Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strain-promoted reactions of 1,2,3-cyclohexatriene and its derivatives

Abstract

Since 18251, compounds with the molecular formula C6H6—most notably benzene—have been the subject of rigorous scientific investigation2,3,4,5,6,7. Of these compounds, 1,2,3-cyclohexatriene has been largely overlooked. This strained isomer is substantially (approximately 100 kcal mol−1) higher in energy compared with benzene and, similar to its relatives benzyne and 1,2-cyclohexadiene, should undergo strain-promoted reactions. However, few experimental studies of 1,2,3-cyclohexatriene are known8,9,10,11,12. Here we demonstrate that 1,2,3-cyclohexatriene and its derivatives participate in a host of reaction modes, including diverse cycloadditions, nucleophilic additions and σ-bond insertions. Experimental and computational studies of an unsymmetrical derivative of 1,2,3-cyclohexatriene demonstrate the potential for highly selective reactions of strained trienes despite their high reactivity and short lifetimes. Finally, the integration of 1,2,3-cyclohexatrienes into multistep syntheses demonstrates their use in rapidly assembling topologically and stereochemically complex molecules. Collectively, these efforts should enable further investigation of the strained C6H6 isomer 1,2,3-cyclohexatriene and its derivatives, as well as their application in the synthesis of important compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selected strained isomers of benzene (1) and comparison of reaction coordinate diagrams.
Fig. 2: Strained cyclic intermediates and overview of the current study.
Fig. 3: Structural analysis of benzene (1), 1,2,3-cyclohexatriene (5) and benzyne (20) and trapping reactions of strained triene 5.
Fig. 4: Preparation of a disubstituted cyclic triene precursor and scope of reactions.
Fig. 5: Structure and regioselective reactions of a monosubstituted cyclic triene.
Fig. 6: Strained 1,2,3-cyclohexatrienes in multistep synthesis.

Similar content being viewed by others

Data availability

Experimental procedures, characterization data, computational methods and computational data are provided in the Supplementary Information. Crystallographic data are available free of charge from the Cambridge Crystallographic Data Centre under CCDC 2238912 and 2239633 (neilgarg@chem.ucla.edu). Reprints and permissions information is available at www.nature.com/reprints.

References

  1. Faraday, M. XX. On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Philos. Trans. R. Soc. 115, 440–466 (1825).

    Article  ADS  Google Scholar 

  2. Mortier, J. (ed.) Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds (John Wiley, 2016).

  3. van Tamelen, E. E. & Pappas, S. P. Bicyclo [2.2.0]hexa-2,5-diene. J. Am. Chem. Soc. 85, 3297–3298 (1963).

    Article  CAS  Google Scholar 

  4. Katz, T. J. & Acton, N. Synthesis of prismane. J. Am. Chem. Soc. 95, 2738–2739 (1973).

    Article  CAS  Google Scholar 

  5. Huang, X. et al. Palladium-catalysed construction of butafulvenes. Nat. Chem. 14, 1185–1192 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Preethalayam, P. et al. Recent advances in the chemistry of pentafulvenes. Chem. Rev. 117, 3930–3989 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Seo, J., Lee, S. Y. & Bielawski, C. W. Unveiling a masked polymer of Dewar benzene reveals trans-poly(acetylene). Macromolecules 52, 2923–2931 (2019).

    Article  ADS  CAS  Google Scholar 

  8. Shakespeare, W. C. & Johnson, R. P. 1,2,3-Cyclohexatriene and cyclohexen-3-yne: two new highly strained C6H6 isomers. J. Am. Chem. Soc. 112, 8578–8579 (1990).

    Article  CAS  Google Scholar 

  9. Hickey, E. R. & Paquette, L. A. Torsional angle decompression is not the source of facial selectivity in Diels–Alder cycloadditions involving cyclic dienes fused to bicyclic frameworks. The case study of 1,2,3,4,6,7-hexahydro-1,4-methanonaphthalene. Tetrahedron Lett. 35, 2309–2312 (1994).

    Article  CAS  Google Scholar 

  10. Hickey, E. R. & Paquette, L. A. Experimental and theoretical analysis of the effects of strain diminution on the stereoselectivity of dienophilic capture by π-facially nonequivalent homologs of isodicyclopentadiene. J. Am. Chem. Soc. 117, 163–176 (1995).

    Article  CAS  Google Scholar 

  11. Burrell, R. C., Daoust, K. J., Bradley, A. Z., DiRico, K. J. & Johnson, R. P. Strained cyclic cumulene intermediates in Diels–Alder cycloadditions of enynes and diynes. J. Am. Chem. Soc. 118, 4218–4219 (1996).

    Article  CAS  Google Scholar 

  12. Sakura, M., Ando, S., Hattori, A. & Saito, K. Reaction of cyclohexa-1,2,3-triene with N,α-diphenylnitrone: formation of seven-membered cyclic amines via piradone derivatives. Heterocycles 51, 547–556 (1999).

