Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Realization of a fractional quantum Hall state with ultracold atoms


Strongly interacting topological matter1 exhibits fundamentally new phenomena with potential applications in quantum information technology2,3. Emblematic instances are fractional quantum Hall (FQH) states4, in which the interplay of a magnetic field and strong interactions gives rise to fractionally charged quasi-particles, long-ranged entanglement and anyonic exchange statistics. Progress in engineering synthetic magnetic fields5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 has raised the hope to create these exotic states in controlled quantum systems. However, except for a recent Laughlin state of light22, preparing FQH states in engineered systems remains elusive. Here we realize a FQH state with ultracold atoms in an optical lattice. The state is a lattice version of a bosonic ν = 1/2 Laughlin state4,23 with two particles on 16 sites. This minimal system already captures many hallmark features of Laughlin-type FQH states24,25,26,27,28: we observe a suppression of two-body interactions, we find a distinctive vortex structure in the density correlations and we measure a fractional Hall conductivity of σH/σ0 = 0.6(2) by means of the bulk response to a magnetic perturbation. Furthermore, by tuning the magnetic field, we map out the transition point between the normal and the FQH regime through a spectroscopic investigation of the many-body gap. Our work provides a starting point for exploring highly entangled topological matter with ultracold atoms29,30,31,32,33.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Realizing a FQH state in an optical lattice.
Fig. 2: FQH state preparation and gap diagram.
Fig. 3: Suppression of two-body interactions.
Fig. 4: Vortex structure of correlations.
Fig. 5: Fractional Hall conductivity.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Dataverse repository at


  1. Wen, X. G. Quantum Field Theory of Many-Body Systems (Oxford Univ. Press, 2007).

  2. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2002).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  MathSciNet  CAS  MATH  ADS  Google Scholar 

  4. Giuliani, G. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2012).

  5. Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Schweikhard, V., Coddington, I., Engels, P., Mogendorff, V. & Cornell, E. Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level. Phys. Rev. Lett. 92, 040404 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Cooper, N. R. Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008).

    Article  CAS  ADS  Google Scholar 

  9. Lin, Y.-J., Compton, R. L., Jiménez-García, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–32 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).

    Article  CAS  Google Scholar 

  12. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    Article  MathSciNet  CAS  PubMed  MATH  ADS  Google Scholar 

  13. Kennedy, C. J., Burton, W. C., Chung, W. C. & Ketterle, W. Observation of Bose–Einstein condensation in a strong synthetic magnetic field. Nat. Phys. 11, 859–864 (2015).

    Article  CAS  Google Scholar 

  14. Tai, M. E. et al. Microscopy of the interacting Harper–Hofstadter model in the two-body limit. Nature 546, 519–523 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. An, F. A., Meier, E. J. & Gadway, B. Direct observation of chiral currents and magnetic reflection in atomic flux lattices. Sci. Adv. 3, e1602685 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  16. Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

    Article  CAS  Google Scholar 

  17. Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 15005 (2019).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  18. Asteria, L. et al. Measuring quantized circular dichroism in ultracold topological matter. Nat. Phys. 15, 449–454 (2019).

    Article  CAS  Google Scholar 

  19. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 15006 (2019).

    Article  MathSciNet  CAS  Google Scholar 

  20. Mukherjee, B. et al. Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 601, 58–62 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Zhou, T.-W. et al. Observation of universal Hall response in strongly interacting fermions. Preprint at (2022).

  22. Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article  ADS  Google Scholar 

  24. Hafezi, M., Sørensen, A. S., Demler, E. & Lukin, M. D. Fractional quantum Hall effect in optical lattices. Phys. Rev. A 76, 023613 (2007).

    Article  ADS  Google Scholar 

  25. Palmer, R. N., Klein, A. & Jaksch, D. Optical lattice quantum Hall effect. Phys. Rev. A 78, 013609 (2008).

    Article  ADS  Google Scholar 

  26. Möller, G. & Cooper, N. R. Composite fermion theory for bosonic quantum Hall states on lattices. Phys. Rev. Lett. 103, 105303 (2009).

    Article  PubMed  ADS  Google Scholar 

  27. Scaffidi, T. & Möller, G. Adiabatic continuation of fractional Chern insulators to fractional quantum Hall states. Phys. Rev. Lett. 109, 246805 (2012).

    Article  PubMed  ADS  Google Scholar 

  28. Repellin, C., Léonard, J. & Goldman, N. Fractional Chern insulators of few bosons in a box: Hall plateaus from center-of-mass drifts and density profiles. Phys. Rev. A 102, 063316 (2020).

    Article  CAS  ADS  Google Scholar 

  29. Grusdt, F., Yao, N. Y., Abanin, D., Fleischhauer, M. & Demler, E. Interferometric measurements of many-body topological invariants using mobile impurities. Nat. Commun. 7, 11994 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Sterdyniak, A., Regnault, N. & Möller, G. Particle entanglement spectra for quantum Hall states on lattices. Phys. Rev. B 86, 165314 (2012).

    Article  ADS  Google Scholar 

  31. Račiunas, M., Ünal, F. N., Anisimovas, E. & Eckardt, A. Creating, probing, and manipulating fractionally charged excitations of fractional Chern insulators in optical lattices. Phys. Rev. A 98, 063621 (2018).

    Article  ADS  Google Scholar 

  32. Muñoz de las Heras, A., Macaluso, E. & Carusotto, I. Anyonic molecules in atomic fractional quantum Hall liquids: a quantitative probe of fractional charge and anyonic statistics. Phys. Rev. X 10, 41058 (2020).

    Google Scholar 

  33. Palm, F. A. et al. Bosonic Pfaffian state in the Hofstadter-Bose-Hubbard model. Phys. Rev. B 103, L161101 (2021).

    Article  CAS  ADS  Google Scholar 

  34. Gemelke, N., Sarajlic, E. & Chu, S. Rotating few-body atomic systems in the fractional quantum Hall regime. Preprint at (2010).

  35. Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  36. Palm, L., Grusdt, F. & Preiss, P. M. Skyrmion ground states of rapidly rotating few-fermion systems. New J. Phys. 22, 083037 (2020).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  37. Barkeshli, M., Yao, N. Y. & Laumann, C. R. Continuous preparation of a fractional Chern insulator. Phys. Rev. Lett. 115, 026802 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Motruk, J. & Pollmann, F. Phase transitions and adiabatic preparation of a fractional Chern insulator in a boson cold-atom model. Phys. Rev. B 96, 165107 (2017).

    Article  ADS  Google Scholar 

  39. He, Y. C., Grusdt, F., Kaufman, A., Greiner, M. & Vishwanath, A. Realizing and adiabatically preparing bosonic integer and fractional quantum Hall states in optical lattices. Phys. Rev. B 96, 201103(R) (2017).

    Article  ADS  Google Scholar 

  40. Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Kane, C. L., Mukhopadhyay, R. & Lubensky, T. C. Fractional quantum Hall effect in an array of quantum wires. Phys. Rev. Lett. 88, 036401 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Widom, A. Thermodynamic derivation of the Hall effect current. Phys. Lett. 90, 474 (1982).

    Article  Google Scholar 

  43. Streda, P. Quantised Hall effect in a two-dimensional periodic potential. J. Phys. C Solid State Phys. 15, L717–L721 (1982).

    Article  CAS  ADS  Google Scholar 

  44. Umucalilar, R. O., Zhai, H. & Oktel, M. Ö. Trapped Fermi gases in rotating optical lattices: realization and detection of the topological Hofstadter insulator. Phys. Rev. Lett. 100, 070402 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Repellin, C. & Goldman, N. Detecting fractional Chern insulators through circular dichroism. Phys. Rev. Lett. 122, 166801 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Cian, Z. P. et al. Many-body Chern number from statistical correlations of randomized measurements. Phys. Rev. Lett. 126, 50501 (2021).

    Article  CAS  ADS  Google Scholar 

  47. Viebahn, K. et al. Suppressing dissipation in a Floquet-Hubbard system. Phys. Rev. X 11, 11057 (2021).

    CAS  Google Scholar 

  48. Zupancic, P. et al. Ultra-precise holographic beam shaping for microscopic quantum control. Opt. Express 24, 13881–13893 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Sterdyniak, A., Regnault, N. & Bernevig, B. A. Extracting excitations from model state entanglement. Phys. Rev. Lett. 106, 100405 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Regnault, N. & Jolicoeur, T. Quantum Hall fractions for spinless bosons. Phys. Rev. B Condens. Matter Mater. Phys. 69, 235309 (2004).

    Article  ADS  Google Scholar 

  52. Haldane, F. D. Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605–608 (1983).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  53. Möller, G. & Cooper, N. R. Fractional Chern insulators in Harper-Hofstadter bands with higher Chern number. Phys. Rev. Lett. 115, 126401 (2015).

    Article  PubMed  ADS  Google Scholar 

Download references


We acknowledge fruitful discussions with B. Bakkali-Hassani, I. Carusotto, N. Cooper, J. Dalibard, A. Eckardt, S. Girvin, M. Hafezi, J. Ho, M. Lebrat, F. Palm, N. Ünal, K. Viebahn and M. Zwierlein. We are supported by grants from the National Science Foundation, the Gordon and Betty Moore Foundation’s EPiQS Initiative, an Air Force Office of Scientific Research MURI programme, an Army Research Office MURI programme, the Swiss National Science Foundation (J.L.) and the NSF Graduate Research Fellowship Program (S.K.). F.G. acknowledges funding by the DFG through Research Unit FOR 2414 (project number 277974659) and through EXC-2111 (project number 390814868), and from the ERC through the European Union’s Horizon 2020 (grant agreement no 948141). N.G. acknowledges funding through the EOS project CHEQS, the FRS-FNRS and the ERC grants TopoCold and LATIS.

Author information

Authors and Affiliations



J.L., S.K., J.K. and P.S. contributed to conducting the experiment, collecting and analysing the data and performing the numerical calculations. J.L. proposed the experiment and performed supporting theoretical studies together with F.G., C.R. and N.G. All authors contributed to writing the manuscript and to discussions. M.G. supervised the work.

Corresponding author

Correspondence to Julian Léonard.

Ethics declarations

Competing interests

M.G. is cofounder and shareholder of QuEra Computing. All other authors declare no competing interests.

Peer review

Peer review information

Nature thanks David Feder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Sequence.

Full sequence for the performed experiments. All parameters are given for the driven Bose–Hubbard Hamiltonian (not the effective Hamiltonian).

Extended Data Fig. 2 Coherence time.

a, Long-term evolution of an atom under 1D Raman tunnelling. The atom initially occupies site 0. The tunnelling along x is set to K/2π = 13 Hz (smaller than for the main measurements) and the tilt along x is Δx/2π = 40 Hz per site. The tilt leads to a rephasing of the quantum walk and converts it to Bloch oscillations, which show coherent revivals after the evolution times of 500 ms. The evolution is in agreement with a fit to the data, which incorporates decoherence through the Monte Carlo wavefunction technique. b, Cut through the data in a of the initial site 0. The fit result (solid line) yields a decay rate of τRaman = 1.25(7) s. Error bars denote the s.e.m.

Extended Data Fig. 3 Excited-state populations.

a, Protocol for measuring the full density distribution in the left two columns. We project a repulsive wall potential between the left two columns and enable tunnelling along the horizontal direction, thereby ejecting the atoms into half-rows and breaking up potential doublons. This allows us to identify the populations of the lowest 36 Fock states in energy. Fock states that are higher in energy involve at least one atom in the right two columns; their populations are allotted to their low-energy counterpart with both atoms in the left two columns. b, Excited-state populations. Inferred excited-state overlap \(\langle {\psi }_{i}| {\hat{\rho }}_{{\rm{Final}}}| {\psi }_{i}\rangle \) of the prepared state \({\hat{\rho }}_{{\rm{Final}}}\) with the eigenstates |ψi〉 of the final Hamiltonian. We find a dominant population in the ground state and most of the excited-state population in the lowest few eigenstates.

Extended Data Fig. 4 System-size scaling.

Numerical system-size scaling of the observed FQH signatures for N = 2 particles in quadratic box potentials. Left panels show data for a 3 × 3 system and right panels show the behaviour when increasing the length L of the system. a, Energy-gap diagram with a gap closing at the flux ϕc/2π for tunnelling K/J = 1. For each system size, we compute the corresponding filling factor using νc = ρBulk/(ϕc/2π) (right panel). b, Doublon fraction with suppression at ϕc/2π. We extract the ratio \({p}_{{\rm{Doublon}}}^{{\rm{FQH}}}/{p}_{{\rm{Doublon}}}^{{\rm{Normal}}}\) from the doublon fraction \({p}_{{\rm{Doublon}}}^{{\rm{FQH}}}\) in the FQH state and \({p}_{{\rm{Doublon}}}^{{\rm{Normal}}}\) in the normal state, each extracted over an interval of Δϕ = 0.1 × ϕc. c, The reduced density correlations show already the vortex pattern for the 3 × 3 system (left panel). As the system size is increased, the correlations for neighbouring sites (|d| = 1), dark blue) approach zero and the correlations at a distance of 3lB (light blue, similar to Fig. 4c) stabilize at a value between one and two. d, Increase of the bulk density and extracted Hall conductivity σH/σ0 from a linear fit by means of Středa’s formula. When increasing the system size, the obtained Hall conductivity converges to σH/σ0 = 1/2.

Extended Data Fig. 5 Orbital occupations and topological properties for systems with N = 2 and N = 4 bosons.

a, We first consider a system with N = 4, U = 8J and 7 × 7 lattice sites. The many-body spectrum shows several local minima between the ground state and the first excited state (dark red), which we interpret as finite-size signatures of phase transitions. In the range 0.20 < ϕ/2π < 0.3, between two such minima, the occupations of the single-particle orbitals (histograms) approximately match the expectation for a Laughlin state. This interpretation is reinforced by the PES, which shows a gap between the lowest 15 eigenstates (red) and all higher-lying states (blue), indicating (quasi-)degenerate quasi-hole states that identify the Laughlin state. b, For a system with N = 2, U = 8J and 4 × 4 lattice sites, we find only a single local minimum between the ground state and the first excited state (ϕ/2π ≈ 0.25), which we interpret as the transition from the normal to FQH states. This is confirmed by the large overlap of the ground-state occupations of the single-particle orbitals with the Laughlin state. For the N = 2 system, an identification of the topological signatures in FQH states with the PES is not possible.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Léonard, J., Kim, S., Kwan, J. et al. Realization of a fractional quantum Hall state with ultracold atoms. Nature 619, 495–499 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing