Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transannular C–H functionalization of cycloalkane carboxylic acids

Abstract

Cyclic organic molecules are common among natural products and pharmaceuticals1,2. In fact, the overwhelming majority of small-molecule pharmaceuticals contain at least one ring system, as they provide control over molecular shape, often increasing oral bioavailability while providing enhanced control over the activity, specificity and physical properties of drug candidates3,4,5. Consequently, new methods for the direct site and diastereoselective synthesis of functionalized carbocycles are highly desirable. In principle, molecular editing by C–H activation offers an ideal route to these compounds. However, the site-selective C–H functionalization of cycloalkanes remains challenging because of the strain encountered in transannular C–H palladation. Here we report that two classes of ligands—quinuclidine-pyridones (L1, L2) and sulfonamide-pyridones (L3)—enable transannular γ-methylene C–H arylation of small- to medium-sized cycloalkane carboxylic acids, with ring sizes ranging from cyclobutane to cyclooctane. Excellent γ-regioselectivity was observed in the presence of multiple β-C–H bonds. This advance marks a major step towards achieving molecular editing of saturated carbocycles: a class of scaffolds that are important in synthetic and medicinal chemistry3,4,5. The utility of this protocol is demonstrated by two-step formal syntheses of a series of patented biologically active small molecules, prior syntheses of which required up to 11 steps6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transannular C–H arylation via activation of methylene C–H bonds.
Fig. 2: Substrate scope of cyclopentane carboxylic acids.
Fig. 3: Transannular γ-C–H arylation.
Fig. 4: Transannular C–H arylation of cycloalkane carboxylic acids.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Nicolaou, K. C. & Sorensen, E. J. Classics in Total Synthesis: Targets, Strategies, Methods (Wiley, 1996).

  3. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Fang, Z., Song, Y., Zhan, P., Zhang, Q. & Liu, X. Conformational restriction: an effective tactic in ‘follow-on’-based drug discovery. Future Med. Chem. 6, 885–901 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Shearer, J., Castro, J. L., Lawson, A. D. G., MacCoss, M. & Taylor, R. D. Rings in clinical trials and drugs: present and future. J. Med. Chem. 65, 8699–8712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dominguez, C. et al. Histone deacetylase inhibitors for treatment of neurodegenerative diseases. Patent WO 2014/159224 A1 (2 October 2014).

  7. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1989).

  8. Ma, S. Handbook of Cyclization Reactions (Wiley, 2009).

  9. Brill, Z. G., Condakes, M. L., Ting, C. P. & Maimone, T. J. Navigating the chiral pool in the total synthesis of complex terpene natural products. Chem. Rev. 117, 11753–11795 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xia, G. et al. Reversing conventional site-selectivity in C(sp3)–H bond activation. Nat. Chem. 11, 571–577 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan, Z. et al. Molecular editing of aza-arene C–H bonds by distance, geometry and chirality. Nature 610, 87–93 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Meng, G. et al. Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc. 142, 10571–10591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Zaitsev, V. G., Shabashov, D. & Daugulis, O. Highly regioselective arylation of sp3 C–H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 127, 13154–13155 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Banerjee, A., Sarkar, S. & Patel, B. K. C–H functionalization of cycloalkanes. Org. Biomol. Chem. 15, 505–530 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Andra, M. S. et al. Enantio- and diastereoswitchable C–H arylation of methylene groups in cycloalkanes. Chem. Eur. J. 25, 8503–8507 (2019).

    Article  PubMed  Google Scholar 

  17. He, G. & Chen, G. A practical strategy for the structural diversification of aliphatic scaffolds through the palladium-catalyzed picolinamide-directed remote functionalization of unactivated C(sp3)–H bonds. Angew. Chem. Int. Edn 50, 5192–5196 (2011).

    Article  CAS  Google Scholar 

  18. Cui, W. et al. Palladium-catalyzed remote C(sp3)−H arylation of 3-pinanamine. Org. Lett. 16, 4288–4291 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Seki, A., Takahashi, Y. & Miyake, T. Synthesis of cis-3-arylated cycloalkylamines through palladium-catalyzed methylene sp3 carbon–hydrogen-bond activation. Tetrahedron Lett. 55, 2838–2841 (2014).