    Article  CAS  Google Scholar 

  13. Slater, J. C. Directed valence in polyatomic molecules. Phys. Rev. 37, 481–489 (1931).

    Article  ADS  CAS  MATH  Google Scholar 

  14. Pauling, L. & Wheland, G. W. The nature of the chemical bond. V. The quantum-mechanical calculation of the resonance energy of benzene and naphthalene and the hydrocarbon free radicals. J. Chem. Phys. 1, 362–374 (1933).

    Article  ADS  CAS  MATH  Google Scholar 

  15. Pauling, L. The theory of resonance in chemistry. Proc. R. Soc. Lond. A 356, 433–441 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Garratt, P. J. Aromaticity (Wiley-Interscience, 1986).

  17. Roberts, J. D., Simmons, H. E.Jr, Carlsmith, L. A. & Vaughan, C. W. Rearrangement in the reaction of chlorobenzene-1-C14 with potassium amide. J. Am. Chem. Soc. 75, 3290–3291 (1953).

    Article  CAS  Google Scholar 

  18. Scardiglia, F. & Roberts, J. D. Evidence for cyclohexyne as an intermediate in the coupling of phenyllithium with 1-chlorocyclohexene. Tetrahedron 1, 343–344 (1957).

    Article  CAS  Google Scholar 

  19. Wittig, G. & Fritze, P. On the intermediate occurrence of 1,2-cyclohexadiene. Angew. Chem. Int. Ed. Engl. 5, 846 (1966).

    Article  Google Scholar 

  20. Moser, W. R. The Reactions of Gem-dihalocyclopropanes with Organometallic Reagents. PhD thesis, Massachusetts Institute of Technology (1964).

  21. Shi, J., Li, L. & Li, Y. o-Silylaryl triflates: a journey of Kobayashi aryne precursors. Chem. Rev. 121, 3892–4044 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Schleth, F., Vettiger, T., Rommel, M. & Tobler, H. Process for the preparation of pyrazole carboxylic acid amides. International patent WO2011131544A1 (2011).

  23. Darzi, E. R., Barber, J. S. & Garg, N. K. Cyclic alkyne approach to heteroatom-containing polycyclic aromatic hydrocarbon scaffolds. Angew. Chem. Int. Ed. 58, 9419–9424 (2019).

    Article  CAS  Google Scholar 

  24. Yamano, M. M. et al. Cycloadditions of oxacyclic allenes and a catalytic asymmetric entryway to enantioenriched cyclic allenes. Angew. Chem. Int. Ed. 58, 5653–5657 (2019).

    Article  CAS  Google Scholar 

  25. Ippoliti, F. et al. Total synthesis of lissodendoric acid A via stereospecific trapping of a strained cyclic allene. Science 379, 261–265 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Moore, W. M. & Ozretich, T. M. Cyclic cumulenes. The synthesis and some reactions of 1,2,3-cyclodecatriene. Tetrahedron Lett. 33, 3205–3207 (1967).

    Article  Google Scholar 

  27. Johnson, R. P. Strained cyclic cumulenes. Chem. Rev. 89, 1111–1124 (1989).

    Article  CAS  Google Scholar 

  28. Yin, J., Abboud, K. A. & Jones, W. M. Synthesis of zirconocene complexes of a 1,2,3-cyclohexatriene and a cyclohexen-3-yne. J. Am. Chem. Soc. 115, 8859–8860 (1993).

    Article  CAS  Google Scholar 

  29. Daoust, K. J. et al. Strain estimates for small-ring cyclic allenes and butatrienes. J. Org. Chem. 71, 5708–5714 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Liebman, J. F. & Greenberg, A. A survey of strained organic molecules. Chem. Rev. 76, 311–365 (1976).

    Article  CAS  Google Scholar 

  31. Newton, M. D. & Fraenkel, H. A. The equilibrium geometry, electronic structure and heat of formation of ortho-benzyne. Chem. Phys. Lett. 18, 244–246 (1973).

    Article  ADS  CAS  Google Scholar 

  32. Carpino, L. A. & Sau, A. C. Convenient source of ‘naked’ fluoride: tetra-n-butylammonium chloride and potassium fluoride dihydrate. J. Chem. Soc. Chem. Commun. 1979, 514–515 (1979).

    Article  Google Scholar 

  33. Anthony, S. M., Wonilowicz, L. G., McVeigh, M. S. & Garg, N. K. Leveraging fleeting strained intermediates to access complex scaffolds. JACS Au 1, 897–912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spence, K. A., Tena Meza, A. & Garg, N. K. Merging metals and strained intermediates. Chem Catal. 2, 1870–1879 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Wenk, H. H., Winkler, M. & Sander, W. One century of aryne chemistry. Angew. Chem. Int. Ed. 42, 502–528 (2003).

    Article  CAS  Google Scholar 

  36. Schepens, W. et al. Synthesis of spiro[4.5]decane CF-ring analogues of 1α,25-dihydroxyvitamin D3. Org. Lett. 8, 4247–4250 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Chari, J. V., Ippoliti, F. M. & Garg, N. K. Concise approach to cyclohexyne and 1,2-cyclohexadiene precursors. J. Org. Chem. 84, 3652–3655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Asmadi, M. & Chikhalia, K. H. Aryne insertion into σ bonds. Asian J. Org. Chem. 6, 1331–1348 (2017).

    Article  Google Scholar 

  39. Bronner, S. M., Mackey, J. L., Houk, K. N. & Garg, N. K. Steric effects compete with aryne distortion to control regioselectivities of nucleophilic additions to 3-silylarynes. J. Am. Chem. Soc. 134, 13966–13969 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shi, J. et al. Aryne 1,2,3,5-tetrasubstitution enabled by 3-silylaryne and allyl sulfoxide via an aromatic 1,3-silyl migration. J. Am. Chem. Soc. 143, 2178–2184 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Ikawa, T. et al. ortho-Selective nucleophilic addition of primary amines to silylbenzynes: synthesis of 2-silylanilines. Angew. Chem. Int. Ed. 50, 5674–5677 (2011).

    Article  CAS  Google Scholar 

  42. Matsumoto, T., Sohma, T., Hatazaki, S. & Suzuki, K. On the regiochemistry of cycloaddition of unsymmetrical aryne with nitrone remarkable effect of trialkylsilyl substituent. Synlett 1993, 843–846 (1993).

    Article  Google Scholar 

  43. Bent, H. A. An appraisal of valence-bond structures and hybridization in compounds of the first-row elements. Chem. Rev. 61, 275–311 (1961).

    Article  CAS  Google Scholar 

  44. Medina, J. M., McMahon, T. C., Jiménez-Osés, G., Houk, K. N. & Garg, N. K. Cycloadditions of cyclohexynes and cyclopentyne. J. Am. Chem. Soc. 136, 14706–14709 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction-activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

    Article  CAS  Google Scholar 

  46. Medina, J. M., Mackey, J. L., Garg, N. K. & Houk, K. N. The role of aryne distortions, steric effects, and charges in regioselectivities of aryne reactions. J. Am. Chem. Soc. 136, 15798–15805 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheong, P. H.-Y. et al. Indolyne and aryne distortions and nucleophilic regioselectivites. J. Am. Chem. Soc. 132, 1267–1269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goetz, A. E. & Garg, N. K. Regioselective reactions of 3,4-pyridynes enabled by the aryne distortion model. Nat. Chem. 5, 54–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Bronner, S. M., Goetz, A. E. & Garg, N. K. Overturning indolyne regioselectivities and synthesis of indolactam V. J. Am. Chem. Soc. 133, 3832–3835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goetz, A. E., Shah, T. K. & Garg, N. K. Pyridynes and indolynes as building blocks for functionalized heterocycles and natural products. Chem. Commun. 51, 34–45 (2015).

    Article  CAS  Google Scholar 

  51. Kemp, D. S., Sidell, M. D. & Shortridge, T. J. Synthetic routes to 1,5-diazacyclooctanes via 2,6-dioxo-1,5-diazabicyclo[3.3.1]octanes. J. Org. Chem. 44, 4473–4476 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the NIH-NIGMS (R35 GM139593 for N.K.G.), the NSF (DGE-2034835 for A.V.K. and A.S.B.), the Foote family (for A.V.K. and A.S.B.), the Stone family (for D.C.W.) and the Trueblood family (for N.K.G.). These studies were supported by shared instrumentation grants from the NSF (CHE-1048804), the NIH NCRR (S10RR025631), the NIH ORIP (S10OD028644) and the DOE (DE-FC03-02ER63421). Calculations were performed on the Hoffman2 cluster and the UCLA Institute of Digital Research and Education (IDRE) at UCLA and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the NSF (OCI-1053575). We thank K. Houk (UCLA) for computational resources and valuable discussion, M. Ramirez (California Institute of Technology) and Joseph W. Treacy (UCLA) for computational assistance and D. Turner (UCLA) for experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.V.K., A.S.B. and D.C.W. designed and performed experiments and analysed experimental data. A.V.K. and D.C.W. designed, performed and analysed computational studies. N.K.G. directed the investigations and prepared the paper with contributions from all authors; all authors contributed to discussions.

Corresponding author

Correspondence to Neil K. Garg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Christopher Jones and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Information, part I (Experimental Section) and part II (Computational Section), as well as SFC and NMR spectral data.

Supplementary Data 1

This file contains the cif for compound 81.

Supplementary Data 2

This file contains cif for compound 84.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelleghan, A.V., Bulger, A.S., Witkowski, D.C. et al. Strain-promoted reactions of 1,2,3-cyclohexatriene and its derivatives. Nature 618, 748–754 (2023). https://doi.org/10.1038/s41586-023-06075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06075-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing