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Adeno-associated virus 2 infection in 
children with non-A–E hepatitis
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ISARIC4C Investigators, Massimo Palmarini1, Surajit Ray15, David L. Robertson1,207,  
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David Turner9,207, J. Kenneth Baillie3,14,207 & Emma C. Thomson1,18,207 ✉

An outbreak of acute hepatitis of unknown aetiology in children was reported in 
Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent 
studies have suggested an association with human adenovirus with this outbreak, a 
virus not commonly associated with hepatitis. Here we report a detailed case–control 
investigation and find an association between adeno-associated virus 2 (AAV2) 
infection and host genetics in disease susceptibility. Using next-generation sequencing, 
PCR with reverse transcription, serology and in situ hybridization, we detected recent 
infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis 
compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, 
AAV2 was detected within ballooned hepatocytes alongside a prominent T cell 
infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune 
pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was 
identified in 25 out of 27 cases (93%) compared with a background frequency of  
10 out of 64 (16%; P = 5.49 × 10−12). In summary, we report an outbreak of acute 
paediatric hepatitis associated with AAV2 infection (most likely acquired as a 
co-infection with human adenovirus that is usually required as a ‘helper virus’ to 
support AAV2 replication) and disease susceptibility related to HLA class II status.

In April 2022, several hospitals in Scotland reported that children 
were presenting to medical practitioners with acute severe hepati-
tis of unknown aetiology1 (Fig. 1a). Elsewhere in the United Kingdom,  
270 similar presentations were subsequently reported, for which  
15 children required liver transplantation3. The World Health Organi-
zation (WHO) has now registered 1,010 probable cases that fulfil their 
definition of this illness in 35 countries2. Understanding the underlying 
cause of this new disease is a global public health imperative.

Detailed clinical investigations carried out as part of the public health 
response excluded common causes of acute hepatitis, including viral 
hepatitis, drug toxicity and autoimmune hepatitis. However, recent 
or active human adenovirus (HAdV) infection was identified in a high 
proportion of cases in Scotland, England and the United States4–6. This 
finding was notable because HAdV is not a common cause of hepatitis. 
An increase in HAdV diagnoses in Scotland directly preceded the out-
break of unexplained hepatitis in children of a similar age (Fig. 1a,b). 
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SARS-CoV-2 had been circulating for 2 years and peaked several months 
before the increase in hepatitis cases3 (Fig. 1c). Human herpesvirus 6 
(HHV6A and HHV6B) infections were not detected at higher levels 
during 2021 or 2022 (Fig. 1d).

 
Research investigation
To investigate the aetiology of these cases of acute hepatitis, we recruited 
32 affected children who presented to a hospital between 14 March 2022 
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Fig. 1 | Epidemiology and histological appearance of cases of paediatric 
hepatitis in Scotland. a, The emergence of acute non-A–E hepatitis in children 
in March–September 2022 (ref. 3). b–d, Cases of HAdV (b), SARS-CoV-2 (c) and 
HHV6 (d) infection in children aged ≤10 years in Scotland during the period 
January 2019 to September 2022. e–t, Histopathology of samples from cases of 
non-A–E hepatitis (e–l) and from healthy liver (m–t). e,i,m,q, Serial sections of 
formalin-fixed and paraffin-embedded liver tissue sections (one section for 
each stain per patient sample) stained with haematoxylin and eosin (H&E). 
f,j,n,r, Reticulin staining highlighting structural organization. g,k,o,s, Masson 
staining highlighting collagen fibres. h,l,p,t, Staining for MHCII+ cells.  
m–p, The regular lobular structure of the liver from a healthy individual 
(identifier 145783) is not recognisable in e–h, which are sections collected from 
patient CVR35 who received a liver transplant. h, Immunohistochemistry showed 
an increase in MHCII+ cells in tissue samples from patient CVR35 compared 
with healthy liver (l,t). i–l, Higher magnification micrographs of e–h showing 

details of liver histopathology. i,q, For patient CVR35 (i), enlarged (ballooned) 
and vacuolated hepatocytes (marked by asterisks) are evident compared  
with hepatocytes in healthy liver (q; from individual 145783) with regular 
morphology (indicated by the arrow) and regular sinus (indicated by the plus 
symbol). j,r, For the sample from patient CVR35 ( j), reticulin staining shows 
destruction of the sinus structures and irregularly arranged fibres, whereas 
healthy liver (r) shows fibres lining the sinus (indicated by asterisks).  
k,s, For the sample from patient CVR35 (k), Masson staining shows an increase 
in collagen fibres (in blue, indicated by the asterisk) compared with minimal 
staining of fibres (indicated by the arrow) in healthy liver (s). l,t, High 
magnification image showing accumulation of MHCII+ cells in the liver (indicated 
by the asterisk) of patient CVR35 (l), whereas healthy liver (t), staining is  
limited to Kupffer cells (indicated by the arrow). Scale bars, 50 μm (i–l,q–t) or 
400 μm (e–h,m–p).
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and 20 August 2022 and met the Public Health Scotland case definition 
criteria for inclusion in the International Severe Acute Respiratory and 
Emerging Infections Consortium (ISARIC) WHO Clinical Characteriza-
tion Protocol United Kingdom (CCP-UK) (ISRCTN66726260)7. Samples 
from unaffected children (control samples) were obtained from the 
Diagnosis and Management of Febrile Illness using RNA Personalised 
Molecular Signature Diagnosis (DIAMONDS) study cohort and from the 
NHS Greater Glasgow & Clyde (GG&C) Biorepository under appropriate 
ethics approval (Methods)

Clinical presentation
The median age of affected patients was 4.1 years (interquartile range 
(IQR) of 2.7–5.5 years) (Table 1). All patients were of white ethnic-
ity, and 21 out of 32 (66%) were girls. Eighteen (56%) of the children 
reported a subacute history 2–12 weeks before acute hepatitis, which 
was characterized by an initial gastroenteritis-like illness followed 
by intermittent vomiting, abdominal pain and fatigue. The majority  
(23 out of 32) had no other medical conditions. One child had previ-
ously received a liver transplant, whereas none of the other patients 
were immunocompromised and none had received a COVID-19 vacci-
nation. All routine blood tests for viral hepatitis, including hepatitis 
A, B, C and E, acute Epstein–Barr virus (EBV), cytomegalovirus (CMV), 
HHV6 and HHV7, and herpes simplex virus (HSV) were negative (Sup-
plementary Table 1). Four patients had a low titre (1:80) of anti-nuclear 
antibodies and 3 patients had a low titre (1:40) of anti-smooth muscle 
antibodies, but other markers of autoimmunity were negative (Table 1 
and Supplementary Table 2).

Following hospitalization, liver biopsy samples were obtained from 
five children. The samples showed evidence of lobular hepatitis with 
periportal and interface inflammation, intracellular inclusions, bile 
duct proliferation and ballooning of hepatocytes of varying severity 
(Fig. 1e–t). Mild-to-moderate fibrotic changes were noted, with no 
evidence of confluent fibrosis, and there was an inflammatory infiltrate 
that included cells expressing major histocompatibility complex class II 
(MHCII). Modified hepatic activity index scores (Ishak system)8,9 ranged 
from 6 to 11 (Extended Data Table 1), and the biopsy samples stained 
negative for complement.

Four patients required transfer to a specialist liver unit owing to 
significant synthetic liver dysfunction. Two of the patients were treated 
with steroid therapy and improved. One patient received support-
ive care only and spontaneously improved. The fourth patient had 
severe disease and required liver transplantation and was treated with  
cidofovir for HAdV viraemia and steroids after the liver transplant. 
The remaining 28 patients received supportive care only, with no 
antiviral or steroid treatment, and all showed gradual resolution of  
hepatitis over 2–3 months. There were no deaths. The median duration 
of hospital stay was 6 days (range of 1–68 days) (Table 1). In the patients 
with weakly positive autoantibodies, all had normal or normalizing 
transaminase levels at last follow up in the absence of treatment with 
an anti-inflammatory or immunosuppressant.

Pathogen detection by sequencing
As the epidemiology was in keeping with the emergence of an infec-
tious pathogen, we undertook metagenomics and target enrichment 
(TE) next-generation sequencing (NGS) on all available clinical samples 
from the first nine recruited patients. The samples included plasma 
(n = 9), liver biopsy samples (n = 4), throat swabs (n = 6), faecal samples 
(n = 7) and a rectal swab (n = 1), and an average of 14 million sequence 
reads per sample were obtained (Fig. 2a–d). The samples were obtained 
between 7 and 80 days after initial symptom onset. Samples from the 
control group were restricted to children recruited in the United  
Kingdom between January 2020 and April 2022. Two comparison 
groups were used as controls: group 1 comprised serum or plasma 

samples from 13 age-matched healthy children (10 boys, 3 girls; age 
range of 3–5 years); and group 2 comprised serum or plasma samples 
from 12 children (8 boys, 4 girls; age range of 1–4 years) with HAdV 
infection confirmed by PCR and with normal transaminase levels. The 
children in group 2 had been diagnosed by nasopharyngeal aspirate 
(n = 10), by nose swab (n = 1) or by stool (n = 1) as part of the routine 
clinical investigation process and half of the patients required critical 

Table 1 | Demographic and clinical characteristics of the  
32 patients with unexplained hepatitis

Demographics Results

Age (years)a 4.1 (2.7–5.5, 0.9–10.6)

Sex (girls)b 20 (63%)

Co-morbidityb 9 (28%)c

Biochemistry

Peak bilirubina (µmol l–1) 82 (36–160, 3–387)

Peak alanine transaminasea (U l–1) 1,757 (708–2,763, 333–5,417)

Peak aspartate transaminasea (U l–1) 2,048 (833–3,408, 424–6,908)

Peak γ-glutamyltransferasea (U l–1) 124 (91–162, 18–720)

Peak international normalized ratioa 1.2 (1.1–1.4, 1.0–2.9)

Peak C-reactive proteina (mg l–1) 5 (3–11, 1–117)

Caeruloplasmina (n = 24) (g l–1) 0.36 (0.33–0.39, 0.22–0.52)

Key autoimmune parameters

IgGa (g l–1) 11.8 (9.9–14.3, 1.5–21.0)

Coeliac screen (TTG antibody) (n = 26) 26 normal range

Anti-mitochondrial antibody 32 negative

Anti-smooth muscle antibody 29 negative, 3 low positive 
(1:40)c

Anti-liver kidney microsomal 1 antibody 32 negative

Anti-nuclear antibody 28 negative, 4 weak positive 
1:80 titrec

Clinical presentation

Symptoms at presentationb

• Vomiting 22 (69%)

• Jaundice 21 (66%)

• Poor appetite 12 (38%)

• Lethargy or fatigue 10 (31%)

• Abdominal pain 10 (31%)

• Diarrhoea 4 (13%)

Subacute symptoms for ≥14 days before 
presentation (n = 32)

18 (56%)

Subacute symptoms reported (n = 18)

• Intermittent vomiting 15 (83%)

• Initial gastroenteritis-like illness 12 (67%)

• Abdominal pain 9 (50%)

• Lethargy or fatigue 7 (39%)

• Poor appetite 6 (33%)

• Weight loss 6 (33%)

Approximate duration of subacute symptoms 
before presentationa,d

42 (27–52, 14–85) days

Length of hospital staya,e 6 (4–10, 1–68) days

Required transfer to tertiary liver unit 4 (12.5%)

Required liver transplant 1 (3%)
aMedian (IQR, range). bNumber (%) denominator = 32 unless otherwise specified.  
cSee Supplementary Information for additional clinical details. dn = 16 patients with data  
available. en = 30, one patient was a long-term in-patient for an unrelated condition, one 
patient was managed as an outpatient.

https://doi.org/10.1186/ISRCTN66726260
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care. The difference in age between the patients with hepatitis and the 
healthy children in group 1 was not significant, but some samples from 
group 1 were obtained earlier than samples from the cases of hepatitis 
( January 2020–April 2022 compared with March–April 2022, respec-
tively) (Extended Data Table 2a). The children in group 2 were younger 
(median age of 1.4 years, IQR of 1.1–3.1 years, P < 0.001), and samples 
were obtained between May 2020 and December 2021 (Extended Data 
Table 2b). Metagenomics NGS was carried out using protocols designed 
to identify both RNA and DNA viruses. Semi-agnostic TE sequencing 
was also performed using VirCapSeq-VERT Capture probes that target 
the genomes of 207 taxa of viruses known to infect vertebrates.

TE sequencing reflected the metagenomics NGS results, but with 
higher sensitivity, and correlated with viral loads measured by quantita-
tive PCR with reverse transcription (RT–qPCR) (Supplementary Figs. 1 
and 2). The results from both methods showed that the viral genome 
detected most frequently in affected patient plasma samples was 

AAV2 (9 out of 9 cases) (Fig. 2a, Supplementary Table 3 and Extended 
Data Fig. 1). AAV2 was also detected in 4 out of 4 liver biopsy samples, 
and in 1 out of 7 faecal samples, 1 out of 1 rectal sample and 1 out of 6 
throat swab samples. At lower read counts, HAdV-F41 or HAdV-C was 
detected in 6 out of 9 patients, whereas HHV6B was detected in 3 out of 
4 plasma samples (Extended Data Fig. 1, Supplementary Tables 4 and 5,  
Supplementary Data 1 and Supplementary Fig. 3). HAdV types C1, 2, 
5 and 6 could not be reliably distinguished owing to low read counts. 
The remaining clinical samples were excluded from analysis for HHV 
by sequencing because murine herpesvirus 1 had been added as an 
extraction control during routine clinical investigation.

Read counts of AAV2 by TE sequencing were high (median of 
4,478 reads per million, IQR of 774–10,498 reads per million) in all 9 out 
of 9 cases of hepatitis compared with 0 out of 13 in group 1 healthy con-
trols (IQR of 0–0 reads per million, P < 0.001) and 0 out of 12 in group 2 
controls (children with HAdV infection and normal liver function tests; 
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Fig. 2 | Detection of AAV2 in cases of paediatric hepatitis. a, Heatmap of 
HAdV and AAV2 reads detected in cases of hepatitis by TE sequencing. Samples 
obtained for routine clinical investigation (plasma, liver, faeces, rectal swab 
and throat swab) were retrospectively sequenced following DNA or RNA 
extraction. AAV2 read counts are shown from 0 to >50 reads per million in 
green (top rows) and HAdV read counts are shown from 0 to >5 reads per million 
in red (bottom rows). b, Heatmap of viral reads of plasma samples from cases of 
hepatitis and of plasma or sera samples from controls. Plasma samples from 
cases of hepatitis (cases), and plasma or sera samples from children with HAdV 
infection (group 2 controls) and from age-matched healthy children (group 1 
controls) were sequenced following DNA or RNA extraction. AAV2 read counts 
are shown from 0 to >50 reads per million in green and HAdV read counts are 
shown from 0 to >5 reads per million in red. The number of days between initial 

symptom onset and sample are indicated. c, AAV2 real-time RT–qPCR of serum 
or plasma samples from 32 cases of hepatitis (cases) and from 74 controls in 
four groups: 13 in group 1 (healthy controls); 12 in group 2 (HAdV-positive 
controls); 33 in group 3 (hepatitis controls); and 16 in group 4 (contemporaneous 
controls). The detection threshold of the assay (3,200 copies per ml) is shown 
as a dotted line. Values are shown as a scatter plot with a median line. d, AAV2 
real-time RT–qPCR of liver biopsy samples from 5 cases of hepatitis and from  
19 controls. e, IgM responses determined by ELISA in 22 cases of hepatitis and in 
29 controls (13 in group 3, 16 in group 4). f, IgG responses determined by ELISA 
in 22 cases of hepatitis cases and in 29 controls (13 in group 3, 16 in group 4). For 
c–f, statistical analysis was performed using Mann Whitney test (two-tailed), 
and experiments were performed in triplicate.



Nature | Vol 617 | 18 May 2023 | 559

IQR of 0–0 reads per million, P < 0.001) (Supplementary Table 5). HAdV 
reads were detected in 6 out of 12 HAdV-positive samples from group 2 
controls (median of 0.82 reads per million, IQR of 0–1,053 reads per  
million) despite plasma or sera being a suboptimal sample type to detect 
HAdV. HAdV was detected in 3 out of 9 cases of hepatitis (median of  
0 reads per million, IQR of 0–0.6 reads per million), whereas 0 out of 13 
was detected in group 1 healthy controls (IQR of 0–0 reads per million,  
P = 0.055). HHV6B was also detected in 3 out of 4 cases of hepatitis 
compared with 0 out of 13 healthy controls (median of 1.9 reads per  
million, IQR of 0.3–3.5 reads per million and IQR of 0–0 reads per  
million, respectively, P = 0.006) (Supplementary Table 4). However, 
HHV6B read counts did not differ significantly between cases of hepatitis 
and group 2 controls (median of 0 reads per million, IQR of 0–0.04 reads 
per million, P = 0.16), which is in keeping with the occurrence of reactiva-
tion of HHV6B in the context of severe illness. The metagenomics and 
TE sequencing results from the 13 age-matched healthy control samples 
(group 1) revealed no evidence of AAV2, HAdV or HHV6B in plasma; 
however, low read counts of EBV, CMV and HHV6A were detected in a 
small number of samples (Supplementary Table 4). In samples from 
group 2 (children with HAdV infection and normal liver function tests), 
herpesviruses were detected in 9 out of 12 samples, including 2 out of  
12 (as described above) with detectable numbers of HHV6B reads  
(1,050 and 5,062 reads per million), which was confirmed by PCR.

Sequence and phylogenetic analyses
Near-full genomes of AAV2 were obtained from all nine patients with 
hepatitis (GenBank accession numbers OP019741–OP019749), and in 
all cases, two large open reading frames corresponding to the rep and 
cap genes, flanked by inverted terminal repeat regions, were identi-
fied. Seven distinct sequences of AAV2 were noted (Extended Data 
Fig. 2), forming a single clade, alongside four AAV2 genomes previ-
ously detected in France between 2004 and 2015. Two out of three 
identical sequences were known to have come from individuals from 
the same household, therefore these two are epidemiologically linked. 
The third sequence was from a sample obtained around the same time 
but was not known to be linked to the other cases. Sequences from 
the liver samples matched those detected in plasma. Several muta-
tions within the VP1–VP3 genes were noted to be over-represented in 
the sequences derived from patients with hepatitis when compared 
with reference sequences (Extended Data Fig. 2). Notably, nine of the 
mutations in the capsid gene that were over-represented in the cases 
of hepatitis (V151A, R447K, T450A, Q457M, S492A, E499D, F533Y, R585S 
and R588T) are associated with an AAV2 variant that has an altered 
phenotype. Characteristics of this variant include substantial evasion 
of neutralizing antibodies directed against wild-type AAV2, enhanced 
production yields, reduced heparin binding, increased virion stability 
and more localized spread in a mouse model10.

A full genome of HAdV-F41 was obtained from a faecal sample  
(GenBank accession number OP019750) and was found to be closest phy-
logenetically to two genomes reported from Germany in 2019 and 2022 
(Extended Data Fig. 2). Contigs matching to other human pathogens, 
including human coronavirus NL63, rhinovirus C, enterovirus B, human 
parainfluenza viruses 2 and 3, norovirus, and both betaherpesvirus and 
gammaherpesvirus were also detected across cases, albeit not consist-
ently. These findings were confirmed by PCR (Supplementary Table 1).

Confirmatory PCR testing of cases of hepatitis
PCR testing for AAV2 was positive in all nine initial cases of hepatitis. 
Standards were used to estimate the viral loads of positive samples 
(Supplementary Fig. 2). All nine plasma samples tested negative by 
PCR for HHV6, HSV, CMV and EBV. Two out of the four liver biopsy 
specimens tested positive for HHV6 (cycle threshold (Ct) values of 
33 and 36) (Supplementary Table 1). HAdV was detected in 3 out of  

9 plasma samples, 3 out of 4 liver biopsy samples, 2 out of 6 throat 
swabs, 4 out of 7 faecal samples and 1 out of 1 rectal swab. The lower 
detection of HAdV and HHV6 by PCR compared with TE sequencing 
probably reflects a slightly lower sensitivity of the PCR assay. The low 
numbers of HAdV-positive samples detected using both assays may 
reflect the fact that plasma is a suboptimal sample type for HAdV detec-
tion (whole blood samples were unavailable).

Case–control study
To investigate the presence of AAV2 and the candidate helper viruses 
HAdV and HHV6B in plasma samples from cases of hepatitis, we under-
took a case–control study in which samples from 32 cases of hepatitis 
were compared with samples from the group 1 and group 2 controls 
described above and with samples from two additional control groups 
(Fig. 2a–f). Group 3 controls comprised 33 children (18 boys and 15 girls 
aged 2–16 years) with increased transaminase levels that had tested neg-
ative by PCR for HAdV. This group was used to test the hypothesis that 
reactivation of AAV2 may occur in children with severe hepatitis and 
may be a correlate of liver dysfunction. The children comprising group 3 
were older (median age of 10.2 years, IQR of 7–13.6 years, P < 0.001) 
than the patients from the case group (Extended Data Table 2b) and 
15 out of 33 had required critical care for ventilatory or cardiovascular 
support. Group 4 controls comprised residual plasma or serum sam-
ples from 16 children in Scotland aged 10 years and were attending 
hospital contemporaneously with the children with hepatitis between 
March and April 2022. The group 4 controls were used to determine 
whether AAV2 was circulating widely in children in healthcare facilities 
across Scotland at the time the children with hepatitis were admitted to  
hospital. Clinical details, including liver function were not available for 
this group. To ensure that the quantification of AAV2 was accurately 
performed, we confirmed standard curve concentrations using droplet 
digital PCR (Methods).

Significance differences between groups for viral loads in plasma 
samples were calculated using a Mann–Whitney test (two-tailed). 
RT–qPCR of plasma samples showed that 26 out of 32 cases of hepa-
titis were positive for AAV2, with a median estimated copy number of 
66,100 copies per ml (IQR of 13,461– 300,277 copies per ml), a value 
higher than samples from all the control groups (P < 0.001 for all case–
control comparisons). The median copy number in control groups 1–3 
was below the detection limit. A median of 3,268 copies per ml (detec-
tion threshold of 3,200 copies per ml) was present in samples from 
control group 4, which suggested that AAV2 was circulating at low 
levels in children during March and April 2022 (Fig. 2c). Although five 
plasma samples from cases of hepatitis were positive for HAdV by PCR, 
and one tested positive by PCR for HHV6 DNA, these results were not 
significantly more common than in samples from the control group 
(Supplementary Fig. 3).

Next, five liver biopsy samples from cases of hepatitis were com-
pared with 19 residual liver biopsy samples (controls) from children 
under 18 years old. The median AAV2 viral load was 3,721,497 copies 
per mm3 of liver (IQR of 3,308,243−6,717,616 copies per mm3) in cases 
of hepatitis compared with 64 copies per mm3 of liver (IQR of 20–83 
copies per mm3) in samples from the control group (P < 0.001; Fig. 2d). 
Glyceraldehyde-3-phosphate dehydrogenase was used as a marker of 
extraction efficiency in all samples, and results were similar between 
the case and control groups. When outliers were removed, significance 
was retained (Supplementary Data 2, Supplementary Fig. 4).

Longitudinal sampling
To investigate AAV2 viraemia and liver function values over time, longi-
tudinal PCR testing was performed in 14 cases of hepatitis from whom 
multiple retrospective plasma samples were available (Supplementary 
Fig. 5). Spearman’s rank correlation coefficients for the relationships 

https://www.ncbi.nlm.nih.gov/gquery/?term=OP019741
https://www.ncbi.nlm.nih.gov/gquery/?term=OP019749
https://www.ncbi.nlm.nih.gov/gquery/?term=OP019750
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between the trajectories of viral load and alanine transaminase and 
bilirubin were positive for most cases. However, overall statistical  
significance could not be confirmed owing to the sample size.

Where samples were available, we screened for the presence of 
AAV2-specific IgM and IgG antibodies within samples from patients 
and samples from the group 1 healthy controls and group 4 contempo-
raneous controls (Fig. 2e,f and Supplementary Fig. 6). Anti-AAV2 IgM 
was detected in 15 out of 23 (65.2%) samples from cases of hepatitis, 
but only 1 out of 13 (7.7%) samples from group 1 healthy controls and  
2 out of 16 (12.5%) samples from the group 4 contemporaneous con-
trols from Scotland. For the samples from cases of hepatitis that tested 
negative for AAV2-specific IgM, samples from four patients were noted 
to be obtained fewer than 3 days after the onset of illness and samples 
from two patients were obtained more than 77 days after the onset of 
illness. IgG was detected in 21 out of 23 (91.3%) samples from cases 
of hepatitis, in 8 out of 13 (61.5%) samples from age-matched healthy 
controls (group 1) and in 9 out of 16 (56.3%) samples from healthy con-
trols from Scotland (group 4). Of the two samples from patients who 
tested seronegative, both were obtained at early time points, probably 
sampled before expected seroconversion (less than 3 days after the 
onset of illness).

SARS-CoV-2 infection
Routine clinical investigation detected SARS-CoV-2 nucleic acid in 
nasopharyngeal samples from 3 out of 31 (9.6%) children at the time 
of illness, 2 of whom were also seropositive. The third became infected 
after the onset of hepatitis. SARS-CoV-2 was not detected by PCR or 
by sequencing in any of the samples from cases or controls available 
for analysis, including liver samples. Nevertheless, to investigate the 
possibility that unexplained hepatitis in children might relate to a pre-
vious infection with SARS-CoV-2 or other seasonal coronaviruses, we 
carried out serological analysis of 23 available residual samples from 
cases. IgG antibody titres were quantitatively measured against the 
spike protein, the amino-terminal domain (NTD) and receptor binding 
domain (RBD) of the spike protein and the nucleocapsid of SARS-CoV-2. 
IgG antibody titres were also measured for human seasonal coronavi-
ruses 229E, OC43, NL63 and HKU1. Electrochemiluminescence assays 
(MSD-ECL) for coronavirus-specific IgG revealed previous exposure 
to seasonal coronaviruses, with strong responses detected against 
NL63 (17 out of 23) and OC43 (21 out of 23) (Extended Data Fig. 3a). 
By comparison, plasma samples from 12 out of 23 children displayed 
high reactivity against HKU1, whereas only 3 out of 23 samples reacted 
strongly against 229E. Plasma samples from 11 children reacted with 
2 or more SARS-CoV-2 antigens (nucleocapsid, spike protein, NTD or 
RBD). One of the samples reacted solely with the nucleocapsid anti-
gen, which indicated that in total, 12 out of 23 patients displayed sero-
logical evidence of previous exposure to SARS-CoV-2 (Extended Data 
Fig. 3b). In summary, 12 out of 23 (52%) of the children with hepatitis 
displayed evidence of previous exposure to SARS-CoV-2. This level 
is lower than SARS-CoV-2 seroprevalence in children aged 5–11 years 
in Scotland between 14 March and 27 June 2022 (when Public Health 
Scotland enhanced surveillance for COVID-19 was discontinued), 
which was reported as between 59.0% (95% confidence interval (CI) of 
50.6–71.2) and 72.4% (95% CI of 53.9–78.8)11. This result indicates that 
there is no direct link between COVID-19 and the outbreak of acute 
hepatitis studied here.

Host genetics and HLA typing
We next investigated whether some children might be genetically more 
susceptible to non-A–E hepatitis. To that end, 27 samples from cases 
of hepatitis and 64 platelet apheresis samples from local donors in 
Scotland (controls) were genotyped using high-resolution typing for 
all HLA loci (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB3, HLA-DRB4, 

HLA-DRB5, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB1). In total,  
25 out of 27 (92.6%) samples from patients with hepatitis were positive 
for at least one copy of the HLA-DRB1*04:01 allele compared with 10 out 
of 64 (15.6%) of samples from controls. The allele frequency in patients 
was 0.54 compared with 0.08 in controls (odds ratio (OR) of 13.7 (95% CI 
of 5.5–35.1), P = 5.49 × 10−12). The frequency of the HLA-DRB1*04:01 allele 
(based on an imputation of HLA alleles) in a control set of unrelated 
participants from the UK Biobank (n = 29,379) was 0.11 (2,942 out of 
29,379 allele carriers, OR of 112.3 (95% CI of 26.6–474.5), P = 3.27 × 10−23). 
The frequency was also 0.11 in British/Irish North-West European indi-
viduals from the Anthony Nolan charity register11. To check for cryptic 
relatedness among patients and population stratification, we per-
formed genome-wide microarray genotyping in 19 cases of hepatitis 
and excluded participants with a conservative relatedness threshold 
(identity-by-state > 0.4). When compared with well-matched partici-
pants from the UK Biobank (Extended Data Fig. 4), similar signals for 
association with disease by allele frequency (P = 8.96 × 10−6) and across 
the three possible biallelic genotypes at this locus (P = 1.2 × 10−9) were 
obtained.

In addition to the association with the DRB1 allele, 23 out of 27 sam-
ples from patients with hepatitis were positive for HLA-DQA1*03:03 
compared with 11 out of 64 samples from controls (allele frequency 
of 0.54 compared with 0.09, respectively, OR of 12.3 (5.1–30.7), 
P = 1.9 × 10−11). Moreover, 26 out of 27 samples from patients were posi-
tive for HLA-DRB4*01:03 compared with 21 out of 64 samples from con-
trols (allele frequency of 0.67 compared with 0.17, respectively, OR of 
9.4 (4.4–21.3), P = 1.8 × 10−10). Owing to strong linkage disequilibrium 
in this region of the genome, it is not possible to be certain which is the 
causal susceptibility allele.

In situ hybridization and immune typing
To investigate the presence of AAV2, HAdV and HHV6 in liver biopsy 
samples, we carried out in situ hybridization (ISH). Liver biopsy sam-
ples of all patients were characterized by the presence of AAV2 RNA 
within the nuclei and cytoplasm of ballooned hepatocytes and in arte-
rial endothelial cells, which is indicative of the presence of replicating 
virus (Fig. 3a–h). AAV2-positive cells were quantified at a high level in all 
cases using QuPath in biopsy samples from five non-A-non-E hepatitis, 
ranging from 1.2 to 4.7%. This level is similar to that seen in hepatitis 
associated with other viruses12,13. Consistent with low levels of HHV6B 
and HAdV sequence reads present in the biopsy samples from cases of 
hepatitis, negligible levels of viral RNA from these viruses were detected 
by ISH.

To investigate the possibility of an immune-mediated pathogenesis 
of disease in the liver, multiplex analysis of liver samples was carried out 
using co-detection by indexing (CODEX) for various immune cellular 
markers, including CD3, CD4, CD8, PD-L1, CD107a, CD20, CD31, CD44, 
CD68, MX1 and PanCK (Fig. 4a–d and Supplementary Figs. 7 and 8).  
In the explant liver sample of patient CVR35, prominent disordered pro-
liferation of epithelial cells throughout the liver tissue was evident, with 
increased numbers of CD68+ macrophages, activated CD4+ and CD8+ 
T cells and CD20+ B cells. High expression of the interferon-induced 
GTP-binding protein MX1 was also noted, which indicated that the 
innate immune response was activated.

Conclusions and final statements
In this study, we reported the association of AAV2 infection and the 
class II HLA allele HLA-DRB1*04:01 with an outbreak of paediatric 
non-A–E hepatitis, with virus being detected independently by sequenc-
ing, real-time PCR and ISH. Liver biopsy tissue samples from all patients 
were characterized by the presence of AAV2 RNA (indicating replicat-
ing virus) within the nucleus and cytoplasm of ballooned hepatocytes 
and by a dense infiltrate of CD4+ and CD8+ T cells in the liver with an 
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activated phenotype. A CD4+ T-helper cell-mediated immunopathologi-
cal response triggered by exposure to AAV2 infection is highly probable, 
consistent with the markedly increased frequency of the MHC class II 
HLA-DRB1*04:01 allele in affected children.

AAV2 is a small non-enveloped virus with a single-stranded DNA 
genome of around 4,675 nucleotides in length and it belongs to the 
species adeno-associated dependoparvovirus A (genus Dependopar-
vovirus, family Parvoviridae)14. It was first described in 1965 and infects 
up to 80% of the adult population. Seroconversion occurs in early child-
hood following respiratory infection15,16. In a prospective study in the 
United States, the earliest seroconversion to AAV2 infection occurred 
in a 9-month-old child, and its seroprevalence increased from 24.2% to 
38.7% in 3-year-old and 5-year-old children, respectively. This age range 
coincides with that of the cases in this study, which suggests that illness 
may be related to primary infection with AAV2 rather than its reactiva-
tion. In line with this hypothesis, anti-AAV2 IgM reactivity was observed 
in the majority of affected children. AAV2 relies on co-infection with 
a helper virus for replication, most commonly HAdV or a herpesvi-
rus. Most clinical samples taken at presentation with hepatitis were 
obtained more than 20 days after initial symptom onset, which could 
explain the absence of a helper virus in some samples and low viral loads 
in positive samples. In an exploratory study using NGS, we detected 
two candidate helper viruses at low level in the cases of hepatitis: HAdV 
and HHV6B (in 6 out of 9 cases and in 3 out of 9 cases, respectively). 
These viruses were not confirmed to be higher in cases than controls 
in plasma or liver samples in our larger case–control study. HHV6B was 
also present in two control groups that included children with severe 
HAdV infection and children with hepatitis of alternative aetiology. 
As HHV6 can establish latency and can integrate its genome into the 
human chromosome, it may reactivate following concomitant illness 
(or immunosuppression) and may represent either an opportunistic 
bystander or a pathogen.

We propose that AAV2 is directly implicated in the pathology of 
the 2022 outbreak of non-A–E hepatitis in children, which occurred 
following transmission as a co-infection with HAdV or less likely due 

to reactivation following HAdV or HHV6 infection. Our results also 
support an association between HLA class II haplotype and disease 
susceptibility. A CD4+ T-cell-mediated response may direct maladaptive 
immunopathology mediated by T cytotoxic cells or B cells. In support 
of this notion, a CD8+ cell-mediated response directed against the AAV2 
viral capsid (VP1) in association with hepatitis was reported in early 
trials of AAV2 when used as a vector for gene therapy17–19. Hepatitis 
remains a common phenomenon in recipients of gene therapy vectored 
by AAV, and this side effect is usually treated pre-emptively with ster-
oids before and for several weeks after the gene therapy; in rare cases, 
AAV-mediated gene therapy has been associated with deaths from 
fulminant hepatic failure20,21. As a result of this current study, further 
studies are needed investigate the association between HLA status 
with severe illness in gene therapy recipients. Notably, we did not find 
features of autoimmune hepatitis (AIH), either by serology or histology, 
in affected children. In a study of children from Scotland with AIH22, the 
majority had evidence of seropositive disease (100% of patients with 
type II AIH tested positive for anti-LKM1). Furthermore, patients with 
AIH were older in age (median age of 11.4 years compared with 4.1 years 
in our cohort) and had significantly lower median alanine transaminase 
levels at diagnosis (444 IU per litre compared with 1,756 IU per litre). 
None of the AIH patients improved without treatment22.

An alternative explanation for our findings is that AAV2 is not 
directly involved in pathology and is instead a biomarker of infection 
with HAdV. More than half of the patients with hepatitis in our study 
had subacute symptoms, with a median onset of 42 days before the 
onset of jaundice. The opportunity to detect virus by sequencing was 
therefore reduced, as samples were collected after this stage of illness. 
Furthermore, whole blood samples might have increased the sensitiv-
ity of detection, but only serum or plasma samples were available. We 
consider this alternative hypothesis to be less likely because we did not 
detect AAV2 in a control group of children with HAdV infection who 
had normal liver function tests. However, HAdV41 is a common cause 
of diarrhoea in young children23, and co-infection of AAV2 with HAdV41 
may explain early gastrointestinal symptoms in affected children. By 
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Fig. 3 | ISH of AAV2 in liver tissue. a–g, RNA ISH for the detection of AAV2 RNA 
in sections of formalin-fixed and paraffin-embedded liver tissues from children 
(one section per patient) with non A–E hepatitis. a, AAV2 RNA (red signal, 
indicated by an arrow) was detected in the endothelial cells of arteries in an 
explant liver section from patient CVR35. The vascular lumen is highlighted 
with by an asterisk. b, A positive AAV2 signal was detected in the nuclei of 
hepatocytes with vacuolated morphology from patient CVR4 (indicated by 
arrows) and in a negative cell (indicated by the circle). c,d, A liver section from 
patient CVR1 showed AAV2 RNA both in the nucleus and in the cytoplasm (c), 
whereas for patient CVR9 (d), AAV2 RNA was found only in the nucleus (indicated 
by arrows). e, A high percentage of hepatocytes with a positive signal for AAV2 
was present predominantly in the nucleus of hepatocytes in the samples from 
patient CVR1. f, AAV2 was not detectable in liver sections from samples from 

healthy individuals in either the endothelial cells or hepatocytes. g, Samples 
from patient CVR35 showed inclusion bodies in hepatocytes. Left, small, dark 
basophilic intranuclear inclusions next to the nucleolus (indicated by arrows). 
Right, a large, pale basophilic, diffuse intranuclear inclusion body (suggestive 
of adenovirus infection; indicated by an arrow) next to a multinucleated giant 
cell in the liver (indicated by the asterisk). h, AAV2-positive cells were quantified 
using QuPath in biopsy samples from five patients with non-A–E hepatitis (cases) 
and from controls. Patient CVR35 (who received a liver transplant) is highlighted 
in red. Using the entire section, cells were segmented to identify the nuclei  
and cytoplasm, and the algorithm was tuned to detect red signals. All samples 
were analysed using the same algorithm. Scale bars, 25 μm (insets of c,d), 
50 μm (a–d,f,g) or 200 μm (e).
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contrast, although adenovirus-associated hepatitis has been previously 
described, particularly among immunocompromised individuals24,  
HAdV41 has not previously been associated with severe hepatitis.  
In the recent outbreaks of unexplained hepatitis in children, it has been 
inconsistently associated4–6,25–27.

We also investigated the possibility that the unexplained cases 
of hepatitis were linked to a previous illness with COVID-19. Direct 
SARS-CoV-2-induced liver injury is unlikely though, as few of our cases 
of hepatitis (3 out of 31) were positive for SARS-CoV-2 by PCR on admis-
sion to hospital, and we did not identify SARS-CoV-2 by PCR or sequenc-
ing in any of the clinical samples from cases, including liver biopsies. 
Furthermore, the SARS-CoV-2 seroprevalence in cases of hepatitis was 
lower than in the community at that time. This result is in keeping with 
a case–control analysis by the UK Health Security Agency3, who found 
no difference in SARS-CoV-2 PCR positivity between cases of hepatitis 
and children presenting to emergency departments between January 
and June 2022. Nevertheless, we cannot at this time fully exclude a 
post-COVID-19 immune-mediated phenomenon, for example, a link 
to HLA class II type, in susceptible children.

There are several limitations to this study. First, the presence of 
AAV2 in cases of hepatitis but not controls in groups 1–3 may have 
arisen because of seasonal variation in AAV2 transmission, as some 
children in the control groups were sampled earlier in the year than 
for cases. We included a contemporaneous control group (group 4) 
to address this possibility. Low viral loads of AAV2 were detected in 
a small number of samples from the group 4 controls, which is in 
keeping with the presence of the circulating virus in children at the 
time the cases of hepatitis occurred. Second, the presence of AAV2 in 
the cases of hepatitis is an association and may not represent direct 
aetiology, and AAV2 may be a useful biomarker of recent HAdV (or 
less likely HHV6B) infection. We do not consider it probable that 
AAV2 simply represents a marker of liver damage because it was not 

present in cases of severe hepatitis of alternative aetiology and, sig-
nificantly, we detected AAV2 in ballooned hepatocytes by ISH. The 
strong association of the HLA-DRB1*04:01 allele, known to be associ-
ated with autoimmune hepatitis type 128 and extra-articular manifes-
tations of rheumatoid arthritis29, with the cases of hepatitis provides 
support for a large impact of host genetics on susceptibility. How-
ever, this analysis was affected by strong linkage disequilibrium, and 
larger studies are required to confirm a definitive association with 
this allele. The association between HLA status and the presence of 
an activated T cell infiltrate together with AAV2-infected cells in the 
liver is in keeping with a CD4+ cell-mediated immune pathology30.  
We consider autoimmune disease to be less likely of a cause of the cases 
of hepatitis studied here because of the absence of autoantibodies and 
the absence of typical histology in liver specimens. It is also plausible 
that simultaneous HAdV infection with a co-infecting or reactivated 
AAV2 infection has resulted, for a proportion of children who are more 
susceptible (owing to the HLA class II allele HLA-DRB1*04:01), in a more 
severe outcome than might typically be expected for these commonly 
circulating viruses. Peptide mapping experiments are recommended 
in future studies to investigate the nature of the HLA class II-restricted 
T cell response.

The 2022 outbreak of AAV2-associated paediatric hepatitis that we 
described in this study may have arisen because of changes in exposure 
patterns to AAV2, HAdV and HHV6B as an indirect consequence of the 
COVID-19 pandemic. The circulation of common human viruses was 
interrupted in 2020 by the implementation of non-pharmaceutical 
interventions, including physical distancing and travel restrictions, 
instituted to mitigate SARS-CoV-2 transmission. Once restrictions were 
lifted, genetically susceptible children may have had a higher chance 
of being exposed to both HAdV and AAV2 for the first time, creating a 
synchronized wave of severe disease. Larger case–control studies are 
needed to confirm the role of AAV2 and HLA status in the aetiology 
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Fig. 4 | CODEX analysis of liver tissue. a–d, Images of liver tissue from patient 
CVR35 (b,d) and a liver sample from an unaffected individual (control; a,c) 
show differences in cellular composition (c,d). a, Regularly structured bile 
ducts in the liver biopsy from the control are highlighted by asterisks, and 
epithelial cells are stained green using cytokeratin (CK). Scattered macrophages 
(CD68, red), T cells (CD3, cyan) and activated T cells (CD44, yellow) are also 
present. b, By contrast, the explant liver from patient CVR35 shows prominent 
proliferation of epithelial cells throughout the liver tissue (green), with increased 
macrophages (red), T cells (cyan) and activated T cells (yellow). c, The control 

liver shows scattered cytotoxic T cells (CD8, red), CD107a-positive cells (brown) 
and CD4-positive cells (yellow) cells and low expression of the interferon- 
induced GTP-binding protein MX1 (green). d, High numbers of all cell types  
and high MX1 expression are observed in the explant liver from patient CVR35. 
One section of liver was stained per individual, and the entire area was manually 
outlined. Cells were segmented to identify the nuclei and cytoplasm, and the 
algorithm was tuned to detect the colour signal in the cells. All samples were 
analysed using the same algorithm for each stain. Scale bars, 50 μm.
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of unexplained non-A–E paediatric hepatitis. Retrospective testing 
of samples from sporadic cases of unexplained hepatitis in children 
is also needed.
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Methods

ISARIC CCP-UK recruitment, Biorepository and DIAMONDS 
studies
Ethics approval for the ISARIC CCP-UK study was given by the South 
Central–Oxford C Research Ethics Committee in England (13/SC/0149), 
the Scotland A Research Ethics Committee (20/SS/0028) and the WHO 
Ethics Review Committee (RPC571 and RPC572). Thirty-two children 
aged <16 years were prospectively recruited by written informed 
consent (parent or guardian) from the ISARIC WHO CCP-UK cohort 
admitted to hospital with increased transaminase levels (defined 
as alanine transaminase levels of >400 IU per litre and/or aspartate 
aminotransferase levels of >400 IU per litre) that was not due to viral 
hepatitis A–E, AIH or poisoning. Nine patients had available clinical 
samples for further investigation. Three additional patients had HLA 
typing performed, but samples were not available for further analysis. 
Samples for the control groups were obtained from children (aged 
<16 years) recruited to the DIAMONDS study, an ongoing multi-country 
study that aims to develop a molecular diagnostic test for the rapid 
diagnosis of severe infection and inflammatory diseases using person-
alized gene signatures (ISRCTN12394803). Ethics approval was given 
by the London-Dulwich Research Ethics Committee (20/HRA/1714). 
Controls included healthy individuals (n = 13; group 1), children with 
PCR-confirmed adenoviral infection with normal transaminase levels 
(n = 12; group 2), and children with increased transaminase levels with-
out adenoviral infection (n = 33; group 3), recruited between 19 May 
2020 to 8 January 2022. Surplus plasma samples from individuals in 
Scotland (aged <10 years; March to April 2022; group 4) and liver biopsy 
control samples (from individuals aged <18 years; January 2021 to July 
2022) from the Diagnostic Pathology/Blood Sciences archive were 
obtained with NHS GG&C Biorepository approval (application no. 717; 
REC 22/WS/0020). Samples from adults that had tested negative by 
PCR for SARS-CoV-2 were used as an additional group for serological 
analysis of coronaviruses as a negative control group, also with NHS 
GG&C Biorepository approval. These adult samples were used with-
out consent on the basis of Human Tissue Act legislation on consent 
exemption.

Viral PCR
RNA extraction was carried out using the protocol from Biomerieux 
Easymag. In total, 300 μl of plasma or sera was extracted and eluted 
into 80 μl of water.

AAV2 RT–qPCR was performed to detect a 62 bp amplicon of the 
AAV2 inverted terminal repeat region (ITR) as previously described31 
using the forward ITR primer (5′-GGAACCCCTAGTGATGGAGTT-3′) 
and the reverse ITR primer (5′-CGGCCTCAGTGAGCGA-3′). The 
AAV2 ITR hydrolysis probe was labelled with fluorescein (6FAM) 
and quenched with Black Hole quencher (BHQ) 5′-[6FAM]-CA
CTCCCTCTCTGCGCGCTCG-[BHQ1]3′). AAV2 primers and probe were 
synthesized by Merck Life Sciences. RT–qPCR analysis was performed 
using an ABI7500 Fast Real-Time PCR system (Applied Biosystems).  
A LUNA Universal One-Step RT PCR kit (New England Biolabs) was used 
for the amplification and detection of the AAV2 ITR target. RT–qPCR 
assays were performed in a 20 μl volume reaction (Luna Universal 
One-Step reaction mix, Luna WarmStart RT enzyme mix, 400 nM 
forward and reverse primers, 200 nM AAV2 ITR probe and 1–2.5 μl of 
template DNA) as per the manufacturer’s instructions. To quantify the 
number of copies, serial dilutions of plasmid containing the 62 bp ITR 
product were used to generate a standard curve, which was then used to 
interpolate the copy number of AAV2 copies in the samples. Wells with 
no template were used as negative controls. RT–qPCR reactions were 
performed in triplicate. The RT–qPCR program consisted of an initial 
reverse transcription step at 55 °C for 10 min, an initial denaturation 
step at 95 °C for 1 min followed by 45 cycles of 95 °C denaturation for 
10 s and extension at 58 °C for 1 min. A qPCR detection limit between  

31 and 32 cycles was calculated as the threshold Ct value at the last dilu-
tion of DNA standards that were within the linear range. A PCR result was 
considered positive if all three reactions tested positive at ≤31 cycles.

Digital droplet PCR was performed according to the manufac-
turer’s instructions using the digital droplet PCR supermix for probes  
(no dUTP) (Bio-Rad, 1863023) and analysed using a QX200 Droplet 
Digital PCR system (Bio-Rad, 1864001).

The West of Scotland Specialist Virology Centre, NHS Greater  
Glasgow and Clyde, conducted diagnostic real-time RT–PCR to detect 
HAdV, SARS-CoV-2-positive samples and other viral pathogens asso-
ciated with hepatitis (for example, hepatitis A–E) following nucleic 
acid extraction utilizing the NucliSENS easyMAG and Roche MG96 
platforms. HHV6 (ref. 32) and HAdV41 (ref. 33) were tested by qPCR as 
previously described using Invitrogen platinum qPCR mix (11730-025) 
and Quanta Biosciences qPCR mix mastermix (733-1273), respectively, 
on an ABI7500 system and amplified for 40 cycles. A 6 μl extract was 
amplified in a total reaction volume of 15 μl.

Measurement of antibody response to coronaviruses by 
electrochemiluminescence
IgG antibody titres were quantitatively measured against the spike  
protein, the NTD, the RBD or nucleocapsid of SARS-CoV-2, and against 
the spike glycoproteins of human seasonal coronaviruses 229E, OC43, 
NL63 and HKU1 using MSD V-PLEX COVID-19 Coronavirus Panel 2 
(K15369) and Respiratory Panel 1 (K15365) kits. Multiplex meso scale 
discovery electrochemiluminescence (MSD-ECL) assays were per-
formed according to manufacturer’s instructions. Samples were diluted 
1:5,000 in diluent and added to the plates along with serially diluted 
reference standard (calibrator) and serology controls 1.1, 1.2 and 1.3. 
Plates were read using a MESO Sector S 600 plate reader. Data were 
generated using Methodological Mind software and analysed using 
MSD Discovery Workbench (v.4.0). Results are expressed as MSD arbi-
trary units per ml (AU ml–1). Adult negative and positive pools gave the 
following values: negative pool: spike, 56.6 AU ml–1; NTD, 119.4 AU ml–1; 
RBD, 110.5 AU ml–1; and nucleocapsid, 20.7 AU ml–1; SARS-CoV-2-positive 
pool: spike, 1,331.1 AU ml–1; NTD, 1,545.2 AU ml–1; RBD, 1,156.4 AU ml–1; 
and nucleocapsid, 1,549.0 AU ml–1. In the same assay, NIBSC 20/130 
reference serum was used and the following values obtained: spike, 
547.7 AU ml–1; NTD, 538.8 AU ml–1; RBD, 536.9 AU ml–1; and nucleocapsid 
1,840.2 AU ml–1.

Metagenomics sequencing
Full protocols on the detection of RNA and DNA viruses using metagen-
omics NGS and TE sequencing methods can be found in refs. 32,34.

In summary, residual nucleic acid from 27 samples from cases with 
hepatitis (from 9 patients with a combination of plasma, liver, faeces, 
rectal, and throat and nose samples), 12 samples from HAdV-positive 
individuals and 13 samples from healthy individuals (control samples 
were either plasma or sera) underwent metagenomics NGS sequencing 
at the MRC-University of Glasgow Centre for Virus Research Genomics  
facility. In brief, each nucleic acid sample was split into two library 
preparations to improve the chances of detecting RNA and DNA viruses. 
The protocol used to improve detection of RNA viruses included 
treatment with DNaseI (Ambion DNase I, ThermoFisher), ribosomal 
depletion (Ribo-Zero Plus rRNA Depletion Kit, Illumina), except for 
plasma samples, reverse transcription (SuperScript III, Invitrogen) 
and double-strand DNA synthesis (NEBNext Ultra II Non-Directional 
RNA Second Strand Synthesis Module, NEB). The protocol used to 
detect DNA viruses included partial removal of host DNA (NEBNext 
Microbiome DNA Enrichment Kit, NEB). Following this, both sets of 
samples were used to prepare libraries using a KAPA LTP kit (Roche) 
with unique dual indices (NEBNext Multiplex oligos for Illumina, 
NEB). The resulting libraries were pooled in equimolar amounts and 
sequenced using a NextSeq500 (Illumina) to obtain paired-end reads 
using 150 × 150 cycles.

https://doi.org/10.1186/ISRCTN12394803


TE sequencing
Following the library preparation step described above, DNA-derived 
and RNA-derived libraries were pooled separately and were incubated 
with VirCapSeq-VERT Capture Panel probes (Roche) following the 
manufacturer’s guidelines. The Roche VirCapSeq-VERT Capture 
Panel covers the genomes of 207 taxa of viruses known to infect verte-
brates (including humans). Enriched DNA-derived and RNA-derived 
libraries were further amplified using 14 PCR cycles, then pooled and 
sequenced using a NextSeq500 (Illumina) to obtain paired-end reads 
using 150 × 150 cycles.

Bioinformatics analysis
Reads for each sample were first quality checked. Illumina adapters 
were trimmed using Trim Galore (https://github.com/FelixKrueger/
TrimGalore) and then mapped to the human genome using BWA-MEM 
(https://github.com/lh3/bwa). Only reads that did not map to the 
human genome were used for metagenomics analyses. Reads per 
million were calculated as the number of viral reads per million reads 
sequenced to normalize for variation in sample sequencing depth. 
Non-human reads were then de novo assembled using MetaSPAdes 
(https://github.com/ablab/spades) to generate contigs for each sample. 
Contigs were compared against a protein database of all NCBI RefSeq 
organisms (including virus, bacteria and eukaryotes) with BLASTX 
using DIAMOND (https://github.com/bbuchfink/diamond). In addi-
tion, non-human reads for each sample were aligned to a small panel 
of HAdV NCBI RefSeq genomes (HAdV-A, HAdV-B1, HAdV-B2, HAdV-C, 
HAdV-D, HAdV-E, HAdV-F, HAdV-1, HAdV-2, HAdV-5, HAdV-7, HAdV-35, 
HAdV-54 and HAdV-F41).

The nine AAV2 near-complete genome contigs from the plasma sam-
ples were assembled and compared with sequences in GenBank using 
BLASTN (nucleotide database). Each of these AAV2 genomes had numer-
ous close hits (exhibiting >95% similarity across 95% of the genome) 
with various existing AAV2 sequences; those most closely related were 
reported in a previous publication35. All linear complete AAV2 genomes 
returned from BLAST against the GenBank nucleotide database with 
a query coverage of >75% were selected and combined with the AAV 
sequences de novo assembled here and aligned using MAFFT. The  
terminal ends of this alignment were trimmed off, and IQ-TREE 2 was 
used (TIM+F+R3 model) to infer a phylogenetic tree. For the single 
HAdV41 genome de novo assembled, all available HAdV41 complete 
genomes were downloaded from GenBank, aligned with MAFFT and 
IQ-TREE2 was used (K2P+R2 model) to infer a phylogenetic tree.

Anti-AAV2 ELISA
AAV2 pAAV-CAG-tdTomato viral preparation (codon diversified) was a 
gift from E. Boyden (Addgene viral preparation number 59462-AAV2; 
http://n2t.net/addgene:59462; RRID:Addgene_59462).

AAV2 particles, obtained from Addgene (59462-AAV2) were diluted in 
PBS and used to coat a Immulon 2HB 96-well flat bottom plate (Immuno-
Chemistry Technologies) at a concentration of 1 × 108 particles per well. 
The plates were incubated on an orbital shaker overnight at 4 °C. Plates 
were then blocked with PBS-T (PBS with 0.1% Tween-20) containing 
5% BSA for 1 h before the addition of samples. The plates were washed 
five times in PBS-T before serum samples, diluted 1:50 in PBS, were 
added in triplicate. A mouse anti-AAV2 (A20, Progen) was used as a 
positive control at a concentration of 1:50. Samples were incubated at 
room temperature on an orbital shaker for 90 min before washing five 
times in PBS-T and adding either anti-human IgM or anti-human IgG  
(Merck, A9794 and A1543, respectively) diluted 1:10,000. Goat 
anti-mouse IgG (Merck, A2429) was used as the secondary for the 
anti-AAV2 A20 positive control. The plates were incubated for 1 h before 
washing five times with PBS-T then 100 μl of alkaline phosphatase yellow  
(Merck, P7998) was added and incubated for 15 min before stopping 
the reaction with 3 M NaOH and the absorbance measured at 405 nm.

Immunohistochemistry, ISH and special staining
Formalin-fixed and paraffin-wax-embedded liver samples were cut at 
around 3 μm thickness and mounted on glass slides. A reticulin (1936) 
and Masson trichrome (1929) special staining method (Gordon and 
Sweets method (1936)) was performed. Antibodies used for immuno-
histochemistry are listed in Supplementary Table 6.

Detection of viral nucleic acids, ubiquitin and DapB-specific RNA 
(Advanced Cell Diagnostics, AAV2 (1195791), HHV6 (144565), adenovirus 
41 (1192351), ubiquitin (310041) and DapB (310043)) was performed 
following the manufacturer’s protocol with pretreatment with sim-
mering in target solution (30 min) and additional proteinase K (30 min) 
treatment. A haematoxylin counterstain was performed, and slides 
were mounted with Vectamount mounting medium (H-500, Vector 
Laboratories) and scanned using a bright-field slide scanner (Leica, 
Aperio Versa 8).

Liver histopathology grading
Liver scoring was performed as previously described8,9.

Quantification of immune cells
After scanning of the whole slide, liver tissue was outlined and the num-
ber of positively stained cells (DAB signal for immunohistochemistry 
or Fast Red signal for ISH) was assessed using software-assisted image 
analysis (QuPath, v.0.3.2)36. For each marker, the cell detection algo-
rithm was tuned, and data were plotted using GraphPad Prism (v.9.4.1).

Spatial analysis (CODEX Phenocycler)
Formalin fixed, paraffin-wax-embedded liver  samples (patient 
228742A and patient 145808) were sectioned at 2–4 μm thickness on 
22 × 22 mm glass coverslips (Akoya Biosciences, 7000005) coated in 
0.1% poly-l-lysine (Sigma-Aldrich, P8920). Antigen retrieval was per-
formed by pressure cooking with citrate buffer at pH 6. Carrier-free, 
pre-conjugated antibodies were purchased directly from Akoya Bio-
sciences or purchased from other suppliers in preparation for custom 
conjugation. If carrier-free antibodies were not available, alterna-
tives were purchased and purified using a Pierce antibody cleanup 
kit (44600, ThermoFisher). Antibodies were custom conjugated to 
a unique oligonucleotide barcode according to the manufacturer’s 
instructions using an antibody conjugation kit (7000009, Akoya Bio-
sciences) and stored at 4 °C for at least 48 h before use. Conjugated 
antibodies were stored at 4 °C.

Coverslips with tissue were rehydrated in an alcohol series and 
washed in distilled water before performing heat-induced antigen 
retrieval in a pressure cooker with citrate buffer (pH 6). Glass cover-
slips were then moved progressively between wells of a 6-well plate 
containing components of the CODEX staining kit (Akoya Biosciences, 
7000008). This included 2 wells of hydration buffer (2 min each), 1 well 
of staining buffer (20 min), and then staining with 190 μl of an 11-marker 
antibody panel (Supplementary Table 7). Tissue sections of both sam-
ples were treated in the same way on the same day and were incubated 
with antibodies for 3 h at room temperature simultaneously. Following 
staining, tissue was incubated twice in staining buffer (2 min each) and 
transferred to a post-staining fixation solution made from a 1:10 ratio 
of paraformaldehyde to storage buffer for 10 min. Tissue samples were 
then washed 3 times in 1× PBS (14190-094, Gibco), incubated in ice-cold 
methanol (M/4000/PC17, Fisher Scientific) for 5 min on ice, and again 
washed 3 times in PBS. Tissue sections were fixed in a fixative solution 
for 20 min, washed 3× in PBS and stored in storage buffer until image 
acquisition.

Image acquisition was achieved using a Keyence BZ-X710 micro-
scope equipped with 4 fluorescent channels (1 nuclear stain, 3 for anti-
body visualization). In a 96-well plate (Akoya Biosciences, 7000006), 
a maximum of three oligonucleotide reporters were used per well 
(cycle) (5 μl each) and added to between 235 μl and 245 μl reporter 

https://github.com/FelixKrueger/TrimGalore
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stock solution that was made according to the manufacturer’s instruc-
tions. Plates were sealed with aluminium film (Akoya Biosciences, 
7000007) and stored at 4 °C until use. Pictures were captured using 
QuPath (v.0.3.2)36.

Host genetics and HLA typing
High-resolution typing for all HLA loci (HLA-A, HLA-B, HLA-C, HLA-DRB1, 
HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DQA1, HLA-DQB1, HLA-DPA1 and 
HLA-DPB1) was performed using an AllType FASTplex NGS assay (One 
Lambda) run on an Illumina Mi-Seq platform. HLA typing was under-
taken on 27 ISARIC participants who provided consent. One patient was 
omitted from analysis as they were a sibling of another case. HLA types 
from 64 Scottish National Blood Transfusion Service apheresis platelet 
donors, self-identified as white British (n = 15) or white Scottish (n = 49) 
were used as control samples for comparison with patient HLA allele fre-
quencies. Genotyping was performed using Illumina Global Screening 
Array v.3.0 + multi-disease beadchips (GSAMD-24v3-0-EA) and Infinium 
chemistry. This consists of three steps: (1) whole genome amplification; 
(2) fragmentation followed by hybridization; and (3) single-base exten-
sion and staining. Arrays were imaged on an Illumina iScan platform, 
and genotypes were automatically called using GenomeStudio Analysis 
software (v.2.0.3), GSAMD-24v3-0-EA_20034606_A1.bpm manifest and 
a cluster file provided by the manufacturer.

Given the small sample size, it was not possible to implement qual-
ity control processes using GenomeStudio and the manufacturer’s 
published recommendations. As genotyping was conducted using 
the same genotyping array used for the GenOMICC study, variants 
that passed quality control for the GenOMICC study were retained as 
previously described37. After further excluding variants with call rates 
of <95%, a total of 478,692 variants were used for downstream analysis.

Kinship and population structure
To identify close relatives up to third degree, King 2.1 was used, which 
confirmed the presence of a pair of siblings with no further close rela-
tives identified. Genotypes of 19 patients were combined with imputed 
genotypes of a subset of unrelated participants from the UK Biobank, 
which was obtained by removing one individual in each pair with esti-
mated kinship larger than 0.0442. The resulting genotypes were filtered 
to exclude variants with a mean allele frequency of <5%, a genotype 
missingness rate of <1.5% and Hardy–Weinberg equilibrium of P < 10−50. 
Principal component analysis was conducted with gcta 1.955 in the 
set of unrelated individuals with pruned single nucleotide polymor-
phisms using a window of 1,000 markers, a step size of 50 markers and 
a r2 threshold of 0.01. Analyses were performed once including all UK 
Biobank participants and once including only UK Biobank participants 
who were born in Scotland (UK Biobank data-field 1647) and of Cauca-
sian genetic ancestry (UK Biobank data-field 22006).

Statistics
Differences between cases and control groups were tested using Fisher’s 
exact test for categorical variables and Mann–Whitney (two tailed) 
for continuous variables using R studio (v.1.2.5033), R (v.4.1.2) and 
GraphPad (v.9.0.0).

For coronavirus serology experiments, comparisons were carried 
out using one-way analysis of variance (ANOVA) and Tukey’s multiple 
comparison test, carried out in GraphPad (v.8.4.3).

HLA analysis used the Bridging ImmunoGenomic Data-Analysis 
Workflow Gaps (BIGDAWG) R package to derive OR and corrected 
P values for individual HLA alleles38. The Bonferroni-corrected P value 
significance threshold, adjusted for multiple comparisons (168 HLA 
alleles), was P < 3.0 × 10−4.

Figures
Figures were prepared using Microsoft Office Excel 2010, Microsoft 
Office PowerPoint 2010 and Adobe Illustrator 2022.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Datasets generated in the current study are appended as supplementary 
tables. Data, protocols and all documentation regarding this analysis 
may be made available to academic researchers after authorization 
from the independent data access and sharing committee. Clinical 
data and analysis scripts are available on request to the Independent 
Data Management and Access Committee at https://isaric4c.net/sam-
ple_access. Restrictions apply to the availability of identifiable clinical 
data. Owing to the relatively small number of cases, de-aggregation of 
data is potentially disclosive, as is the patient-level line list data. There-
fore, a formal data-sharing agreement is required for data access. The 
Independent Data and Material Access Committee considers requests 
as they arrive; most responses are made within 28 days. Use of clini-
cal samples are also restricted under ethical approvals obtained for 
their use. Genome sequences are available at GenBank with accession 
numbers OP019741–OP019749 for AAV2 and OP019750 for HAdV-F41. 
Source data are provided with this paper.

Code availability
Freely available bioinformatics and statistical software were used, see 
links in the Methods section. 
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Extended Data Fig. 1 | AAV2, HAdV and human herpesvirus detection by 
target enrichment sequencing in cases and controls. Read counts per 
million are plotted for a) HAdV; b) AAV2; c) HHV6B; d) HSV1; e) HSV2; f) VZV;  

g) HHV6A; h) HHV7; i) HHV8; and j) CMV in cases, Group 1 healthy controls  
and Group 2 controls (HAdV positive children with normal liver function). 
Statistical significance was estimated using a Mann-Whitney test (two-sided).



Extended Data Fig. 2 | Phylogenetic and sequence analysis of AAV2 
genomes. a) Maximum likelihood phylogeny of AAV2 from hepatitis cases 
CVR1-9. The nine AAV2 genome sequences generated from the plasma samples 
via target enrichment (highlighted in green) were aligned with a range of the 
closest AAV GenBank sequences39. AAV2 reference sequences are denoted by 
accession number, country and year of sampling b), Phylogeny of HAdV41 
genome from case 5. The HAdV41 genome sequence from the faecal sample of 
patient 5 (red) was combined with complete genomes of HAdV41 from GenBank. 

Bootstrap values >70 are indicated. HAdV41 reference sequences are denoted 
by accession number, country and year of sampling; c), Key mutations and 
hierarchical clustering of AAV2 genomes. Mutations in published AAV2 
sequences are highlighted in (blue) and case sequences (green); d) Mutations 
over-represented in hepatitis cases versus controls. Mutations in VP1-3, Rep78 
and 52 and AAP are highlighted by % representation in case sequences (green) 
and published sequences (blue).
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Extended Data Fig. 3 | Reactivity of sera from paediatric hepatitis cases 
against human seasonal coronaviruses and SARS-CoV-2. Sera from the 
paediatric hepatitis cases were screened for reactivity against spike proteins 
from a) seasonal coronaviruses 229E, OC43, NL63 and HKU1, and b) SARS-CoV-2 
nucleocapsid (N), spike (S), and N-terminal domain (NTD) and receptor binding 
domain (RBD) of S by electrochemiluminescence (MSD-ECL). Reactivity of the 
23 samples (Hepatitis) was compared with 16 sera from contemporaneous 
control samples from children (Group 4 Controls), and three groups of sera 
from adults of known SARS-CoV-2 status; Negatives (never tested positive for 
SARS-CoV-2; n = 30), Vaccinated two doses (n = 28) and Infected (n = 39).



Extended Data Fig. 4 | Principal component analysis (PCA) plots. PCA plots 
showing the first four genome-wide principal components to confirm genetic 
ancestry matching. a) Genomic PCA using full United Kingdom Biobank cohort 
as background population (grey), showing the subgroup of unrelated United 

Kingdom Biobank participants who were born in Scotland and of Caucasian 
ancestry (blue) and the hepatitis cases reported here (red). b) plots showing 
only the subgroup born in Scotland and of Caucasian ancestry.
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Extended Data Table 1 | Modified hepatic activity index scores



Extended Data Table 2 | Characteristics of cases and controls a) used in metagenomic and target enrichment analysis  
b) used in PCR analysis

*Fisher’s Exact or chi-squared test for categorical and Mann-Whitney (two-sided) test for continuous variables. 
†Age and sex of Group 4 controls unavailable.
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