    Article  CAS  Google Scholar 

  20. Wu, Y., Chen, Y., Liu, T., Eastgate, M. D. & Yu, J. Q. Pd-catalyzed γ-C(sp3)−H arylation of free amines using a transient directing group. J. Am. Chem. Soc. 138, 14554–14557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Topczewski, J. J., Cabrera, P. J., Saper, N. I. & Sanford, M. S. Palladium-catalysed transannular C–H functionalization of alicyclic amines. Nature 531, 220–224 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, Y., Young, M. C., Wang, C., Magness, D. M. & Dong, G. Catalytic C(sp3)–H arylation of free primary amines with an exo directing group generated in situ. Angew. Chem. Int. Edn 55, 9084–9087 (2016).

    Article  CAS  Google Scholar 

  23. Van Steijvoort, B. F., Kaval, N., Kulago, A. A. & Maes, B. U. W. Remote functionalization: palladium-catalyzed C5(sp3)–H arylation of 1-Boc-3-aminopiperidine through the use of a bidentate directing group. ACS Catal. 6, 4486–4490 (2016).

    Article  Google Scholar 

  24. Zhao, J., Zhao, X., Cao, P., Liu, J. & Wu, B. Polycyclic azetidines and pyrrolidines via palladium-catalyzed intramolecular amination of unactivated C(sp3)−H bonds. Org. Lett. 19, 4880–4883 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Coomber, C. E. et al. Silver-free palladium-catalyzed C(sp3)−H arylation of saturated bicyclic amine scaffolds. J. Org. Chem. 83, 2495–2503 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Cabrera, P. J., Lee, M. & Sanford, M. S. Second-generation palladium catalyst system for transannular C−H functionalization of azabicycloalkanes. J. Am. Chem. Soc. 140, 5599–5606 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, Y. Q. et al. Overcoming the limitations of γ- and δ-C−H arylation of amines through ligand development. J. Am. Chem. Soc. 140, 17884–17894 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Landge, V. G., Parveen, A., Nandakumar, A. & Balaraman, E. Pd(II)-catalyzed gamma-C(sp3)–H alkynylation of amides: selective functionalization of R chains of amides R1C(O)NHR. Chem. Commun. 54, 7483–7486 (2018).

    Article  CAS  Google Scholar 

  29. Aguilera, E. Y. & Sanford, M. S. Model complexes for the palladium-catalyzed transannular C−H functionalization of alicyclic amines. Organometallics 38, 138–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Li, Z., Dechantsreiter, M. & Dandapani, S. Systematic investigation of the scope of transannular C−H heteroarylation of cyclic secondary amines for synthetic application in medicinal chemistry. J. Org. Chem. 85, 6747–6760 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Chan, H. S. S., Yang, J. & Yu, J.-Q. Catalyst-controlled site-selective methylene C–H lactonization of dicarboxylic acids. Science 376, 1481–1487 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Liu, B., Romine, A. M., Rubel, C. Z., Engle, K. M. & Shi, B.-F. Transition-metal-catalyzed, coordination-assisted functionalization of nonactivated C(sp3)−H bonds. Chem. Rev. 121, 14957–15074 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stefane, B., Brozic, P., Vehovc, M., Rizner, T. L. & Gobec, S. New cyclopentane derivatives as inhibitors of steroid metabolizing enzymes AKR1C1 and AKR1C3. Eur. J. Med. Chem. 44, 2563–2571 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Haydar, S. N. et al. 5-membered heteroaryl carboxamide compounds for treatment of HBV. Patent WO 2020/086533 A1 (30 April 2020).

  35. Chen, H. et al. Oxadiazole transient receptor potential channel inhibitors. Patent WO 2018/162607 A1 (13 September 2018).

  36. Chobanian, H. et al. Antidiabetic compounds. Patent WO 2015/119899 A1 (13 August 2015).

  37. McMinn, D. & Rao, M. Thiazole derivatives as protein secretion inhibitors. Patent WO 2020/176863 A1 (3 September 2020).

  38. Li, L. & Zhong, M. Inhibitors of HCV NS5A. Patent WO 2010/065681 A1 (10 June 2010).

  39. Wager, T. T. et al.Discovery of two clinical histamine H3receptor antagonists: trans-N-ethyl-3-fluoro-3-[3-fluoro-4-(pyrrolidinylmethyl)-phenyl]cyclobutanecarboxamide (PF-03654746) and trans−3-fluoro-3-[3-fluoro-4-(pyrrolidin-1-ylmethyl)phenyl]-N-(2-methylpropyl)cyclobutanecarboxamide (PF-03654764). J. Med. Chem. 54, 7602–7620 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Shao, Q., Wu, K., Zhuang, Z., Qian, S. & Yu, J.-Q. From Pd(OAc)2 to chiral catalysts: the discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C–H functionalization reactions. Acc. Chem. Res. 53, 833–851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Z. et al. Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C−H activation. Science 374, 1281–1285 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hamama, W. S., El-Magid, O. M. A. & Zoorob, H. H. Chemistry of quinuclidines as nitrogen bicyclic bridged-ring structures. J. Heterocyclic Chem. 43, 1397–1420 (2006).

    Article  CAS  Google Scholar 

  43. Chen, G. et al. Ligand-accelerated enantioselective methylene C(sp3)–H bond activation. Science 353, 1023–1027 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, G. et al. Ligand-enabled β-C–H arylation of α-amino acids without installing exogenous directing groups. Angew. Chem. Int. Edn 56, 1506–1509 (2017).

    Article  ADS  CAS  Google Scholar 

  45. Zhuang, Z. et al. Ligand-enabled β-C(sp3)–H olefination of free carboxylic acids. J. Am. Chem. Soc. 140, 10363–10367 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu, L. et al. Pd(II)-catalyzed enantioselective C(sp3)−H activation/cross-coupling reactions of free carboxylic acids. Angew. Chem. Int. Edn 58, 2134–2138 (2019).

    Article  CAS  Google Scholar 

  47. Strassfeld, D. A., Chen, C.-Y., Park, H. S., Phan, J. & Yu, J.-Q. δ-C(sp3)–H activation of free alcohols enabled by rationally designed H-bond-acceptor ligands. Preprint at https://doi.org/10.26434/chemrxiv-2023-19xhw (2023).

  48. Li, C.-J. Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc. Chem. Res. 42, 335–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, P. et al. Ligand-accelerated non-directed C–H functionalization of arenes. Nature 551, 489–493 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge The Scripps Research Institute and the National Institutes of Health (NIGMS grants 2R01GM084019 and F32GM143921) for their financial support. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank S. Chan for proofreading and providing helpful suggestions in preparing the manuscript. We thank G. Meng, S. Chan and N. Lam for helpful discussions. We thank Y. Lin for the preparation of ligand. J. Chen, B. Sanchez and Q. N. Wong are acknowledged for their assistance with liquid chromatography–mass spectrometry analysis and for separation of some products. We thank M. Gembicky, J. Bailey and the University of California San Diego Crystallography Facility for X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

J.-Q.Y. conceived the concept. G.K. designed and prepared the quinuclidine-pyridone ligands. G.K. and T.S. discovered and developed the transannular γ-C–H arylation of cycloalkane carboxylic acids with ring sizes ranging from five to eight. D.A.S. and C.-Y.C. discovered and developed the transannular C–H arylation of cyclobutane carboxylic acids. G.K., D.A.S. and J.-Q.Y. wrote the manuscript. J.-Q.Y. directed the project.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

J.-Q.Y. and G.K. are inventors on a patent application related to the portion of this work covering 5- to 8-membered cycloalkane carboxylic acids and ligands L1 and L2 (US Patent application 63/483,314) filed by The Scripps Research Institute. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature thanks Magnus Johansson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Sections 1–5

Including general information, an experimental section for transannular γ-methylene C–H activation, supplementary references, single crystal X-ray structures for compounds L1, 3c, 3s, 4ac, L2, 5b, 5k, 6a, 8a, C1 and C2, and 1H, 13C and 19F nuclear magnetic resonance (NMR) spectra data.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, G., Strassfeld, D.A., Sheng, T. et al. Transannular C–H functionalization of cycloalkane carboxylic acids. Nature 618, 519–525 (2023). https://doi.org/10.1038/s41586-023-06000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06000-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing