Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Computational approaches streamlining drug discovery

Abstract

Computer-aided drug discovery has been around for decades, although the past few years have seen a tectonic shift towards embracing computational technologies in both academia and pharma. This shift is largely defined by the flood of data on ligand properties and binding to therapeutic targets and their 3D structures, abundant computing capacities and the advent of on-demand virtual libraries of drug-like small molecules in their billions. Taking full advantage of these resources requires fast computational methods for effective ligand screening. This includes structure-based virtual screening of gigascale chemical spaces, further facilitated by fast iterative screening approaches. Highly synergistic are developments in deep learning predictions of ligand properties and target activities in lieu of receptor structure. Here we review recent advances in ligand discovery technologies, their potential for reshaping the whole process of drug discovery and development, as well as the challenges they encounter. We also discuss how the rapid identification of highly diverse, potent, target-selective and drug-like ligands to protein targets can democratize the drug discovery process, presenting new opportunities for the cost-effective development of safer and more effective small-molecule treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key factors driving VLS technology breakthroughs for generation of high-quality hits and leads.
Fig. 2: Benefits of a bigger chemical space.
Fig. 3: Synthon-based hierarchical screening.
Fig. 4: Computationally driven drug discovery.

Similar content being viewed by others

References

  1. Austin, D. & Hayford, T. Research and development in the pharmaceutical industry. CBO https://www.cbo.gov/publication/57126 (2021).

  2. Sun, D., Gao, W., Hu, H. & Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 12, 3049–3062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bajorath, J. Computer-aided drug discovery. F1000Res. 4, F1000 Faculty Rev-1630 (2015).

    Article  Google Scholar 

  4. Van Drie, J. H. Computer-aided drug design: the next 20 years. J. Comput. Aided Mol. Des. 21, 591–601 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Talele, T. T., Khedkar, S. A. & Rigby, A. C. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr. Top. Med. Chem. 10, 127–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Macalino, S. J. Y., Gosu, V., Hong, S. & Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharmacal. Res. 38, 1686–1701 (2015).

    Article  CAS  Google Scholar 

  7. Sabe, V. T. et al. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: a review. Eur. J. Med. Chem. 224, 113705 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Jayatunga, M. K., Xie, W., Ruder, L., Schulze, U. & Meier, C. AI in small-molecule drug discovery: a coming wave. Nat. Rev. Drug Discov. 21, 175–176 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019). This study claims the discovery of a lead candidate in just 21 days, using generative AI, synthesis, and in vitro and in vivo testing of the compounds.

    Article  CAS  PubMed  Google Scholar 

  10. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05154240#contactlocation (2022).

  11. Schrodinger. Schrödinger announces FDA clearance of investigational new drug application for SGR-1505, a MALT1 inhibitor. Schrodinger https://ir.schrodinger.com/node/8621/pdf (2022). This press release states that combined physics-based and ML methods enabled a computational screen of 8.2 billion compounds and the selection of a clinical candidate after 10 months and only 78 molecules synthesized.

  12. Jones, N. Crystallography: atomic secrets. Nature 505, 602–603 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Liu, W. et al. Serial femtosecond crystallography of G protein–coupled receptors. Science 342, 1521–1524 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nannenga, B. L. & Gonen, T. The cryo-EM method microcrystal electron diffraction (MicroED). Nat. Methods 16, 369–379 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernandez-Leiro, R. & Scheres, S. H. Unravelling biological macromolecules with cryo-electron microscopy. Nature 537, 339–346 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Renaud, J.-P. et al. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat. Rev. Drug Discov. 17, 471–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Congreve, M., de Graaf, C., Swain, N. A. & Tate, C. G. Impact of GPCR structures on drug discovery. Cell 181, 81–91 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Grygorenko, O. O. et al. Generating multibillion chemical space of readily accessible screening compounds. iScience 23, 101681 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019). This is ultra-large docking study also carefully assessed the advantages and potential pitfalls of expanding chemical space.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579, 609–614 (2020). This study shows ultra-large docking that resulted in subnanomolar hits for a GPCR.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alon, A. et al. Structures of the sigma2 receptor enable docking for bioactive ligand discovery. Nature 600, 759–764 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gorgulla, C. et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature 580, 663–668 (2020). This study shows an iterative library filtering as a first approach to accelerate ultra-large virtual screening.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gorgulla, C. et al. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. iScience 24, 102021 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Graff, D. E., Shakhnovich, E. I. & Coley, C. W. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem. Sci. 12, 7866–7881 (2021). This study introduces acceleration of ultra-large screening by iteratively combining DL and docking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sadybekov, A. A. et al. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 601, 452–459 (2022). This study introduces the modular concept for screening gigascale spaces, V-SYNTHES, and validates its performance on GPCR and kinase targets.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Yang, X., Wang, Y., Byrne, R., Schneider, G. & Yang, S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 119, 10520–10594 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Pandey, M. et al. The transformational role of GPU computing and deep learning in drug discovery. Nat. Mach. Intell. 4, 211–221 (2022).

    Article  Google Scholar 

  29. Blay, V., Tolani, B., Ho, S. P. & Arkin, M. R. High-throughput screening: today’s biochemical and cell-based approaches. Drug Discov. Today 25, 1807–1821 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Lyu, J., Irwin, J. J. & Shoichet, B. K. Modeling the expansion of virtual screening libraries. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01234-w (2023).

    Article  PubMed  Google Scholar 

  32. Tomberg, A. & Boström, J. Can easy chemistry produce complex, diverse, and novel molecules? Drug Discov. Today 25, 2174–2181 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Muchiri, R. N. & van Breemen, R. B. Affinity selection–mass spectrometry for the discovery of pharmacologically active compounds from combinatorial libraries and natural products. J. Mass Spectrom. 56, e4647 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Fitzgerald, P. R. & Paegel, B. M. DNA-encoded chemistry: drug discovery from a few good reactions. Chem. Rev. 121, 7155–7177 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Neri, D. & Lerner, R. A. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Annu. Rev. Biochem. 87, 479–502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCloskey, K. et al. Machine learning on DNA-encoded libraries: a new paradigm for hit finding. J. Med. Chem. 63, 8857–8866 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Walters, W. P. Virtual chemical libraries. J. Med. Chem. 62, 1116–1124 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Warr, W. A., Nicklaus, M. C., Nicolaou, C. A. & Rarey, M. Exploration of ultralarge compound collections for drug discovery. J. Chem. Inf. Model. 62, 2021–2034 (2022). This is a comprehensive review of the history and recent developments of the on-demand and generative chemical spaces.

    Article  CAS  PubMed  Google Scholar 

  39. Enamine. REAL Database. Enamine https://enamine.net/compound-collections/real-compounds/real-database (2020).

  40. Hartenfeller, M. et al. A collection of robust organic synthesis reactions for in silico molecule design. J. Chem. Inf. Model. 51, 3093–3098 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Patel, H. et al. SAVI, in silico generation of billions of easily synthesizable compounds through expert-system type rules. Sci. Data 7, 384 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Irwin, J. J. et al. ZINC20-A free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model. 60, 6065–6073 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu, Q. et al. Pfizer Global Virtual Library (PGVL): a chemistry design tool powered by experimentally validated parallel synthesis information. ACS Comb. Sci. 14, 579–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Nicolaou, C. A., Watson, I. A., Hu, H. & Wang, J. The Proximal Lilly Collection: mapping, exploring and exploiting feasible chemical space. J. Chem. Inf. Model. 56, 1253–1266 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Enamine. REAL Space. Enamine https://enamine.net/library-synthesis/real-compounds/real-space-navigator (2022).

  46. Bellmann, L., Penner, P., Gastreich, M. & Rarey, M. Comparison of combinatorial fragment spaces and its application to ultralarge make-on-demand compound catalogs. J. Chem. Inf. Model. 62, 553–566 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Enamine. Make on-demand building blocks (MADE). Enamine https://enamine.net/building-blocks/made-building-blocks (2022).

