doak, D. F. Seedling establishment and life history trade-offs in alpine plants. Am. J. Bot. 91, 1147–1153 (2004).

    Article  PubMed  Google Scholar 

  82. Kouassi, K. I., Barot, S., Gignoux, J. & Bi, I. A. Z. Demography and life history of two rattan species, Eremospatha macrocarpa and Laccosperma secundiflorum, in Cote d’Ivoire. J. Trop. Ecol. 24, 493–503 (2008).

    Article  Google Scholar 

  83. Mondragón Chaparro, D. & Ticktin, T. Demographic effects of harvesting epiphytic bromeliads and an alternative approach to collection. Conserv. Biol. 25, 797–807 (2011).

    Article  Google Scholar 

  84. Raventós, J., González, E., Mújica, E. & Bonet, A. Transient population dynamics of two epiphytic orchid species after Hurricane Ivan: implications for management. Biotropica 47, 441–448 (2015).

    Article  Google Scholar 

  85. Silva, J. F., Trevisan, M. C., Estrada, C. A. & Monasterio, M. Comparative demography of two giant caulescent rosettes (Espeletia timotensis and E. spicata) from the high tropical Andes. Glob. Ecol. Biogeogr. 9, 403–413 (2000).

    Article  Google Scholar 

  86. Jops, K. & O’Dwyer, J. P. Model code sample—life history complementarity and the maintenance of biodiversity. https://doi.org/10.5281/zenodo.7596015 (2023).

Download references

Acknowledgements

J.P.O. acknowledges the Simons Foundation Grant no. 376199, McDonnell Foundation Grant no. 220020439. We acknowledge helpful comments from M. Chytrý and D. Storch on co-occurring perennials in the Czech Republic. We acknowledge help from R. D’Andrea on formulating initial iterations of our model. Creative commons and public domain images: we acknowledge D. Loudermilk, who licensed the image used in Fig. 1 (CC BY-SA 4.0); J. Hollinger (CC BY 2.0), M. Garcia (CC BY-SA 3.0), B. Gaberscek (CC BY 2.5 Supplementary Information) and P. Filippov (CC BY-SA 4.0) for the four images and licenses in Fig. 2b, and the US Fish and Wildlife Service for the first three public domain images in Fig. 4a (photographer D. Bender), B. Peterson (CC BY-SA 2.0) for the fourth image in in Fig. 4a, and J. Horn (CC BY 4.0) for the final two images in Fig. 4a.

Author information

Authors and Affiliations

Authors

Contributions

K.J. and J.P.O. designed the project. K.J. and J.P.O. developed the simulation and analytical results, and K.J. analysed COMPADRE data. K.J. and J.P.O. interpreted the analyses and wrote the manuscript.

Corresponding authors

Correspondence to Kenneth Jops or James P. O’Dwyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jurg Spaak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Life History Complementarity, Fitness Differences, and Niche Differences.

In Panel A, we show the combined effects of fitness differences and life history strategy on pairwise competition. We take 3 pairs of species and vary the long-term growth rate λ of the competitor with the lower Ny value. The colors denote the set of species and the vertical lines show the predicted optimal value of λ to maximize persistence. The persistence time when λ = 1 is the same as that in the trials shown in the main text. This time increases as we approach the optimum identified in Supplementary Information Eq.(1) before decreasing for larger values of λ. Here we see that a) life history variation still affects persistence time when we relax the assumption of equal fitness and b) that a new persistence optimum is introduced by varying fitness between species in a community. Panel B demonstrates the interplay between niche differences and life history. Here we construct our model according to Supplementary Information Section 1.2 and vary λhigh across 10 pairs of matrices with varying levels of difference in their Ny values. As λhigh and thus our degree of niche differentiation increases, persistence times increase in tandem—i.e. niche differentiation boosts persistence, as expected. Across all of these trials, however, differences in Ny still influence persistence times, and optimal persistence is achieved when species have the closest values of Ny—our definition of life history complementarity. The “neutral” points represent trials where λhigh = λlow, analogous to the trials in the main text. The solid lines represent linear regressions for each λhigh value and the shaded regions represent 95% confidence intervals for these regressions. Error bars in both Panel A and Panel B show standard error across 500 numerical trials, centered on the mean across those trials.

Extended Data Fig. 2 Life History, Fitness, and Niche Differences.

In Extended Data Fig. 2 we compare the model results of Extended Data Fig. 1A with the results of a combined fitness, niche, and life history differences model. Triangular points show the same data as ED Fig. 1A and square points show the results of trials where λhigh is set to the same λ value as the lower Ny competitor’s fitness in the trials from 1A. The matrix pairs are the same for the two sets of trials. The solid and dashed lines are approximate spline fits to the data points and serve to guide the viewer to the overall trend. Partitioning the community into niches results in a higher persistence time optimum of λhigh and a slower approach to this optimum. Peak persistence times are similar across both implementations, shown by the y-axis maxima for each matrix pair. Most importantly, the signature of life history differences is clear—the broad comparisons of the pairs of curves of each color show that differences in effective population size significantly impact persistence times even in the presence of both fitness and niche differences. Error bars show standard error, centered at the mean, across 500 trials.

Supplementary information

Supplementary Information

Models for pairwise competition with fitness differences and niche differences.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jops, K., O’Dwyer, J.P. Life history complementarity and the maintenance of biodiversity. Nature 618, 986–991 (2023). https://doi.org/10.1038/s41586-023-06154-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06154-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing