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Metastatic cancer remains an almost inevitably lethal disease! . A better understanding
of disease progression and response to therapies therefore remains of utmost
importance. Here we characterize the genomic differences between early-stage
untreated primary tumours and late-stage treated metastatic tumours using a

harmonized pan-cancer analysis (or reanalysis) of two unpaired primary* and
metastatic’ cohorts of 7,108 whole-genome-sequenced tumours. Metastatic tumours
ingeneral have alower intratumour heterogeneity and a conserved karyotype,
displaying only amodest increase in mutations, although frequencies of structural
variants are elevated overall. Furthermore, highly variable tumour-specific
contributions of mutational footprints of endogenous (for example, SBS1and
APOBEC) and exogenous mutational processes (for example, platinum treatment)

are present. The majority of cancer types had either moderate genomic differences
(for example, lung adenocarcinoma) or highly consistent genomic portraits (for
example, ovarian serous carcinoma) when comparing early-stage and late-stage
disease. Breast, prostate, thyroid and kidney renal clear cell carcinomas and pancreatic
neuroendocrine tumours are clear exceptions to the rule, displaying an extensive
transformation of their genomic landscape inadvanced stages. Exposure to treatment
further scars the tumour genome and introduces an evolutionary bottleneck that
selects for known therapy-resistant drivers in approximately half of treated patients.
Our datashowcase the potential of pan-cancer whole-genome analysis to identify
distinctive features of late-stage tumours and provide a valuable resource to further
investigate the biological basis of cancer and resistance to therapies.

Metastatic spread involves tumour cell detachment from a primary
tumour, colonization of asecondary tissue and growth in ahostile envi-
ronment? Advanced metastatic tumours are frequently able toresist
aggressive treatment regimes®. Despite the many efforts to understand
these phenomena®’°, we still have limited knowledge of the contribu-
tion of genomic changes that equip tumours with these extraordinary
capacities. Thus, it is essential to characterize genomic differences
between primary and metastatic cancers and quantify their effect on
therapy resistance to understand and harness therapeutic interven-
tions that establish more effective and more personalized therapies™.

Although extensive whole-genome analyses of primary or metastatic
tumour types have been conducted*?, large-scale comparative studies
betweenthe two tumour stages remain limited due to the logistical chal-
lenges associated with obtaining pan-cancer cohorts of primary and
metastatic cancers. To circumvent this issue, most comparison studies
haverelied on unpaired whole-exome data or have adopted more tar-
geted approaches with a specific focus on driver gene landscapes® .
However, these efforts have frequently involved separated process-
ing pipelines for primary and metastatic cohorts, complicating the

analysis of genomic features that are highly sensitive to the selected
data-processing strategy'". A recent study that uniformly analysed
more than 25,000 tumours'® has provided acomprehensive overview of
the genomic differences, driver alteration patterns and organotropism
using clinical gene-panel sequencing as abase. However, this genomic
analysis approach prevented the exploration of the full spectrum of
genomic alterations thathave arolein tumorigenesis, such as structural
variation and mutational scarring.

Harmonized whole-genome-sequenced tumours

Here we created a uniformly processed whole-genome-sequenced
(WGS) inventory of 7,108 matched tumour and normal genomes from
two unpaired primary and metastatic cohorts. We first collated the
Hartwig Medical Foundation (Hartwig) dataset’, whichincluded 4,784
samples from 4,375 patients with metastatic cancers. Then, we repro-
cessed 2,835 primary tumour samples from the Pan-Cancer Analysis of
Whole Genomes (PCAWG) consortium* using the open-source Hartwig
analytical pipeline®” to harmonize somatic calling and annotations of
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events, and to eliminate processing biases (Extended Data Fig.1and
Supplementary Table 1). Reassuringly, per-sample comparison of the
number of single-base substitutions (SBSs), double-base substitu-
tions (DBSs), indels (IDs) and structural variants (SVs) revealed a strong
agreementbetweenour results and the consensus calls originally gener-
ated by the PCAWG consortium (Supplementary Note 1). In addition,
our processing pipeline strategy was minimally affected by differences
in sequencing coverage, enabling a reasonable comparison of WGS
samples from heterogeneous sources (Supplementary Note1). Atotal of
7,108 tumour samples from 71 cancer types met the processing pipeline
quality standards (Methods and Extended Data Fig. 1a) and constitutes
one of the largest publicly available datasets of WGS tumours.

We next focused on 23 cancer types from 14 tissues with sufficient
sample representation, comprising 5,365 tumour samples (1,914 pri-
mary and 3,451 metastatic) to explore genomic differences between
primary and metastatic tumours (Fig. 1a and Extended Data Fig. 1a).
Within this dataset, patients with metastatic tumours were slightly
older at biopsy than patients with primary tumours (mean of 1.67 years
olderacrossall cancer types), although patients with metastatic pros-
tate and thyroid carcinomas, and diffuse large B cell ymphoma were
markedly older than their primary counterparts. Consistent gender
proportions were observed across all cancer types except for thyroid
adenocarcinomas (metastatic: 72% male and 28% female; primary:
25% male and 75% female). Treatment information was available for
83.7% of patients with metastatic tumours, whichis essential to gauge
specific treatment-induced contributions to genomic differences
between primary and metastatic tumours (Fig. 1a). Finally, biopsy loca-
tions were annotated for 84.2% of patients with metastatic tumours
(12.2% from metastatic lesions in the primary tissue (local), 16.2% in
lymph nodes and 55.7% in distant locations) and displayed a highly
tumour-type-specific distribution pattern, probably reflecting both
the dissemination patterns of the tumours and the accessibility for
safe clinical sampling.

Comparison of global genomic features

We first explored global genomic differences between primary and
metastatic tumours across the aforementioned 23 cancer types. Meta-
static tumours showed an overallincrease in clonality compared with
their primary tumour counterparts (Fig. 1b). Particularly, five cancer
types had a significantly higher metastatic average clonality ratio,
ranging from13.6% increased mean clonality in pancreatic carcinomato
37.2%inthyroid carcinoma. Withinthe group of patients with metastatic
breast carcinoma, distant and lymph node tumour biopsies showed
significantly higher clonality ratios than local metastatic lesions (Fig. 1c
and Supplementary Note 2). Thisincreasein clonality was also observed
indistant tumour biopsies of oesophageal and colorectal carcinomas
(Fig. 1c). Nevertheless, the biopsy location did not influence tumour
clonality inother cancer types such as lung adenocarcinoma and skin
melanoma (Extended Data Fig. 1b), suggesting that patterns of tumour
dissemination are highly tumour-type specific’®. Our results support
the model that metastatic lesions generally have lower intratumour
heterogeneity', which may be explained by a single major subclone
seeding event from the primary cancer and/or by severe evolutionary
constraints imposed by anticancer therapies.

Comparison of chromosome arm aneuploidy profiles revealed a
generally conserved portrait, which was strongly shaped by the cell
of origin (Fig. 1d and Supplementary Table 2), supporting the notion
that tumour karyotype is generally defined at early stages of tumo-
rigenesis'®. Only metastatic kidney renal clear cell, prostate and thy-
roid carcinomas showed substantial changes compared with primary
tumours, encompassing 91% (43 of 47) of all significant discrepancies.
Besides the poor prognostic marker 8q gain in metastatic prostate
carcinoma”, all discrepancies were associated with anincreased preva-
lence of chromosomal arm losses at the metastatic setting. Remarkably,
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30% (14 of 46) of the metastatic-enriched chromosome armlosses were
retained when comparing non-WGD tumours (Extended DataFig.1c,d),
indicating that other factors, aside from whole-genome doubling?®?,
haveanimportantroleinthe accumulation of arm-sized chromosomal
aberrations.

The same three cancer types also showed persistentincreases in spe-
cificgenomicinstability indicators (that is, chromosomal aneuploidy
score?, loss of heterozygosity (LOH) genome fraction, WGD* and TP53
alterations?) in the metastatic cohort (Fig. 1e and Supplementary
Table 2). Although all of these indicators are elevated pan-cancer in
WGD tumours (Extended DataFig.1c,d), non-WGD metastatic tumours
of these three cancer types also had significantly greater aneuploidy
and LOH scores. Furthermore, patients with metastatic tumours from
other cancer types, including lung and colorectal adenocarcinomas,
also displayed a moderate increase in aneuploidy and LOH scores,
although they seemed to be primarily associated with higher metastatic
WGD rates (Extended Data Fig. 1c). Our results thus revealed that the
majority of cancer types have already acquired variable degrees of chro-
mosomal arm aneuploidy in early stages of tumorigenesis. However,
incertain cancers, such askidney renal clear cell, prostate and thyroid
carcinomas, significantly increased levels of genomicinstability were
induced in later evolutionary stages, which were, in turn, associated
with substantial additional karyotypic changes.

Tumour mutation burden

We observed that the small variant tumour mutation burden (TMB),
collectively encompassing SBSs, DBSs and IDs, was only moderately
increased in metastatic tumours compared with primary tumours
acrossthe 23 cancer types tested (fold-change increases of 1.25 + 0.47
for SBSs, 1.55 + 0.86 for DBSs and 1.45 + 0.53 for IDs; mean + standard
deviation (s.d.)). In fact, 15 of the 23 cancer types had no significant
increase in mutation burden for any mutation type. Only five cancer
types (breast, cervical, thyroid and prostate carcinomas and pancre-
atic neuroendocrine tumour) had a consistent increase for the three
mutation types at the metastatic stage, although the mutation profiles
lacked systematic differences between primary and metastatic tumours
(Fig.2b and Extended Data Fig. 2a). Finally, further TMB comparisons
grouping by tumour subtypes, metastatic biopsy locations and pri-
mary clinical progression status generally provided consistent results,
although cancer-type-specific particularities are present (Supplemen-
tary Note 2). These results show that TMB is not necessarily indicative
of tumour progression status and that the overall mutational spectra
aretightly shaped by the mutational processes that were already active
before and during primary tumour development.

Mutational processes activity comparison

To determine whether the TMB differences may be attributed to differ-
ential activity of environmental or endogenous mutational processes,
we assessed the activities of all operative mutational signatures in a
quantitative and relative manner. We found that mutations attributed
to cytotoxic treatments were significantly enriched in ten cancer types
(Fig. 2c (red top bars) and Extended Data Figs. 2b,c and 3a for relative
contributions). Platinum-based chemotherapies (SBS31/SBS35 and
DBSS5) showed the strongest mutagenic effect with 551 + 575 (mean +
s.d.) SBSmutations and 32 + 22 (mean+s.d.) DBS-attributed mutations
on average per sample. In fact, the excess in DBS mutation burden
observedineight cancer types (breast, oesophageal, stomach, cervical,
ovarian serous and lung squamous carcinomas, cholangiocarcinoma
andlungadenocarcinoma) was uniquely linked to platinum treatment
mutations (Extended Data Fig. 2b, top bars). Likewise, median mutation
contribution from theradiotherapy ID signature? (ID8) was enriched
in six cancer types commonly exposed to radiation-based treatment
(Extended Data Fig. 2¢), whereas the 5-fluorouracil® (SBS17a/b) and
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and biopsy site of the cohort with metastatic tumours. CNS, central nervous
system. Theimagein awas created using BioRender (https://biorender.com).
b, Mean percentage of clonal mutations in primary (xaxis) and metastatic
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ratio (metastatic divided by primary). The size of the dotsis proportional to
thetotal number of samples (primary and metastatic). Thered edge lines
represent atwo-sided Mann-Whitney adjusted P < 0.05.BLCA, bladder
urothelial carcinoma; BRCA, breast carcinoma; CESC, cervical carcinoma;
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SKCM, skin melanoma; STAD, stomach carcinoma; THCA, thyroid carcinoma;
UCEC, uterine carcinoma. ¢, Tumour clonality according to the metastatic
biopsy locationin breast (left), colorectal (middle) and oesophageal (right)
carcinomas. n Refers to the number of samples. Prefers to Mann-Whitney
two-sided Pvalue. For boxplots, the centrelineindicates the median; the box
limits denote the first and third quartiles; and the whiskersindicate the lowest
or highest data points at the first quartile minus or plus1.5x the interquartile
range.d, Heatmap representing the normalized mean chromosome arm
ploidy gains and losses relative to the expected 2n ploidy statusin primary
(top) and metastatic (bottom) tumours. *Adjusted P < 0.01 (two-sided Mann-
Whitney). e, Comparison of four genomic instability indicators between
primary (top) and metastatic (bottom) tumours. From left to right: aneuploidy
score fromref. 20, the proportion of genome undergoing LOH, and the
fraction of samples bearing whole-genome duplication (WGD) and TP53
alterations. The black dots represent the median values. *Adjusted P< 0.01
using two-sided Fisher’s exact test for WGD and TP53, and two-sided Mann-
Whitney test for the continuous features.
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Fig.2| TMB and mutational processes. a, Cumulative distribution function
plot (samples were ranked independently for each variant type) of TMB for
each cancer type for SBS (blue), IDs (green) and DBS (red). The horizontal lines
represent median values. The fold-change labels are included only when
two-sided Mann-Whitney comparison renders asignificant adjusted P< 0.05.
b, SBS mutational spectra of patients with metastatic (top) and primary
(bottom) tumours. Patients are ordered according to their TMB. DDRD,
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representing the SBS mutational burden differences attributed to each
mutational signature in metastatic (main plot, left) and primary (main plot,
right) tumours. The edge thickness and colours represent significant

polycyclicaromatic hydrocarbon metabolites from chemotreatments®
(DBS2) also displayed greater metastatic mutation burden contribution
inatumour-type-specific manner (Extended Data Fig. 2b,c).

The broad enrichment of SBS2/SBS13 mutations in metastatic can-
cers suggests enhanced activity of APOBEC mutagenesis during the
progression of advanced tumours. Specifically, our results revealed an
increase in APOBEC mutation burden of 325 + 178 (mean + s.d.) muta-
tions per sample in six metastatic tumours (breast, colorectal, stomach,
kidney, prostate and pancreatic neuroendocrine carcinomas) that
reached statistical significance, with breast and stomach cancers the
types with the strongest increase (more than 500 APOBEC mutations
persample). Other cancer types, such as cervical and bladder urothelial
carcinomas, also showed enhanced APOBEC activity (more than 2,500
median mutations per sample), but they did not reach significance
duetoalready highintrinsic APOBEC activity in the primary tumours.
The metastatic breast cancer samples also had a higher percentagein
clustered APOBEC hypermutation variants than primary tumours (15%
versus 5%; Extended Data Fig. 2d and Supplementary Table 3).

Six metastatic cancer types also displayed more mutations fromthe
clock-like mutational processes, including five cancer types (diffuse

336 | Nature | Vol 618 | 8 June 2023

differences (two-sided Mann-Whitney adjusted P< 0.05, +1.4x fold change)
and the direction of the enrichment, respectively. The size of the circles are
proportionate to the mutation burden difference. The bars on the right
indicate the number of metastatic cancer types witha mutational signature
with significantenrichment. The top stacked bars represent the cumulative
signature exposure difference. The thicker bar edge lines represent
significance. Bars are coloured according to the annotated aetiology. Only
mutational signatures with known aetiology or with at least one cancer type
with significant metastaticenrichmentareincluded. 5-FU, 5-fluorouracil;
5mC, 5-methylcytosine; MMRd, mismatch repair deficiency.

large B cell lymphoma, breast, prostate, pancreatic neuroendocrine
and kidney renal clear cell carcinomas) that exhibited an increased
SBS1 contribution and three cancer types (hepatocellular, prostate
and thyroid carcinomas) that had anincreased SBS5/SBS40 mutation
burden. The increase in clock-like mutations in thyroid and prostate
cancers, as well as diffuse B cell ymphomas to a lesser extent, may
be explained by a larger proportion of older patients with metastatic
disease. However, SBS1 metastatic enrichment was also present in
cancer types with highly similar age population distributions (Fig. 1a).

Additional focused analyses will be needed to obtain abetter under-
standing of the mutational signature differences that we observed in
smaller subsets of cancer types (and subtypes) and metastatic loca-
tions (full datain Supplementary Table 3 and Supplementary Data1).

Differential SBS1 mutation burden

To investigate the SBS1 mutation burden differences in more detail,
we evaluated their SBS1 mutation burden by the age of biopsy sepa-
rately for both cohorts. As expected, the SBS1 mutation burden per
year was highly tissue specific??® and displayed an increase with age
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accordingtotherelative enrichment, defined as:log,,(median SV-type burden

inthe majority of cancer types inboth primary and metastatic cohorts
(Pearson’s R >0.1,15 of 23 tumour types; Extended Data Fig. 4a and
Supplementary Table 4). However, four cancer types (that is, breast,
prostate, kidney renal clear cell and thyroid carcinomas) showed an
age-independent and significant enrichment of SBS1 mutations in
metastatic lesions (Extended Data Fig. 4a). For instance, metastatic
breast cancer had a nearly uniform fold-change increase of 1.46 over
primary tumours (188 + 16 SBS1 mutations, mean +s.d.) across the ages
of biopsies, and which was generally consistent across breast cancer
subtypes (Extended Data Fig. 4b and Supplementary Note 3). This
patternwas highly cancer-type specificand was not observed for most
cancer types, including those with similar intratumour heterogeneity
in the primary cohort (for example, colorectal, ovarian serous and
pancreatic carcinomas) (Extended Data Fig.4a). Moreover, this pattern
was not explained by differencesin tumour genome ploidy (Extended
DataFig.4c) or by metastatic biopsy location (Supplementary Note 3),
was observed in paired primary-metastatic biopsies from individual
patients with breast and kidney renal clear cell carcinomas and rendered
consistent patterns when relying on independent unpaired cohorts
(Supplementary Note 3). Finally, other mutational processes that oper-
ate over the evolution of the somatic tissues (for example, clock-like
mutations attributed to SBS5/SBS40 that accumulate with ageina
cell-cycle-independent manner??) did not show such enrichment
(Extended DataFig. 4d).

SBS1 mutation burden has been extensively correlated with esti-
mated stem cell division rates®’. Therefore, an increase in age and
tumour-type-specific SBS1 mutation burden in treated metastatic
tumours may indicate that these tumours have undergone a higher
number of cell divisions. However, the estimated number of years to
explain the SBS1 mutation burdenshift (23 and 71years for breast and
prostate cancers, respectively; see Supplementary Table 4) shows that
this is unlikely to be the main cause. Hence, a more plausible explana-
tion, whichalso supports previous observations®~, is that these meta-
static tumours display accelerated cell division rates compared with
their primary tumour counterparts (Extended DataFig. 4e). Support-
ing this hypothesis, metastatic tumours also had a lower normalized
fraction of clonal SBS1 mutations (Extended Data Fig. 4f). Of note, this
pattern was not observed in cancer types with consistently high SBS1

in metastatic tumours +1) - log,,(median SV-type burdenin primary tumours +
1). Fold-change labels and coloured backgrounds are displayed when Mann-
Whitney comparison renders asignificant g < 0.05.Fold-change labels are
displayed with >’ when the SV burden for primary tumoursis O (see Methods
for more details). For each cancer type, the bottom bar plotsrepresent the
relative fraction of each SV type in the metastatic (left) and primary (right)
datasets. LINE, longinterspersed nuclear element.

mutagenic dynamics (Extended Data Fig. 4f) and was indistinguishable
for SBS5/SBS40 mutations (Supplementary Note 3).

Finally, we observed a negative association between the yearly rate of
SBS1mutationaccumulation in primary tumours (a proxy of stem cell
divisionrates®’) and the estimated fold change of the SBS1 mutationrate
inthe metastatic cohort (Extended Data Fig. 4g,h). This suggests that
tumourswithanintrinsically active turnover rate (for example, colorec-
tal carcinomas) preserve their high proliferation rates, whereas others
withlower cell division rates (for example, breast, prostate, kidney and
thyroid carcinomas) may acquire higher proliferation rates during the
course of cancer progression. Nevertheless, we cannot rule out the
contribution of other tissue-type-specific or tumour-type-specific
mechanisms, such as higher rates of 5-methylcytosine deamination,
decreased fidelity to repair these mismatches or higher contribution
from other metastatic-specific mutational processes with overlapping
mutational contexts.

SVburden

Comparison of the total number of SVs per tumour revealed an exten-
siveincreasein the metastatic tumours (fold change of 2.5+1.3, mean =
s.d.). Thisincrease was observed in13 of 23 (56%) cancer types (Fig. 3a,
Extended DataFig. 5aand Supplementary Table 5), and was not gener-
ally explained by differences in sequencing coverage, tumour clonality
(Supplementary Note 1) or cancer-subtype composition (Supplemen-
tary Note 2). Moreover, the increased SV burden was also observed
for cancer types lacking substantial changes in genomic instability
indicators, such as oesophageal and lung squamous cell carcinomas
(Fig. 3a). Finally, we observed anincreased SV burden in prostate and
pancreatic neuroendocrine primary tumours that eventually pro-
gressed compared with those with relatively better prognosis, which
in both cases were in turn lower than the median values in metastatic
tumours (Supplementary Note 2). Overall, compared with TMB, the
SVanalyses revealed amuch more widespread pan-cancer effect, with
largerincreases per metastatic cancer type that affected almost every
cancer type studied.

Small (less than10 kb) deletions were the most enriched SV typesin
metastatic tumours (2.7 +1.2 fold change in 15 of 23 cancer types with
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Fig.4|Driveralterationsin primary and metastatic tumours. a, Cancer-type-
specificdistribution of the number of driver alterations per patient in primary
(top) and metastatic (bottom) tumours. The black dots represent the mean
values. Labels display mean differences (metastatic to primary) in cancer types
with asignificant difference (two-sided Mann-Whitney adjusted P < 0.01).

b, Heatmap representing the cancer genes displaying significant mutational

significant enrichment, mean + s.d.; Extended Data Fig. 5a,b). Larger
(10 kb or larger) deletions and duplications had a similar pan-cancer
enrichment, although generally with slightly lower fold changes. Com-
plex SVs with 20 or more breakpoints, encompassing events such as
chromothripsis and chromoplexy, were enriched in metastatic pros-
tate carcinomas (more than threefold enrichment). Finally, a strong
cancer-type-specific metastatic enrichment was also noted for long
interspersed nuclear elementinsertions (LINE), with anincreased fold
change of12.2and 12.5instomach and bladder urothelial carcinomas,
respectively.

We next used linear regression models to unravel the underly-
ing features associated with the observed increase in SV burden in
metastatic tumours (Extended Data Fig. 6a-k and Supplementary
Table 5). Our approach confirmed the role of previously described
cancer-type-specific driver-induced SV phenotypes, including
homologous recombination deficiency® in metastatic breast carci-
noma tumours, CDK12 (ref. 34) alterations in prostate carcinoma and
MDM2 (ref.35) amplifications in breast ER"/HER2™ carcinomas, among
others. Genomic instability features, such as genome ploidy and TP53
alterations, showed a strong pan-cancer association with deletions
and duplications (Extended Data Fig. 6a,d), and thus very likely con-
tributed to the observed SV increase in metastatic tumours?°?%,
Finally, previous exposure to radiotherapy treatment was strongly
associated with small deletions in breast ER'/HER2" and prostate
carcinomas®.

Cancer driver gene landscape

Metastatic tumours showed amoderate increase in the total number of
driver gene alterations per patient (a mean of4.5and 5.3 driver altera-
tions per sample in primary and metastatic tumours, respectively),
including 8 (34%) tumour types with a significant increase (Fig. 4a).
Prostate carcinoma (average increase of 3.16 driver alterations per
sample), pancreatic neuroendocrine tumour (2.16), thyroid carcinoma
(1.7) and kidney renal clear cell carcinoma (1.87) showed the strong-
estincreases (more than 1.5 driver alterations per patient), whereas
the majority of cancer types showed a mean increase below 1.5 driver
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frequency differences between primary and metastatic tumours (two-sided
Fisher’s exact test adjusted P< 0.01). Circles denote mutation frequency
enrichmentinboth cohorts, whereas triangles facing upwards and downwards
represent drivers thatare exclusively enriched in metastatic and primary
cohorts, respectively. Colours represent the direction of the enrichment.

alterations per sample. All mutation types (amplifications, deletions
and mutations) contributed to the increased driver alterations in meta-
static tumours (Extended Data Fig. 7a).

Comparison of gene and cancer-type frequencies revealed that
only 12 genes had a significant frequency bias in at least one cancer
type (22 gene and cancer-type pairs in total; Fig. 4b, Extended Data
Fig. 7b and Supplementary Table 6). The majority (19 out of 22, 86%)
of the significant pairs had enrichment towards higher metastatic
frequency, including four driver genes that were exclusively mutated
in metastatic tumours and were not found in the primary tumour
equivalents (PTPRD in kidney renal clear cell carcinoma, CREBBP in
pancreatic neuroendocrine tumour, and RET and TP53 alterations
in thyroid carcinoma). Most metastatic-enriched cancer drivers
had a cancer-type-specific enrichment, including well-established
resistance gene drivers associated with anticancer therapies, such
as AR and ESRI alterations in patients with prostate and ER" breast
carcinomas treated with hormone deprivation therapies® (Fig. 4b
and Supplementary Note 2). Nevertheless, three driver genes (that
is, TP53, CDKN2A and TERT) showed a metastatic enrichment across
multiple cancer types (Fig. 4b), indicating that alterations of these
genes may enhance aggressiveness by disturbing pan-cancer hallmarks
of tumorigenesis.

We next investigated whether the reported driver differences may
have an effect on potential clinical actionability. Cancer-type-specific
comparison of therapeutically actionable variants revealed an overall
larger fraction of patients with therapeutically actionable variantsin the
metastatic cohort, with high variability across cancer types (Extended
DataFig.8aand Supplementary Table 7). Subsetting by A-on label vari-
ants (thatis, approved biomarkersin the specific cancer type) revealed
aconsistent patterninwhich only cholangiocarcinoma (FGFR2fusions
and /IDHI mutations) and lung adenocarcinoma (EGFR alterations)
showed a substantial proportional increase in the metastatic cohort
(Extended DataFig. 8a,b). Non-A-on label biomarkers (A-offlabel, B-on
label and B-off label) showed a modest and tumour-type-dependent
metastatic increase, which was mainly linked to the increased altera-
tion frequency of KRAS exon 2 mutations and CDKN2A lossinadvanced
tumour stages (Extended Data Fig. 8b).
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Treatment-associated drivers

The presence of treatment resistance driver genesin late-stage tumours
prompted us todevise a test that aimed to identify treatment-enriched
drivers (TEDs) that were either significantly enriched (that s, treat-
ment enriched) or exclusively found (that is, treatment exclusive) in a
cancer-type-specific and treatment-specific manner (Extended Data
Fig. 9a and Methods). Our analytical framework provided 61 TEDs
associated with 33 treatment groups from 8 cancer types and 4 cancer
subtypes (Fig. 5a,b, Supplementary Table 8 and Supplementary Note 4).
Ofthe identified TEDs, 33 of 61 (54%) were coding mutation drivers,
16 (26%) were copy number amplifications, 9 (14%) were non-coding
drivers and 3 (6%) were recurrent homozygous deletions (Fig. 5b and
Extended Data Fig. 9b,c). Reassuringly, the majority of the top hits were
known treatment resistance drivers, including AR-activating mutations
and gene amplifications in patients with prostate cancer treated with
androgen-deprivation therapy® (Extended Data Fig. 9d,e), ESRI>*¢5%
mutations in patients with breast cancer treated with aromatase
inhibitors” (Extended DataFig. 9f), and EGFR™** mutations (Extended
DataFig.9g) and EGFR copy number gainsin patients withlung adenocar-
cinomatreated with EGFRinhibitors**° (Extended DataFig.9h),among
others. Moreover, we also found that TP53 alterations were recurrently
associated with resistance to multiple treatments, which may indicate
that these alterations are prognostic markers for enhanced tumour
aggressiveness and plasticity rather than being a cancer-type-specific
mechanism of drug resistance (Supplementary Note 4).
Ourresultsalsoprovided alongtail of candidate drivers of resistance,
some of them with orthogonal evidence by independent reports (Fig. 5b
and Extended DataFig. 9b,c). Examples of the latter group include TYMS
amplification in patients with breast cancer treated with pyrimidine

used otherwise). Markers are coloured according to the type of alteration.
Thethicker edge linesindicate knownresistance drivers. CNA, copy number
alteration; UTR, untranslated region. ¢, Global proportion of patients with
TEDs treated for metastasis. d, Mean number of driver alterations per patient
with ametastatic tumour before (purple circle) and after (purple square)
excluding TEDs compared with patients with primary tumours (orange square).
Theverticallinesindicate s.d. The mean number of driver alterations are
labelled.n Metastatic and n primary denote the number of metastaticand
primary samples, respectively.

antagonists* (Extended DataFig. 9i), PRNCI and MYC co-amplifications
in patients with prostate cancer treated with androgen deprivation*?
(Extended Data Fig. 9j), ACTL6A promoter mutations in patients with
triple-negative breast cancer treated with platinum-based therapies®,
and FGFR2 promoter mutationsin patients with breast cancer treated
with CDK4/CDKG6 inhibitors*. The full TEDs catalogue is provided in
Supplementary Table 8 and constitutes a valuable resource for inves-
tigating resistance mechanisms to common cancer therapies.
Overall, 53% of patients with metastatic disease with annotated treat-
mentinformation had TEDs, including 32% with annotations of known
resistance drivers and an additional 21% of patients with candidate
resistance drivers derived from our analysis (Fig. 5¢). We identified
0.70£0.53 (mean +s.d.) TEDs per metastatic sample across the 8 can-
cer types that had reported TEDs (Fig. 5d), with prostate and breast
carcinomas displaying the greatest prevalence of TEDs (that is, 1.74 and
1.12drivers per patient with prostate and breast cancers, respectively).
Therefore, after excluding TEDs, primary and metastatictumourshad a
36%reduction of their original differencesin the number of drivers per
sample (from 5.3t0 5.0 mean drivers per samplein the metastatic cohort
after excluding TEDs, compared with 4.5 mean drivers per sample in
the primary cohort) (Fig. 5d and Supplementary Table 8), indicating
that an important proportion of the metastatic-enriched drivers are
probably associated with resistance to anticancer therapies.

Discussion

Inthis study, we describe a cohort of more than 7,000 uniformly repro-
cessed WGS samples from patients with primary untreated and meta-
static treated tumours. We compared genomic features across 23 cancer
types and confirmed previous cancer-type-specific observations while
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also providing novel biological findings, such as the clock-like molecu-
lar features, the prevalence of SV burden across different tumorigenic
stages and the incidence of TEDs in treated patients.

Specifically, metastatic tumours displayed high genomic instabil-
ity, low intratumour heterogeneity and strong accumulation of SVs.
However, the magnitude of genomic differences between primary
and metastatic tumours was highly cancer-type specific and was influ-
enced by the exposure to cancer treatments. Overall, five cancer types
(prostate, thyroid, kidney renal clear cell, breast and pancreatic neu-
roendocrine carcinomas) showed an intense transformation of the
genomic landscape in advanced tumorigenic stages (Extended Data
Fig.10, labelled as strong). The other cancer types displayed variable
genomic differences, although the chromosomal genomic portrait
tended to be conserved.

Cancer types with the strongest genomic differences between pri-
mary and metastatic settings in our analyses typically have a good
prognosis in the primary setting. But then, whether the metastatic
tumours representing a unique set of primary patients that eventually
progressed (that is primaries from the metastatic cohort were ‘born
to be bad’) or whether there are stochastic triggers of metastatic dis-
easeinrelatively indolent primaries are still to be determined. To fully
address these, larger pan-cancer sets of matched biopsies from the
same patient, as already implemented in various cancer-type-specific
studies**¢, would be needed.

This study faced various limitations, such as the use of different labo-
ratory workups and sequencing parameters used for primary and meta-
static tumour samples, although we demonstrated that this does not
severely have an effect onthe overall detectability of clonal somatic vari-
ants (Supplementary Note 1). However, we cannot exclude the possibility
of missing highly subclonal driver mutations. Furthermore, our observa-
tions are unlikely to be exhaustive, especially for lower frequency events,
because of limited cohort (or subcohort) sizes. Expanding cancer cohorts
inresearchor clinical settings will be essential to advance our understand-
ing of tumour progression. Finally, genomic changes alone cannot entirely
explain how tumour cells are able to colonize other organs. Therefore,
additional information from complementary tumour omics* and from
the tumour microenvironment*® will be needed to further dissect and
better understand metastasis and resistance to cancer therapies.

To conclude, our dataset constitutes a valuable resource thatcan be
leveraged to further study other aspects of tumour evolution, such as
genomic differences across metastatic biopsy locations (Supplemen-
tary Note 2), dedicated analysis for cancer subtypes (Supplementary
Note 2), geneticimmune escape alterations in primary and metastatic
tumours* aswell as for the development of machine learning tools to
foster cancer diagnostics™.
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Methods

Cohort gathering and processing

We have matched tumour-normal WGS data from patients with cancer
fromtwoindependent cohorts: Hartwigand PCAWG. A detailed descrip-
tion of the Hartwig and PCAWG cohort gathering and processing as well
as comprehensive documentation of the PCAWG sample reanalysis with
the Hartwig somatic pipelineis described in the Supplementary Note 1.

Tumour clonality analysis

Each mutation in the .vcf files was given a subclonal likelihood by
PURPLE. Following PURPLE guidelines, we considered mutations with
subclonal scores equal or higher than 0.8 to be subclonal and muta-
tions below the 0.8 threshold to be clonal. For each sample, we then
computed the average proportion of clonal mutations by dividing the
number of clonal mutations by the total mutation burden (including
SBS, multinucleotide variants and IDs). Finally, for each cancer type,
we used Mann-Whitney test to assess the significance of the clonality
difference between the primary and metastatic tumours. Pvalues were
adjusted for false discovery rate (FDR) using the Benjamini-Hochberg
procedure. An adjusted P < 0.05 was deemed as significant.

In addition, we leveraged biopsy site data in patient reports to fur-
therinvestigate differences in metastatic tumour clonality according
to the metastatic biopsy site (see also Supplementary Note 2). If the
metastatic biopsy site was in the same organ or tissue as the primary
tumour, we considered them as ‘local’, whereas if the metastatic biopsy
site was reported in the lymphoid system or other organs or tissues,
they were dubbed as ‘lymph’ and ‘distant’, respectively. Cancer types
for which there was a minimum of five samples available for each of
the biopsy groups were selected and Mann-Whitney test was used to
compare the clonality between the biopsy groups.

Karyotype
Chromosome arm level and genome ploidy was estimated as previ-
ously described®.

First, for each chromosome arm, tumour purity and ploidy-adjusted
copy number (CN) segments (as determined by PURPLE) were rounded
to the nearest integer. Second, arm coverage of each integer CN was
calculated as the fraction of chromosome armbases with the specific CN
divided by the chromosome armlength (for example, 60% of all chromo-
some 5p segments have aCN of 2,30% have aCN of 1and 10% have a CN
of 3). We defined the arm-level ploidy level as the CN with the highest
coverageacross the wholearm (inthe example above it would be 2). Third,
we computed the most recurrent chromosome arm ploidy levels across
allchromosome arms per sample (that is, observed genome ploidy).

Next, we estimated the true genome ploidy by taking WGD status
(given by PURPLE) into account. If a sample did not undergo WGD, its
total expected genome ploidy was deemed to be 2n. If a sample did
undergo WGD and its observed genome ploidy was less than six, the
estimated genome ploidy was deemed to be 4n, and 8nifthe observed
genome ploidy was six or more. An observed genome CN of more than
eight was not found in our dataset.

Then, for each chromosome armin eachsample, we defined the nor-
malized arm ploidy as the difference between the arm-level ploidy level
and the expected genome ploidy. The resulting value was classified as
1for differences higher than or equal to 1 (representing arm gains), as
-1for differences lower than or equal to -1 (representing arm losses)
or as 0 (no difference). Normalized arm ploidy values were averaged
across allsamples from a cancer typein a cohort-specific manner (that
is, separating primary and metastatic samples). AMann-Whitney test
was performed per cancer type and chromosome arm to assess the
mean difference in arm gains or losses at the cancer-type level. The
resulting P value was FDR adjusted across all arms per cancer type.
Finally, g < 0.01and a normalized arm ploidy difference higher than
0.25was deemed to be significant.

Genomicinstability indicators

To compare the differences in aneuploidy scores and the LOH propor-
tionsineachgroup,aMann-Whitney test was performed per cancer type.
Theaneuploidy score represents the number of arms per tumour sample
that deviate from the estimated genome ploidy as previously described®.
The LOH score of a given sample represents the sum of all LOH regions
divided by the GRCh37 totalgenome length. Agenomicregionis defined
as LOH when the minor allele CN < 0.25 and major allele CN = 0.8.

To comparethefraction of samples with a driver mutationin 7P53 as
well as the fraction of WGD samples per cohort, a Fisher’s exact test was
performed per cancertype. Any TP53driver alteration (non-synonymous
mutation, biallelic deletion and homozygous disruption) was consid-
ered in the analysis. Multiple driver mutations per sample in a single
gene were considered as one driver event. WGD was defined as present
if the sample had more than 10 autosomes with an estimated chromo-
some CN of more than 1.5. Pvalues were FDR corrected across all cancer
types. A g < 0.01was deemed to be significant for all statistical tests.

Mutational signature analysis

Signature extraction. The number of somatic mutations falling into
the 96 SBS, 78 DBS and 83 ID contexts (as described in the COSMIC
catalogue®; https://cancer.sanger.ac.uk/signatures/) was determined
using the R package mutSigExtractor (https://github.com/UMCUGe-
netics/mutSigExtractor, v1.23).

SigProfilerExtractor (v1.1.1) was then used (with default settings) to
extractamaximum of 21 SBS, 8 DBS and 10 ID de novo mutational sig-
natures. This was performed separately for each of the 20 tissue types
thathad atleast 30 patientsin the entire dataset (aggregating primary
and metastatic samples; see Supplementary Table 3). Tissue types with
less than 30 patients as well as patients with metastatic tumours with
unknown primary location type were combined into an additional
‘Other’ group, resultinginatotal of 21 tissue-type groups for signature
extraction. To select the optimum rank (that is, the eventual number
of signatures) for each tissue type and mutation type, we manually
inspected the average stability and mean sample cosine similarity plot
output by SigProfilerExtractor. This resulted in 440 de novo signature
profiles extracted across the 21 tissue-type groups (Supplementary
Table 3). Least squares fitting was then performed (using the fit ToSig-
natures() function from mutSigExtractor) to determine the per-sample
contributions to each tissue-type-specific de novo signature.

Aetiology assignment. The extracted de novo mutational signatures

with high cosine similarity (=0.85) to any reference COSMIC mutational

signatures with known cancer-type associations® were labelled ac-
cordingly (288 de novo signatures matched to 57 COSMIC reference
signatures).

For the remaining 152 unlabelled de novo signatures, we reasoned
thatthere could be one or more signatures from one cancer type that is
highly similar tothose found in other tissue types, and that these prob-
ablyrepresent the same underlying mutational process. We therefore
performed clustering to group likely equivalent signatures. Specifically,
the following steps were performed:

(1) We calculated the pairwise cosine distance between each of the
de novo signature profiles.

(2) We performed hierarchical clusteringand used the base R function
cutree() to group signature profiles over the range of all possible
cluster sizes (minimum number of clusters = 2; maximum number of
clusters =number of signature profiles for the respective mutation
type).

(3) Wecalculated the silhouette score at each cluster size to determine
the optimum number of clusters.

(4) We grouped the signature profiles according to the optimum num-
ber of clusters. Thisyielded 27 SBS, 7 DBS and 8 ID de novo signature
clusters (see Supplementary Table 3).
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For certain de novo signature clusters, we could manually assign
the potential aetiology based on their resemblance to signatures
with known aetiology described in COSMIC®, Kucab et al.?* and Signal
(access date 1 February 2023)%2. Some clusters were an aggregate of
two known signatures, such as SBS_denovo_clust_2, which wasacom-
bination of SBS2 and SBS13, both linked to APOBEC mutagenesis.
Other clusters had characteristic peaks of known signatures, such
as DBS_denovo_clust_4, which resembled DBSS based on having dis-
tinctive CT>AA and CT>AC peaks. Finally, DBS_denovo_clust_1 was
annotated as a suspected POLE mutation and MMRd, as samples with
high contribution (more than 150 mutations) of this cluster are fre-
quently microsatellite instable (MSI) or have POLE mutations. Likewise,
DBS_denovo_clust_2was annotated as asuspected MMRd as the aetiol-
ogy, as samples with high contribution (more than 250 mutations) of
this cluster were all MSI. See Supplementary Table 3 for alist of all the
manually assigned aetiologies.

After applying the aetiology assignment, the de novo extraction
resulted in 69 SBS, 13 DBS and 18 ID representative mutational sig-
natures (Supplementary Table 3). Most of these (42 of 69 SBSs, 7 of
13 DBSs and 8 of 18 IDs) mapped onto the well-described mutational
signatures in human cancer®*,

Comparingthe prevalence of mutational processes between primary
and metastatic cancer. We then compared the activity (that is, the
number of mutations contributing to) of each mutational process
between primary and metastatic tumours. For each sample, we first
summed the contributions of signatures of the same mutation type
(thatis, SBS, DBS or ID) with the same aetiology, hereafter referred to
as ‘aetiology contribution’. Per cancer type and per aetiology, we per-
formed two-sided Mann-Whitney tests to determine whether there
was asignificant differencein aetiology contribution of primary and
metastatic tumours. Per cancer type and per mutation type, we used
the p.adjust() base R function to perform multiple testing correction
using Holm’s method. Next, weadded a pseudocount of 1to the con-
tributions (to avoid dividing by 0) and calculated the median contri-
butionlog2 fold change, that is, log2((median contribution in meta-
static tumours +1)/(median contribution in primary tumours +1)).
We considered the aetiology contribution between primary and
metastatic tumours to be significantly different when q < 0.05, and
log2 fold change > 0.4 or log2 fold change < -0.4 (= + x1.4).

Relative contribution

Relative aetiology contribution was calculated by dividing aetiology
contribution by the total contribution of the respective mutation type
(thatis, SBS, DBS or ID). To determine the significant differenceinrela-
tive aetiology contribution, we performed two-sided Mann-Whitney
tests as described above. We also calculated the median difference
in contribution (that is, median relative contribution in metastatic
tumours — median relative contribution in primary tumours). We
considered the relative aetiology contribution between primary and
metastatic tumours to be significantly different when g < 0.05 and
median difference was 0.01 or more.

Wealso determined whether there was anincrease in the number of
samples with high aetiology contribution (that is, hypermutators) in
metastatic versus primary cohorts. For each signature, a sample was
considered a hypermutator if the aetiology contribution was 10,000
or more for SBS signatures, 500 or more for DBS signatures or 1,000
or more for ID signatures. For each cancer type, for each aetiology, we
performed pairwise testing only for cases in which there were five or
more hypermutator samples for either metastatic or primary tumours.
Each pairwise testinvolved calculating Pvalues using two-sided Fisher’s
exacttests, and effect sizes by multiplying Cramer’s Vby the sign of the
log,(oddsratio) to calculate asigned Cramer’s Vvalue that ranges from
-1to+1(indicatingenrichmentin primary or metastatic, respectively).
Wethen used the p.adjust() base R function to perform multiple testing
correction using Bonferroni’s method.

SBS1-age correlations in primary and metastatic tumours

To count the SBS1 mutations, we relied on the definition from ref. 54
thatisbased onthe characteristic peaks of the COSMIC SBS1signature
profile: single-base CpG>TpG mutationsin NpCpG context. Toensure
that these counts and the downstream analyses are not affected by
differential APOBEC exposure in primary and metastatic cohorts, we
excluded CpG > TpG in TpCpG, which is also a characteristic peak in
the COSMIC SBS2 signature profile. In addition, for skin melanoma,
CpG>TpGin[C/TlpCpG, which overlaps with SBS7a, was excluded.
To obtain the SBS5 and SBS40 counts, we relied on their exposures
derived fromthe mutational signature analyses performed in this study
(described above).

To assess the correlation between SBS1 burden and the age of the
patient, at biopsy we performed a cancer-type and cohort-specificlin-
earregression (thatis, separate regression for primary and metastatic
tumour samples). To avoid spurious effects caused by hypermutated
tumours, samples witha TMB greater than 30,000 as well as those with
SBS1burden greater than 5,000 were excluded.

Foreach cancer type and cohort, we then computed 100 independent
linear regressions by randomly selecting 75% of the available samples.
We selected the median linear regression (based on the regression
slope) as representative regression for further analyses. Similarly,
confidenceintervals were derived from the 1st and 99th percentile of
the computed regressions.

To evaluate the significance of the differences between primary and
metastatic representative linear regressions (hereafter referred to
as linear regression for simplicity), we first filtered out cancer types
that failed to show a positive correlation trend between SBS1 burden
and age at biopsy in both primary and metastatic tumours (that is,
Pearson’s correlation coefficient of primary and metastatic regression
greater than 0.1). Next, for each selected cancer type, we computed the
regression residuals of primary and metastatic SBS1 mutation counts
using, in both cases, the primary linear regression as baseline. The
primary and metastatic residual distributions were then compared
using aMann-Whitney test to evaluate significance. Cancer types with
aMann-Whitney P < 0.01 were deemed as significant. Finally, to ensure
that the differences were uniform across different age ranges (that is,
notdriven by asmall subset of patients), we only considered significant
cancer types in which the metastatic linear regression intercept was
higher than the primary intercept.

SBS5/SBS40 correlations were computed following the same proce-
dure and using the sum of SBS5and SBS40 exposures for each tumour
sample. If none of the mutations were attributed to SBS5/SBS40
mutational signatures, the aggregated value was set to zero. In the
ploidy-corrected analyses, we divided the SBS1 mutation counts (and
SBS5/SBS40 mutation counts for the SBS5/SBS40 ploidy-corrected
regression, respectively) by the PURPLE-estimated tumour genome
ploidy.

For each cancer type, the mean fold change (fc) was defined as
fc = 45 Zims0 I:'::edl’ where MPred;and PPred; are the estimated number
of SBS1 mutations for a given age ith according to the metastatic
and primary linear regressions, respectively. Similarly, the mean
estimated SBgol burden difference (SBS1,) was defined as:
SBSIdiff = .5 Y, MPred; - PPred;.

Clonality of clock-like mutations

SBSlindividual mutations were identified as described in the previous
section. For SBS5 and SBS40 mutations, we used a maximum likeli-
hood approachto assignindividual mutations to the SBS5 and SBS40
mutational signatures in a cancer-type-specific manner.

For every SBS1 (and SBS5/SBS40 mutation), we then assign the clonal-
ity according to the PURPLE subclonal likelihood estimation, in which
only mutations with subclonal (SUBCL) likelihood > 0.8 were consid-
ered as such (see above).
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For each tumour sample, the SBS1 clonality ratio (or respectively
SBS5/SBS40 clonality ratio) was defined as the ratio between the pro-
portion of clonal SBS1mutations (3ES1clonal mutations) 4jyi 4 by the total

SBS 1 mutations

proportion of clonal alterations in the sample (10t clonal mutationsy |
Total mutations

Primary SBS1 mutation rate and metastatic SBS1age-corrected
enrichment

We computed for each primary cancer type the average number of
SBSI1 per year as the number of SBS1 mutations divided by the age of
the patient at biopsy (only considering primary samples and excluding
hypermutated samples as described above). We then used aSpearman’s
correlationto assessits association with the estimated mean SBS1 muta-
tionrate fold change in metastatic tumours (see above). Inaddition, to
exclude potential biases in our primary cohort, we repeated the same
analysis relying on an independent measurement of primary cancer
SBS1yearly accumulation. Specifically, we used the best-estimated
accumulation of SBS1 per year from ref. 30 (Supplementary Table 6)
andregressedittothe fold-change estimates for the matching cancer
types present in both datasets.

SV analysis

Definitions of SV type. LINX* chains one or more SVs and classifies
these SV clustersinto various event types (‘ResolvedType’). We defined
deletions and duplications as clusters with a ResolvedType of ‘DEL’ or
‘DUP’ whose start and end breakpoints are on the same chromosome
(that is, intrachromosomal). Deletions and duplications were split
intothoselessthan10 kband 10 kb or moreinlength (smalland large,
respectively), based on observing bimodal distributions in these
lengths across cancer types (Extended Data Fig. 5b). We defined com-
plex SVs as clusters with a‘COMPLEX’ ResolvedType, an inversion
ResolvedType (including: INV, FB_INV_PAIR, RECIP_INV, RECIP_INV_
DEL_DUP and RECIP_INV_DUPS) or a translocation ResolvedType
(including: RECIP_TRANS, RECIP_TRANS_DEL_DUP,RECIP_ TRANS_DUPS,
UNBAL_TRANS and UNBAL_TRANS _TI). Complex SVs were splitinto
those with less than 20 and 20 or more SVs (small and large, respective-
ly), based on observing similar unimodal distributions in the number
SVs across cancer types whose tail begins at approximately 20 break-
points (Extended Data Fig. 5b). Finally, we defined long interspersed
nuclear elementinsertions (LINEs) as clusters with a ResolvedType of
‘LINE’. For each sample, we counted the occurrence (that is, SV burden)
of each of the seven SV types described above. In addition, we deter-
mined the total SV burden by summing counts of the SV types.

Comparing SV burden between primary versus metastatic cancer.
We then compared the SV-type burden between primary versus meta-
static tumours asshownin Fig. 3a. First, we performed two-sided Mann-
Whitney tests per SV type and per cancer type to determine whether
there was astatistically significant difference in SV-type burden between
primary versus metastatic. The Bonferroni method was used for mul-
tiple testing correction on the P values from the Mann-Whitney tests
(toobtain g values). Next, we calculated relative enrichment as follows:
log,,(median SV-type burdenin metastatic tumours +1) - log,,(median
SV-typeburdenin primary tumours +1); and calculated fold change as
follows: (median SV-type burden in metastatic tumours +1) / (median
SV-typeburdeninprimary tumours +1). When calculating relative en-
richment and fold change, the pseudocount of 1 was added to avoid
the log(0) and divide by zero errors, respectively. Fold changes are
displayed with a“>"in Fig.3awhen the SV burden for primary tumoursis
0 (thatis, when adivide by O would occur without the pseudocount). We
considered the SV-type burden between primary versus metastatic to
besignificant when: g < 0.05, and fold change >1.2 or fold change < 0.8

Identifying features associated with increased SV burden in meta-
static cancer. To identify the features that could explain increased
SV burden, we correlated SV burden with various tumour genomic

features. This included: (1) genome ploidy (determined by PURPLE);
(2) homologous recombination deficiency (determined by CHORD?®)
and MSI (determined by PURPLE) status; (3) the presence of mutations
in 345 cancer-associated genes (excluding fragile site genes that are
often affected by CN alterations®), hereafter referred to as ‘gene status’;
and (4) treatment history, including the presence of radiotherapy, the
presence of one of the 79 different cancer therapies as well as the total
number of treatments received. All primary samples and all metastatic
samples without treatment information were considered to have no
treatment. Genome ploidy and total number of treatments received
were numeric features, whereas all of the remaining were boolean (that
is, true or false) features. In total, there were 429 features.

SV-type burdenwastransformedtolog,,(SV-typeburden + 1) and was
correlated with the 429 features using multivariate linear regression
models (LMs). This was performed separately for each of the seven SV
types, and for each cancer type (or subtype). In the SV main analysis
(Fig. 4b-f), there were 23 cancer types, resulting in a total of 161 (23
cancer types x 7 SVtypes) LM models.

EachLM model (thatis, per SV type and cancer type) involved train-
ing of three independent LMs with (1) both metastatic and primary
samples (primary + metastatic), (2) only Hartwig samples (metastatic
only), and (3) only PCAWG samples (primary only). This was done to
filter out correlations between features and increased SV-type burden
solely due to differences infeature values between primary and meta-
static tumours. We then required features that positively correlated
with SV-type burdenin the primary + metastatic LM to independently
show the same associationin the metastatic-only or primary-only LMs.
Only genomic features that independently showed positive correla-
tion with the SV burden were further considered as significant (that
is, represented in the lollipop plots).

Each of the three LMs was trained as follows:

(1) Remove boolean features with too few ‘true’ samples.
(i) For the primary + metastatic LM, remove gene status features
with less than 15 ‘true’ samples.
(ii) For the metastatic-only and primary-only LMs, remove gene
status features with less than 10 ‘true’ samples.
(iii) For the remaining boolean features, remove features with less
than 5% ‘true’ samples.

(2) FitaLM using the Im() base R function to correlate log,,(SV-type

burden +1) versus all features.

For each LM analysis, we used the following filtering criteriatoiden-
tify the features that were correlated with increased SV-type burden:
(1) Only keep LM analyses for which there was significantincrease in

SV-type burden for the respective cancer type (P < 0.01as described

in the previous section ‘Comparing SV burden between primary

versus metastatic cancer’).
(2) For primary + metastatic LM:
(i) RegressionP<0.01
(ii) Coefficient P<0.01
(iii) Coefficient more than O
(3) For metastatic-only LM or primary-only LM:
(i) Coefficient P<0.01
(ii) Coefficient morethanO

Finally, to determine which features (of those correlated with
increased SV-type burden) were enriched in metastatic tumours com-
pared with primary tumours (and vice versa), we calculated Cliff’s delta
for numeric features and Cramer’s Vfor boolean features. Cliff’s delta
ranges from -1to +1, with -1 representing complete enrichment in
primary tumours, whereas +1represents complete enrichment in meta-
static tumours. Cramer’s V only ranges from O to 1 (with 1 represent-
ing enrichment in either primary or metastatic tumours), the sign of
thelog(odds ratio) was assigned as the sign of the Cramer’s Vvalue so
thatitranged from-1to+1. Features with an effect size of more than 0



were considered as those that could explain the SVburdenincreasein
metastatic cancer when compared with primary cancer.

Driver alterations

Werelied on patient-specific cancer driver and fusion catalogues con-
structed by PURPLE?® and LINX®. Only drivers with a driver likelihood
of more than 0.5 were retained. Fusion drivers were filtered for those
that were previously reported in the literature. Similarly, we manu-
ally curated thelist of drivers and removed SMAD3 hotspot mutations
because of the high-burden mutations in low-mappability regions. The
final driver catalogue contained a total of 453 driver genes and the final
fusion catalogue contained 554 reported fusions.

To compare the number of drivers in primary and metastatic
tumours, we then combined fusions with the LINX driver variants to cal-
culate a patient-specific number of driver events. Drivers that concern
the samedriver gene but a different driver type were deemed to be sin-
gledrivers (forexample, TP53mutation and 7TP53deletionin the same
sample were considered as one driver event). Cancer-type-specific
Mann-Whitney test was performed to assess differences between
primary and metastatic tumours. An adjusted g < 0.01 was deemed
to be significant.

To assess the driver enrichment, a contingency matrix was con-
structed from the driver catalogue, containing the frequency of driver
mutations per driver type (thatis, deletion, amplification or mutations)
and cancer typein each cohort (metastatic and primary). A second con-
tingency matrix was constructed for the fusions. Partialamplifications
were considered as amplifications, whereas homologous disruptions
were considered as deletions. These contingency matrices were filtered
for genes that show a minimum frequency of five mutated samplesin
either the primary or the metastatic cohorts. Then, atwo-sided Fisher’s
exacttest for eachgene, cancer type and mutation type was performed
and the Pvalue was adjusted for FDR per cancer type. Cramer’s VVand
the odds ratio were used as effect size measures. An adjusted P < 0.01
was deemed to be significant.

Therapeutic actionability of variants

To determine theamount of actionable variants observed in each sam-
ple, we compared our variants annotated by SnpEff (v5.1)% to those
derived from three different databases (OncoKB¥, CIViC*®and CGI*®) that
were classified based onacommon clinical evidence level (https://civic.
readthedocs.io/en/latest/model/evidence/level.html) as previously
described®. In our study we only considered A and B levels of evidence,
whichrepresentvariantsthathave been FDA approved for treatmentand
arecurrently being evaluatedin alate-stage clinical trial, respectively.
Avariantwas determined to be ‘on-label’ when the cancer type matches
the cancer type for which the treatment was approved for or is being
investigated for, and ‘off-label’ otherwise. Only actionable variants of
the sensitive category were considered (thatis, tumours containing the
variant are sensitive to a certain treatment). Sample-level actionable
variants such as TMB high/low or MSI status were not evaluated, because
of their tendency to overshadow the other variants, especially in the
off-label category. Furthermore, wild-type actionable variants were
not considered in this analysis for the same reason. Variants related
to gene expression or methylation were not considered due to lack of
available data. In addition, we found actionable variants derived from
leukaemias to be very different from the solid tumours in our dataset,
which is why we excluded them for this analysis. For the analysis of
proportion of samples bearing therapeutically actionable variants, we
considered that the highest evidence level was retained for each sample
followingthe order A on/off-label to B on/off-label. To assess enrichment
ofactionable variants globally and at the A on-label level in metastatic
tumours, aFisher’s exact test was performed pan-cancer-wide and per
cancer type. An adjusted P < 0.05 was deemed to be significant. Fold
changes in frequency are only shown for cancer types with a global
significant difference.

To determine which variants contribute the most to the observed
significant frequency differences, individual actionable variants were
tested for enrichment in metastatic tumours using a Fisher’s exact
test per cancer type and tier level. P values were FDR adjusted per
cancer type and g < 0.05 was deemed to be significant. In Extended
DataFig. 8, only actionable variants from cancer types with a global
significant difference (see above) and that were found at a minimum
frequency of 5% in either primary or metastatic cohort and aminimum
frequency difference of 5% between them were shown. However, the
differences across all screened variants are available as part of Sup-
plementary Table 7.

TEDs

We aimed to pinpointdrivers that are potentially responsible for lack of

response to certain cancer treatments in the metastatic cohort. Hence,

we devised a test thatidentifies driver alterations that are enriched in
groups of patients treated with a particular treatment type compared
with the untreated group of patients from the same cancer type (see

Extended Data Fig. 9a for illustration of the workflow).

Treatments were grouped according to their mechanismof action so
that multiple drugs with a shared mechanism of action were grouped
into the mechanistic treatment category (for example, cisplatin, oxali-
platin and carboplatin were grouped as platinum). We created 323
treatment and cancer-type groups by grouping patients with treatment
annotation according to their treatment record before the biopsy. One
patient might beinvolved in multiple groups if they have received mul-
tiplelines of therapy or asimultaneous combination of multiple drugs.
Only 92 treatment and cancer-type groups with at least ten patients
were further considered in the analysis.

Hence, for each cancer type (or subtype, in the case of breast
and colorectal) and treatment group, we performed the following
steps:

(1) We first performed a driver discovery analysis in treatment and
cancer-type (or subtype)-specific manner. We explored three types
of somatic alterations: coding mutations, non-coding mutations
and CN variants (see below for detailed description of each driver
category). Driver elements from each alteration category were
selected for further analysis.

(2) For each driver alteration from (1), we compared the alteration
frequency in the treated group to the untreated group of the same
cancer type. Each driver category (coding and non-coding mutations
and CN variants) were evaluated independently. We performed a
Fisher’s exact test to assess the significance of the frequency dif-
ferences. Similarly, we computed the odds ratio of the mutation
frequencies for each driver alteration. The Pvalues were adjusted
with a multiple-testing correction using the Benjamini-Hochberg
procedure (a = 0.05). An adjusted Pvalue of 0.05 was used for coding
mutations and CN variants. An adjusted P value of 0.1 was used for
non-coding variants due to the overall low mutation frequency of the
elementsincluded inthis category, which hampered the identifica-
tion of significant differences.

(3) We then annotated each driver element with information about
the exclusivity in the treatment group. We labelled drivers as treat-
ment exclusive if the mutation frequency in the untreated group was
lower than 5% or we annotated as treatment enriched otherwise. In
addition, we manually curated the identified drivers with literature
references of their association with each treatment category.

(4) Finally, the overlap of patients in multiple treatment groups (see
above) in the same cancer type prompted us to prioritize the most
significant treatment association foreach driver geneinaparticular
cancer type.Inotherwords, foreach driver gene that was deemed as
significantly associated with multiple treatment groupsin the same
cancer type, we selected the most significant treatment association,
unless a driver-treatment annotation was clearly reported in the
literature.
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The full catalogue of TEDs and their mutation frequencies can be
found in Supplementary Table 8.

Coding mutation drivers

We used dNdScv (v0.0.1)*° with default parameters to identify can-
cer driver genes from coding mutations. A global g < 0.1 was used as
athreshold for significance. Mutation frequencies for each driver
gene were extracted from the dNdScv output. We defined the muta-
tion frequency as the number of samples bearing non-synonymous
mutations.

Non-coding mutation drivers

We used ActiveDriverWGS® (v1.1.2, default parameters) to identify
non-coding driver elements in five regulatory regions of the genome
including 3’ untranslated regions (UTRs), 5 UTRs, long non-coding
RNAs, proximal promoters and splice sites. For each element category,
we extracted the genomic coordinates from Ensembl v101. Each regu-
latory region was independently tested. To select for significant hits,
we filtered on adjusted P values (FDR < 0.1) and a minimum of three
mutated samples. We defined the mutation frequency as the num-
ber of mutated samples for each significantly mutated elementin the
treatment group.

CNvariantdrivers
We ran GISTIC2 (ref. 62) (v2.0.23) on each of the 92 treatment and
cancer-type groups using the following settings:

gistic2 -b <inputPath> -seg <inputSegmentation> -refgene hg19.
UCSC.add_miR.140312.refgene.mat -genegistic 1 -gcm extreme
-maxseg 4000 -broad 1-brlen 0.98 -conf 0.95 -rx O -cap 3 -saveseg O
-armpeel 1-smallmem O -res 0.01-ta 0.1-td 0.1 -savedata O -savegene
1-qvt O.1.

The focal GISTIC peaks (g < 0.1 and <1 Mb) were then annotated
with functional elements using the coordinates from Ensembl v101.
The frequency differences between treated and untreated cohorts on
every gene was assessed with Fisher’s exact test as described above.
For this, we first calculated the focal amplification and deep deple-
tion status of every gene within each sample. A gene was amplified
when the ploidy level of the gene was 2.5 ploidy levels higher than its
genome-wide mean ploidy level (as measured by PURPLE), and deleted
whenthegeneploidy levelwaslowerthan 0.3 (thatis, deep deletion). We
observed that the majority of the peaks contained multiple significant
gene candidates (after multiple correction g < 0.05) and therefore we
retained the gene most closely positioned to the peak summit, which
is the most significantly enriched region across the treated samples.
Next, we also found recurrent peaks across multiple treatment groups
per cancer type that are not, or less, present in the untreated control
group because most of the Hartwig samples have received multiple
treatment types. We therefore merged peaks with overlapping ranges
to produce asingle peak per genomic region per cancer type. For each
collapsed peak, we selected the treatment type showing the lowest g
value for the gene near the peak summit. Deletion and amplification
peaks were processed separately.

Group-level aggregation of treatment resistance-associated
variants

Toestimate the contribution of TEDs to the total number of drivers per
sample in the metastatic cohort, we excluded any TED from the cata-
logue of driver mutations (see the above section ‘Driver alterations’) in
acancer-type-specific, gene-specificand driver-type-specific manner.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Metastatic WGS data and metadata from the Hartwig Medical Foun-
dation are freely available for academic use through standardized
procedures. Request forms canbe found at https://www.hartwigmedi-
calfoundation.nl/en/data/data-acces-request/. Somatic variant calls,
genedriver lists, CN profiles and other core data of the PCAWG cohort
generated by the Hartwig analytical pipeline are available for down-
load at https://dcc.icgc.org/releases/PCAWG/Hartwig. Researchers
will need to apply to the ICGC data access compliance office (https://
daco.icgc-argo.org) for the ICGC portion of the dataset. Similarly,
users with authorized access can download the TCGA portion of the
PCAWG dataset at https://icgc.bionimbus.org/files/5310a3ac-0344-
458a-88ce-d55445540120. Additional information on accessing the
data, including raw read files, can be found at https://docs.icgc.org/
pcawg/data/. References and download links to the original independ-
ent datasetsused inthe analyses areincluded in each of the pertinent
sections of the Methods and Supplementary Notes, and a full list of all
datasets usedin the present study canbe foundin the data availability
section of the Reporting Summary file.

Code availability

The Hartwig analytical processing pipeline is available (https://
github.com/hartwigmedical/pipeline5) and implemented in Plati-
num (https://github.com/hartwigmedical/platinum). The source
code to reproduce the analysis of the manuscript is available in the
following repository: https://github.com/UMCUGenetics/primary-
met-wgs-comparison.
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Extended DataFig.1|Cohortoverview and global genomic features.

a) Workflow of the unified processing pipeline used in this study for Hartwig (left)
and PCAWG (right) WGS samples. First, PCAWG tumor and matched normal raw
sequencing files were gathered and re-processed using the Hartwig tumor
analytical pipeline. Next, the output of tumor samples that were correctly
processed by the pipeline were further subjected to astrict quality control
filtering. As aresult, atotal of 7,108 samples from 71 cancer types compose the
harmonized dataset. 5,365 patient tumor samples from 23 cancer types with
sufficient representationin both primary and metastatic datasets were selected

for this study. b) Tumor clonality according to the metastatic biopsy locationin
kidney renal clear cell carcinoma, lungadenocarcinoma, prostate carcinoma
and skinmelanoma. N, number of samplesin the group. p, two-sided Mann-
Whitney p-value. Box-plots: center line, median; box limits, firstand third
quartiles; whiskers, lowest/highest data points at first quartile minus/plus 1.5x
IQR. c) Left, similar to Fig.1d only including non-WGD tumors. Right, similar to
Fig.1lefor non-WGD tumors. d) Equivalent to c), but limited to WGD tumors.

“*’ two-sided Mann-Whitney adjusted p-value < 0.01 for continuous variables
and two-sided Fisher’s exact test adjusted p-value < 0.01for TP53.
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Extended DataFig.2|See next page for caption.



Extended DataFig.2|Mutationburdenand mutational signatures. a) double-
base substitutions (DBSs, top) and indels (IDs, bottom) mutational spectra of
metastatic and primary tumors. Patients are ordered according to their TMB
burden.b) Moon plot representing the DBS burden differences attributed to
each mutational signature in metastatic (left) and primary (right) tumors. Edge
thickness and colorsrepresentsignificant differences (Mann-Whitney adjusted
p-value<0.05, +1.4x fold change) and the direction of the enrichment, respectively.
Thesize of circles are proportionate to the mutation burden difference. Right
bars, number of metastatic cancer types with amutational signature significant
enrichment. Top stacked bars represent the cumulative signature exposure
difference. Thicker bar edge lines represent significance. Bars are coloured

accordingtothe annotated etiology. Only mutational signatures with

known etiology or with at least one cancer type with significant metastatic
enrichmentareincluded. c¢) analogous representation for IDs. d) Volcano plot
representing the mutational signature hypermutation (>10,000 mutations for
SBS, >500 for DBS, and >1000 for ID) prevalence comparison between primary
and metastatic tumor patients. Y-axis, log,,(two-sided Mann-Whitney adjusted
p-value). X-axis, effect size as Cramer’s V. Each dot represents a mutational
signatureinacancertype. Dots are coloured according to the mutation type.
Diff., difference. Muts. mutations. Sig., mutational signature. Mut. mutational.
Susp., suspected. Def., deficiency.
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Extended DataFig. 3 | Mutational signaturerelative contribution
comparison. a) Fromtop tobottom, moon plot representing the SBS, DBS and
ID relative contribution differences attributed to each mutational signature.
Thesize of circles are proportional to the relative mutation burden difference.
Top stacked barsrepresent the relative signature exposure difference. Thicker
baredgelines represent significance (two-sided Mann-Whitney adjusted

p-value <0.05and >1% difference in relative contribution). Bars are coloured
accordingtothe annotated etiology. Right bars, number of metastatic cancer
types withamutational signature significant enrichment. Only mutational
signatures with known etiology or with at least one cancer type with significant
enrichmentareincluded. Diff., difference. Muts. mutations. Sig., mutational
signature. Mut. mutational. Susp., suspected. Def., deficiency.
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Extended DataFig.4|Age-corrected SBS1mutationburdeninprimaryand
metastatic tumors. a) Linear regression of the SBS1 mutation burden (y-axis)
and patient’s age at biopsy (x-axis) in primary and metastatic cancer across the
23 cancer types. The mediantrendlineand 99% confidence intervals of the
linearregressionarerepresented asasolid line and the adjacent shaded area,
respectively. The mean fold change, mean SBSlincrease peryearand one
sided Mann-Whitney p-value are only displayed in cancer types with an age-
independentsignificantly different primary and metastatic distribution. Red
labels, significantincrease in metastatic tumors. Blue, control cancer types.
Rumecand Ry, Pearson correlation coefficient of the metastaticand primary
linear regressions, respectively. b) Analogous representation forindependent
linear regressions for breast cancer subtypes. c) Relative to a) for ploidy
corrected SBSlinthe tumor types of interest. d) Relative to a) for ploidy
corrected SBS5/40 countsinthe tumor types ofinterest. e) Depiction
illustrating the potential effect of anincreased cell division rate in metastatic
tumors compared to primary and its expected impact on the SBS1variant allele
frequency (VAF) distribution. Partially created BioRender.com. f) Comparison
of global SBS1 clonality ratios between primary and metastaticinbreast,

prostate, kidney renal clear cell, thyroid, colorectal and ovarian serous
carcinomas. Boxplots are defined asin Fig. 1. P, two-sided Mann-Whitney
p-value.N, number of samples. g) Spearman correlation analysis of the mean
SBS1yearburden of primary tumors (y-axis) and the mean metastatic SBS1fold
change (x-axis) across the 15 cancer types with linear association between age
and SBS1accumulation. Vertical error barsrepresent the 25th and 75th
percentile, respectively. Horizontal error barsrepresent the standard
deviation of the mean fold change (metastatic divided by primary) of the SBS1
yearly mutation burden. The median trendline and 99% confidence intervals of
thelinearregressionarerepresented asasolid line and the adjacent shaded
area, respectively. Cancer types withasignificantly different SBS1 mutation
rate are marked by thicker marker bordersand withred labels. Blue labels
representthe control cancer types. h) Similar but using SBS1year mutationrate
fromref.30. To derive vertical and horizontal error bars in panels g) and h) all
tumor samples from the primary and metastatic cohorts from panel a)

(see Methods for inclusion criteria) wereincluded in the analysis. The number
ofincluded samples per cancer type and cohortare availablein Supplementary
Table 4. Muts, mutations.
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Extended DataFig. 5|Structural variantburden. a) Top rectangles represent
the four genomic instability features defined in Fig.le. Ared background
representssignificantenrichmentin the metastatic cohort (two-sided
Mann-Whitney adjusted p-value <0.01). S-plots, cumulative distribution
function plot (samples ranked independently for each SV type) of tumor
mutation burden for each cancer type for (fromtop to the bottom) the
aggregated structural variant (SV) burden, small deletions (<10kb), large
deletions (>=10kb), small duplications (<10kb), large duplications (>=10kb),
complex events (<20 breakpoints), complex events (>=20 breakpoints) and
LINEsinsertions. Horizontal lines represent median values. Backgrounds are
coloured accordingto the relative enrichment, defined as: log,,(median SV

type burdeninmetastatic tumors +1) - log,,(median SV typeburdenin primary
tumors+1). Fold changelabels and coloured backgrounds are displayed when
Mann-Whitney comparisonrenders asignificant g-value <0.05. Fold change
labels are displayed with >’ when the SV burden for primary tumorsis O

(see Methods for more details). For each cancer type, bottom bar plots
represent the relative fraction of each SV type in the metastatic (left) and
primary (right) datasets. b) SVlength frequency distribution of deletions (left
panel) and duplications (middle panel). Right panel shows the frequency
distribution of the number of linked breakpoints for complex SVs. Dashed
vertical lines represent the chosen threshold to separate between shortand
large deletions, duplications and complex SVs, respectively.
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Extended DataFig. 6 |See next page for caption.




Extended DataFig. 6 | Structural variant burden associated genomic
features. a) Volcano plot representing the cancer type-specific regression
coefficients (x-axis) and significance (y-axis, measured by the linear regression
model coefficient p-value) of clinical and genomic features against the number
of small deletions. Each dot represents one feature in one cancer type. Labels
arecoloured accordingto the feature category. Dots are coloured by the
frequency enrichmentin metastatic (purple) or primary (orange) patients.
Analogous panels are displayed for b) large deletions, ¢) short duplications,

d) large duplications, e) short complex SVs, f) large complex SVs and g) LINEs.

h) Lollipop plots representing the regression coefficients (left, relative to
panel b. x-axis) and metastatic enrichment (right, relative to dots colour from
panelb.) of features associated with small deletions. Only significant features
(LM>0.0, LM coefficient p-value < 0.01and with independent significance

in primary or metastatic tumors) enriched in metastatic tumor patients
(enrichment>0.0) aredisplayed. i), j) and k) are identical but referring to large
deletions, small duplications and large duplications, respectively. LM, linear
model. Coef, coefficient.
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Extended DataFig.7|Driverlandscape and drivers per patient. a) Cancer
type-specific distribution of number of driver alterations, amplifications,
deletions and mutations per patient in primary (top) and metastatic (bottom).
Black dots represent the mean values. Labels display mean differences
(metastatic- primary) in cancer types withasignificant difference. “*”, two-sided
Mann-Whitney adjusted p-value < 0.01.b) Volcano plots representing the
cancer type-specificenrichment (x-axis) and significance (y-axis, FDR adjusted

A Primary

two-tailed Fisher’s exact test p-value) of driver genes between primary and
metastatic cohorts. Fromleft to right, amplification drivers, biallelically
deleted driversand mutated driver genes. BRCA, Breast carcinoma.KIRC,
kidney renal clear cell carcinoma. OV, Ovarian serous adenocarcinoma. PRAD,
Prostate carcinoma. SKCM, Skin melanoma. THCA, Thyroid carcinoma. LIHC,
Hepatocellular carcinoma. PANET, pancreatic neuroendocrine.
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Extended DataFig. 8| Therapeutic actionability of variants. a) Cancer
type-specific fraction of primary (top) and metastatic (bottom) patients with
reported therapeutically actionable variants. For each patient the variant with
thegreatest level of evidence was considered. Bars are coloured according to
the variantactionability tiers. Fold change (i.e., metastatic divided by primary
fraction) labels are displayed in cancer types with a significant proportional
increase (two-sided Fisher’s exact test adjusted p-value < 0.05). Purple
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Extended DataFig.9|Treatment enriched drivers. a) Visual depiction of the
analytical framework toidentify treatmentenriched drivers (TEDs). Example,
identification of TEDs in the 354 breast carcinoma patients treated with
aromataseinhibitors. (1), identification of cancer driver genes from coding
mutations (green), non-coding mutations (soft green), copy number
amplifications (red) and deletions (blue). (2), for each driver gene, comparison
ofthealteration frequency intreated and untreated patients. (3) and (4),
annotation of TEDs with type of enrichment and orthogonal evidence b) Side
bysidealteration frequency comparisonbetween treated (right bar) and
untreated (left bar) patients for all treatment-exclusive and ¢) treatment-
enriched TEDs. d) Distribution of mutations along the AR proteinsequencein
prostate cancer patients treated with androgen deprivation (top) and
untreated (bottom). Pfam domains arerepresented as rectangles. Mutations
arecoloured accordingto the consequence type. e) Distribution of focal copy
number gains inchromosome Xin prostate untreated patients (bottom) and

treated with androgen deprivation (top). AR coding region and the promoter
regionare highlighted. f) Distribution of mutations along the ESR1 protein
sequenceinbreast carcinoma patients treated with aromatase inhibitors (top)
and untreated (bottom). g) Distribution of mutations along the EGFR proteinin
lungadenocarcinoma patients treated with EGFR inhibitors (top) and untreated
(bottom). Pfam domains are represented as rectangles. h) Distribution of

focal copy number gainsin chromosome 7 in lung adenocarcinoma untreated
patients (bottom) and treated with anti-EGFR (top). EGFR, MET and CDK6
genomiclocations are highlighted. i) Distribution of focal copy number gains
inchromosome chri8p:1Mb-8Mb in breast carcinoma untreated patients
(bottom) and treated with pyrimidine antagonists (top). TYMS genomic
locationis highlighted. j) Similar to f) but representing ultra-focal (shorter than
3Mbs) MYC and PRNCR1amplificationsinchromosome 8q.In all copy number
gain plots each binrepresents 100Kbs. Mb, megabase. Kb, kilobase.
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Extended DataFig.10|Pan-cancer differences between primary and
metastatic tumors. a) Stacked plot representing the qualitative differences of
theeightstudied genomic featuresacrossthe 23 cancer typesincludedin this
study. Cancer types are sorted inascending order according to the cumulative
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number of diverging genomic features between primary and metastatic
tumors. Each horizontal track represents agenomic feature. The presence (and
height) of each feature for a specific cancer type correlates with the magnitude
ofthe observed differences.
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Data collection  We have matched tumor-normal whole genome sequencing data from cancer patients from two independent cohorts: the Hartwig Medical
Foundation (Hartwig) and the Pan-Cancer Analysis of Whole Genomes (PCAWG) cohort.

The Hartwig cohort was provided under data transfer agreement (DR-247) by Hartwig Medical Foundation on 6 February 2020 with an update
received on 4 Februari 2022, that was downloaded using via Hartwig download portal.

The PCAWG-US was approved by National Institutes of Health (NIH) for the dataset General Research Use in The Cancer Genome Atlas (TCGA)
on 25 February 2021 under application number 100344-3 and downloaded via dbGAP download portal.

Raw sequencing access to the non-US PCAWG samples was granted via the Data Access Compliance Office (DACO) Application Number
DACO-1050905 on 6 October 2017 and downloaded via https://console.cancercollaboratory.org on 4 December 2017.

Data analysis The PCAWG samples were reanalyzed with the Hartwig somatic variant calling pipeline (https://github.com/hartwigmedical/pipeline5) which
was hosted on the Google Cloud Platform using Platinum (https://github.com/hartwigmedical/platinum). This pipeline uses the following
software packages:

SamToFastq PICARD (v2.1.0).

BWA (v0.7.17): read mapping

GATK (v3.8.0) Haplotype Caller: calling germline variants in the reference sample
SAGE (v2.2): somatic SMNVs and indels calling

GRIDSS (v2.9.3): simple and complex structural variant calling

AMBER (v3.3)

COBALT (v1.7)
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PURPLE (v2.53): combines B-allele frequency (BAF) from AMBER (v3.3), read depth ratios from COBALT (v1.7), and structural variants from
GRIDSS to estimate copy number profiles, variant allele frequency (VAF) and variant clonality. PURPLE also determines sample gender based
on sex chromosome ploidy.

LINX (v1.16): interpretation of simple mutations and structural variants

mutSigExtractor (v1.23)

SigProfilerExtractor (v1.1.1)

SnpEff (v5.1)

dNdScv (v0.0.1)

ActiveDriverWGS (v1.1.2)

GISTIC2 (v2.0.23)

MutationTimeR (v0.1)

The source code to reproduce the analysis of the manuscript is available in this repository https://github.com/UMCUGenetics/primary-met-
wgs-comparison: https://github.com/UMCUGenetics/PCAWG_Hartwig_comparison

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Metastatic WGS data and metadata from the Hartwig Medical Foundation are freely available for academic use through standardized procedures. Request forms
can be found at https://www.hartwigmedicalfoundation.nl/en/data/data-acces-request/

Somatic variant calls, gene driver lists, copy number profiles and other core data of the PCAWG cohort generated by the Hartwig analytical pipeline are available for
download at https://dcc.icgc.org/releases/PCAWG/Hartwig. Researchers will need to apply to the ICGC data access compliance office (https://daco.icgc-argo.org)
for the ICGC portion of the dataset. Similarly, users with authorized access can download the TCGA portion of the PCAWG dataset at https://icgc.bionimbus.org/
files/5310a3ac-0344-458a-88ce-d55445540120. Additional information on accessing the data, including raw read files, can be found at https://docs.icgc.org/pcawg/
data/.

GRCh37 reference genome used in this study: https://console.cloud.google.com/storage/browser/hmf-public/HMFtools-Resources/ref_genome/37

PCAWG clinical data: https://dcc.icgc.org/releases/PCAWG/clinical_and_histology

Consensus PCAWG mutation calls: https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel
Consensus PCAWG mutation calls: https://dcc.icgc.org/releases/PCAWG/consensus_sv
Consensus PCAWG driver dataset: https://dcc.icgc.org/releases/PCAWG/driver_mutations

Independent validation datasets:

Primary and metastatic breast WGS data: DOI: 10.1016/j.ccell.2017.07.005 The link for the dataset is: http://dx.doi.org/10.17632/g7kpzkhz8c.1

Primary and metastatic kidney renal clear cell carcinoma WES data: 10.1038/ng.2891 Raw sequencing data was downloaded via: https://ega-archive.org/datasets/
EGAD0O0001000734

Breast, Kidney, Prostate, Thyroid, Colorectal, Ovarian primary WES TCGA data:10.1038/ng.2764 downloaded via https://gdc.cancer.gov/about-data/publications/
pancanatlas

Prostate metastatic WES data: 10.1073/pnas.1902651116 The link for the dataset is: https://github.com/cBioPortal/datahub/tree/master/public/prad_su2c_2019
Prostate metastatic WGS data: 10.1016/j.cell.2018.06.039 and downloaded via dbgap under phs001648.v2.p1

kidney renal clear cell carcinoma metastatic WES data: 10.1126/science.aan5951 and downloaded via https://www.cbioportal.org/

COSMIC reference signatures: https://cancer.sanger.ac.uk/signatures/
SIGNAL reference signatures: https://signal.mutationalsignatures.com/

OncoKB: https://www.oncokb.org/

CIVIC: https://civicdb.org/
CGl: https://www.cancergenomeinterpreter.org/home

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Consistent gender proportions were observed across all cancer types except for thyroid adenocarcinomas, which had higher
male representation in the metastatic cohort (metastatic: 72% male, 28% female; primary: 25% male, 75% female).

Population characteristics The Hartwig cohort includes late-stage adult (>18 years old) cancer patients recruited across Dutch hospitals. Patients had
frequently recived pre-biopsy treatment. The PCAWG cohort primarily include adult and early-stage cancer patients that in
most cases have not recived any treatment prior to tumor biopsy. We refer to the Hartwig (doi: 10.1038/s41586-019-1689-y)
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and PCAWG (doi: 10.1038/s41586-020-1969-6.) flagship papers for further description of patient's population, recruitment
and ethics oversight.

Recruitment Patient recruitment was originally performed by the clinical institutions and hospitals. This study did not play any role in
patient recruitment.

Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We requested the data for all possible samples from the Hartwig and PCAWG cohorts. The Hartwig cohort included 4902 metastatic tumor
samples from 4572 patients. The PCAWG cohort consisted of 2835 tumor samples from unique patients. After several filtering criteria we
used 5,365 samples in the current study (1,914 from the PCAWG and 3,451 from the Hartwig cohort) to compare primary to metastatic
tumors.

Data exclusions | A selection of samples for all analyses was made based on several criteria. To exclude duplicate samples from the same patient for the
Hartwig cohort, we selected the tumor sample with the most recent biopsy date, and if this information did not exist we selected the sample
with the highest tumor purity. However, some patients had biopsies from different primary tumor locations (likely independent or secondary
tumors). In these cases, we kept at least one sample from each primary tumor location, and when there were multiple samples from the same
primary tumor location, we applied the aforementioned biopsy date and tumor purity filtering criteria. For the PCAWG cohort, we processed
one tumor sample per donor and tumor sample IDs are included in Supp. Table 1 of the manuscript. As with Hartwig QC filter criteria, samples
with a tumor purity lower than 20% were removed as somatic variant calling was less reliable for these samples. PCAWG samples that were
gray- or blacklisted by the PCAWG consortium were also removed (see https://dcc.icgc.org/releases/PCAWG/donors_and_biospecimens). For
both cohorts, we only kept samples with >=50 SNVs/indels (likely no tumor cells present in the sample), and removed an additional set of
samples for several reasons including failed variant calling, insufficient informed consent for use of the WGS data, unnatural SV landscape,
and one duplicate PCAWG patient (DO217844) that was also included in the Hartwig cohort. After strict QC filtering, the PCAWG whitelisted
cohort includes 2,376 samples and this dataset will be made available for the cancer research community via the PCAWG resource page. The
metadata for every sample including those selected for analyses is detailed in supplementary table 1. Lastly, for this study, we only selected
samples from cancer types with at least 15 samples that resulted in a final dataset consisting of 3,835 Hartwig samples and 1,916 PCAWG
samples.

Replication The source data and the source code used in this study are publicly available for academic purposes to ensure the reproducibility of the
analysis conducted in this study

Randomization | Patients from both datasets (Hartwig and PCAWG) were independently recruited by clinical institutions and hospitals. Patients from the
Hartwig Medical Foundation cohort represent late-stage cancer patients while PCAWG patients are primarily early-stage untreated cancer

patients. This study did not play any role in patient's recruitment and randomization into experimental groups.

Blinding This study did not play any role in patient's recruitment .

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
X Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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