  48. Hoffmann, T. & Gastreich, M. The next level in chemical space navigation: going far beyond enumerable compound libraries. Drug Discov. Today 24, 1148–1156 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Ruddigkeit, L., van Deursen, R., Blum, L. C. & Reymond, J.-L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52, 2864–2875 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Vanhaelen, Q., Lin, Y.-C. & Zhavoronkov, A. The advent of generative chemistry. ACS Med. Chem. Lett. 11, 1496–1505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ballante, F., Kooistra, A. J., Kampen, S., de Graaf, C. & Carlsson, J. Structure-based virtual screening for ligands of G protein-coupled receptors: what can molecular docking do for you? Pharmacol. Rev. 73, 527–565 (2021).

    Article  PubMed  Google Scholar 

  52. Neves, M. A., Totrov, M. & Abagyan, R. Docking and scoring with ICM: the benchmarking results and strategies for improvement. J. Comput. Aided Mol. Des. 26, 675–686 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meiler, J. & Baker, D. ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65, 538–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Lorber, D. M. & Shoichet, B. K. Flexible ligand docking using conformational ensembles. Protein Sci. 7, 938–950 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Halgren, T. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Gaieb, Z. et al. D3R grand challenge 3: blind prediction of protein-ligand poses and affinity rankings. J. Comput. Aided Mol. Des. 33, 1–18 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parks, C. D. et al. D3R grand challenge 4: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies. J. Comput. Aided Mol. Des. 34, 99–119 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bender, B. J. et al. A practical guide to large-scale docking. Nat. Protoc. 16, 4799–4832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537, 185–190 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cerón-Carrasco, J. P. When virtual screening yields inactive drugs: dealing with false theoretical friends. ChemMedChem 17, e202200278 (2022).

    PubMed  PubMed Central  Google Scholar 

  63. Rossetti, G. G. et al. Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Sci. Rep. 12, 2505 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luttens, A. et al. Ultralarge virtual screening identifies SARS-CoV-2 main protease inhibitors with broad-spectrum activity against coronaviruses. J. Am. Chem. Soc. 144, 2905–2920 (2022). This study compares fragment-based and ultra-large screening-based discovery of lead candidates for the challenging target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Owen, D. R. et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 374, 1586–1593 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Böhm, H.-J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des. 6, 61–78 (1992).

    Article  ADS  PubMed  Google Scholar 

  67. Beroza, P. et al. Chemical space docking enables large-scale structure-based virtual screening to discover ROCK1 kinase inhibitors. Nat. Commun. 13, 6447 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jumper, J. et al. Applying and improving AlphaFold at CASP14. Proteins 89, 1711–1721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schneider, P. et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 19, 353–364 (2020). This article provides a comprehensive introduction to DL approaches in drug discovery.

    Article  CAS  PubMed  Google Scholar 

  71. Elbadawi, M., Gaisford, S. & Basit, A. W. Advanced machine-learning techniques in drug discovery. Drug Discov. Today 26, 769–777 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Bender, A. & Cortés-Ciriano, I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet. Drug Discov. Today 26, 511–524 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Davies, M. et al. Improving the accuracy of predicted human pharmacokinetics: lessons learned from the AstraZeneca drug pipeline over two decades. Trends Pharmacol. Sci. 41, 390–408 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Schneckener, S. et al. Prediction of oral bioavailability in rats: transferring insights from in vitro correlations to (deep) machine learning models using in silico model outputs and chemical structure parameters. J. Chem. Inf. Model. 59, 4893–4905 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Cherkasov, A. et al. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Keiser, M. J. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guney, E., Menche, J., Vidal, M. & Barábasi, A.-L. Network-based in silico drug efficacy screening. Nat. Commun. 7, 10331 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cichońska, A. et al. Crowdsourced mapping of unexplored target space of kinase inhibitors. Nat. Commun. 12, 3307 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Tang, J. et al. Drug Target Commons: a community effort to build a consensus knowledge base for drug–target interactions. Cell Chem. Biol. 25, 224–229.e222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, Z. et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31, 405–412 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Gaudelet, T. et al. Utilizing graph machine learning within drug discovery and development. Brief. Bioinform. 22, bbab159 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Son, J. & Kim, D. Development of a graph convolutional neural network model for efficient prediction of protein–ligand binding affinities. PLoS ONE 16, e0249404 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stepniewska-Dziubinska, M. M., Zielenkiewicz, P. & Siedlecki, P. Improving detection of protein–ligand binding sites with 3D segmentation. Sci. Rep. 10, 5035 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jiménez, J., Škalič, M., Martínez-Rosell, G. & De Fabritiis, G. KDEEP: protein–ligand absolute binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model. 58, 287–296 (2018).

    Article  PubMed  Google Scholar 

  86. Jones, D. et al. Improved protein–ligand binding affinity prediction with structure-based deep fusion inference. J. Chem. Inf. Model. 61, 1583–1592 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Volkov, M. et al. On the frustration to predict binding affinities from protein–ligand structures with deep neural networks. J. Med. Chem. 65, 7946–7958 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).

    Article  Google Scholar 

  89. Beker, W. et al. Machine learning may sometimes simply capture literature popularity trends: a case study of heterocyclic Suzuki–Miyaura coupling. J. Am. Chem. Soc. 144, 4819–4827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu, B. & Kumbier, K. Veridical data science. Proc. Natl Acad. Sci. USA 117, 3920–3929 (2020). This perspective article lays a foundation for veridical AI.

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  91. Ng, A., Laird, D. & He, L. Data-centric AI competition. DeepLearning AI https://https-deeplearning-ai.github.io/data-centric-comp/ (2021).

  92. Miranda, L. J. Towards data-centric machine learning: a short review. LJ Miranda https://ljvmiranda921.github.io/notebook/2021/07/30/data-centric-ml/ (2021).

  93. Jiménez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2, 573–584 (2020).

    Article  Google Scholar 

  94. Wills, T. AI drug discovery: assessing the first AI-designed drug candidates to go into human clinical trials. CAS https://www.cas.org/resources/cas-insights/drug-discovery/ai-designed-drug-candidates (2022).

  95. Meng, C., Seo, S., Cao, D., Griesemer, S. & Liu, Y. When physics meets machine learning: a survey of physics-informed machine learning. Preprint at https://doi.org/10.48550/arXiv.2203.16797 (2022).

  96. Thomas, M., Bender, A. & de Graaf, C. Integrating structure-based approaches in generative molecular design. Curr. Opin. Struct. Biol. 79, 102559 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Ackloo, S. et al. CACHE (Critical Assessment of Computational Hit-finding Experiments): a public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding. Nat. Rev. Chem. 6, 287–295 (2022). This is an important community initiative for comprehensive performance assessment of computational drug discovery methods.

    Article  PubMed  PubMed Central  Google Scholar 

  98. MolSoft. Rapid isostere discovery engine (RIDE). MolSoft http://molsoft.com/RIDE.html (2022).

  99. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Akdel, M. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 29, 1056–1067 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Katritch, V., Rueda, M. & Abagyan, R. Ligand-guided receptor optimization. Methods Mol. Biol. 857, 189–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Carlsson, J. et al. Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat. Chem. Biol. 7, 769–778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ren, F. et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel cyclin-dependent kinase 20 (CDK20) small molecule inhibitor. Chem. Sci. 14, 1443–1452 (2023).

  106. Zhang, Y. et al. Benchmarking refined and unrefined AlphaFold2 structures for hit discovery. J. Chem. Inf. Model. 63, 1656–1667 (2023).

  107. He, X.-h. et al. AlphaFold2 versus experimental structures: evaluation on G protein-coupled receptors. Acta Pharmacol. Sin. 44, 1–7 (2022).

    Article  PubMed  Google Scholar 

  108. Wong, F. et al. Benchmarking AlphaFold-enabled molecular docking predictions for antibiotic discovery. Mol. Syst. Biol. 18, e11081 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hekkelman, M. L., de Vries, I., Joosten, R. P. & Perrakis, A. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat. Methods 20, 205–213 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Yang, Y. et al. Efficient exploration of chemical space with docking and deep learning. J. Chem. Theory Comput. 17, 7106–7119 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Gentile, F. et al. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking. Nat. Protoc. 17, 672–697 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Schindler, C. E. M. et al. Large-scale assessment of binding free energy calculations in active drug discovery projects. J. Chem. Inf. Model. 60, 5457–5474 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Chen, W., Cui, D., Abel, R., Friesner, R. A. & Wang, L. Accurate calculation of absolute protein–ligand binding free energies. Preprint at https://doi.org/10.26434/chemrxiv-2022-2t0dq-v2 (2022).

  114. Khalak, Y. et al. Alchemical absolute protein–ligand binding free energies for drug design. Chem. Sci. 12, 13958–13971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cournia, Z. et al. Rigorous free energy simulations in virtual screening. J. Chem. Inf. Model. 60, 4153–4169 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. xREAL Chemical Space, Chemspace, https://chem-space.com/services#v-synthes (2023).

  117. Rarey, M., Nicklaus, M. C. & Warr, W. Special issue on reaction informatics and chemical space. J. Chem. Inf. Model. 62, 2009–2010 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Zabolotna, Y. et al. A close-up look at the chemical space of commercially available building blocks for medicinal chemistry. J. Chem. Inf. Model. 62, 2171–2185 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Kaplan, A. L. et al. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature 610, 582–591 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  120. Krasiński, A., Fokin, V. V. & Sharpless, K. B. Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3-triazoles, revisited. Org. Lett. 6, 1237–1240 (2004).

    Article  PubMed  Google Scholar 

  121. The Nobel Prize in Chemistry. nobelprize.org, https://www.nobelprize.org/prizes/chemistry/2022/summary/ (2022)

  122. Dong, J., Sharpless, K. B., Kwisnek, L., Oakdale, J. S. & Fokin, V. V. SuFEx-based synthesis of polysulfates. Angew. Chem. Int. Ed. Engl. 53, 9466–9470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, B. et al. Ni-electrocatalytic Csp3-Csp3 doubly decarboxylative coupling. Nature 606, 313–318 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Gillis, E. P. & Burke, M. D. Iterative cross-couplng with MIDA boronates: towards a general platform for small molecule synthesis. Aldrichimica Acta 42, 17–27 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Blair, D. J. et al. Automated iterative Csp3–C bond formation. Nature 604, 92–97 (2022). This study provides a chemical approach for automation of the C–C bond formation in small-molecule synthesis.

    Article  ADS  CAS  PubMed  Google Scholar 

  126. Li, J. et al. Synthesis of many different types of organic small molecules using one automated process. Science 347, 1221–1226 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Trobe, M. & Burke, M. D. The molecular industrial revolution: automated synthesis of small molecules. Angew. Chem. Int. Ed. 57, 4192–4214 (2018).

    Article  CAS  Google Scholar 

  128. Bubliauskas, A. et al. Digitizing chemical synthesis in 3D printed reactionware. Angew. Chem. Int. Ed. 61, e202116108 (2022).

    Article  CAS  Google Scholar 

  129. Molga, K. et al. A computer algorithm to discover iterative sequences of organic reactions. Nat. Synth. 1, 49–58 (2022).

    Article  ADS  Google Scholar 

  130. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Goldman, B., Kearnes, S., Kramer, T., Riley, P. & Walters, W. P. Defining levels of automated chemical design. J. Med. Chem. 65, 7073–7087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Grisoni, F. et al. Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Sci. Adv. 7, eabg3338 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wagner, J. R. et al. Emerging computational methods for the rational discovery of allosteric drugs. Chem. Rev. 116, 6370–6390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Davis, B. J. & Hubbard, R. E. in Structural Biology in Drug Discovery (ed. Renaud, J.-P.) 79–98 (2020).

  135. de Souza Neto, L. R. et al. In silico strategies to support fragment-to-lead optimization in drug discovery. Front. Chem. 8, 93 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  136. Saur, M. et al. Fragment-based drug discovery using cryo-EM. Drug Discov. Today 25, 485–490 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Kuljanin, M. et al. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat. Biotechnol. 39, 630–641 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Muegge, I., Martin, Y. C., Hajduk, P. J. & Fesik, S. W. Evaluation of PMF scoring in docking weak ligands to the FK506 binding protein. J. Med. Chem. 42, 2498–2503 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Schuller, M. et al. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Sci. Adv. 7, eabf8711 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  140. Gahbauer, S. et al. Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2. Proc. Natl Acad. Sci. USA 120, e2212931120 (2023). This article demonstrates the application of both hybrid fragment screening-and-merging design and ultra-large library screening to a challenging viral target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Achdout, H. et al. Open science discovery of oral non-covalent SARS-CoV-2 main protease inhibitor therapeutics. Preprint at https://doi.org/10.1101/2020.10.29.339317 (2022).

  142. Jin, Z. et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  143. Ton, A. T., Gentile, F., Hsing, M., Ban, F. & Cherkasov, A. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol. Inform. 39, e2000028 (2020).

    Article  PubMed  Google Scholar 

  144. Frye, L., Bhat, S., Akinsanya, K. & Abel, R. From computer-aided drug discovery to computer-driven drug discovery. Drug Discov. Today Technol. 39, 111–117 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Wadman, M. FDA no longer needs to require animal tests before human drug trials. Science, https://doi.org/10.1126/science.adg6264 (2023).

  146. Stiefl, N. et al. FOCUS—development of a global communication and modeling platform for applied and computational medicinal chemists. J. Chem. Inf. Model. 55, 896–908 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Schrodinger. LiveDesign. Schrodinger https://www.schrodinger.com/sites/default/files/general_ld_rgb_080119_forweb.pdf. (accessed 5 April 2023)

  148. Müller, S. et al. Target 2035—update on the quest for a probe for every protein. RSC Med. Chem. 13, 13–21 (2022).

    Article  PubMed  Google Scholar 

  149. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W. & Taylor, R. D. Improved protein–ligand docking using GOLD. Proteins 52, 609–623 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Miller, E. B. et al. Reliable and accurate solution to the induced fit docking problem for protein–ligand binding. J. Chem. Theory Comput. 17, 2630–2639 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Chemical space docking. BioSolveIT https://www.biosolveit.de/application-academy/chemical-space-docking/ (2022).

  152. Cavasotto, C. N. in Quantum Mechanics in Drug Discovery (ed. Heifetz, A.) 257–268 (Springer, 2020).

  153. Dixon, S. L. et al. AutoQSAR: an automated machine learning tool for best-practice quantitative structure–activity relationship modeling. Future Med. Chem. 8, 1825–1839 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  154. Totrov, M. Atomic property fields: generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR. Chem. Biol. Drug Des. 71, 15–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Schaller, D. et al. Next generation 3D pharmacophore modeling. WIREs Comput. Mol. Sci. 10, e1468 (2020).

    Article  CAS  Google Scholar 

  156. Chakravarti, S. K. & Alla, S. R. M. Descriptor free QSAR modeling using deep learning with long short-term memory neural networks. Front. Artif. Intell. 2, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Deng, Z., Chuaqui, C. & Singh, J. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J. Med. Chem. 47, 337–344 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Brooun, A. A. Sadybekov, S. Majumdar, M. M. Babu, Y. Moroz and V. Cherezov for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Vsevolod Katritch.

Ethics declarations

Competing interests

The University of Southern California are in the process of applying for a patent application (no. 63159888) covering the V-SYNTHES method that lists V.K. as a co-inventor.

Peer review

Peer review information

Nature thanks Alexander Tropsha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadybekov, A.V., Katritch, V. Computational approaches streamlining drug discovery. Nature 616, 673–685 (2023). https://doi.org/10.1038/s41586-023-05905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05905-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing