Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable electron–flexural phonon interaction in graphene heterostructures


Peculiar electron–phonon interaction characteristics underpin the ultrahigh mobility1, electron hydrodynamics2,3,4, superconductivity5 and superfluidity6,7 observed in graphene heterostructures. The Lorenz ratio between the electronic thermal conductivity and the product of the electrical conductivity and temperature provides insight into electron–phonon interactions that is inaccessible to past graphene measurements. Here we show an unusual Lorenz ratio peak in degenerate graphene near 60 kelvin and decreased peak magnitude with increased mobility. When combined with ab initio calculations of the many-body electron–phonon self-energy and analytical models, this experimental observation reveals that broken reflection symmetry in graphene heterostructures can relax a restrictive selection rule8,9 to allow quasielastic electron coupling with an odd number of flexural phonons, contributing to the increase of the Lorenz ratio towards the Sommerfeld limit at an intermediate temperature sandwiched between the low-temperature hydrodynamic regime and the inelastic electron–phonon scattering regime above 120 kelvin. In contrast to past practices of neglecting the contributions of flexural phonons to transport in two-dimensional materials, this work suggests that tunable electron–flexural phonon coupling can provide a handle to control quantum matter at the atomic scale, such as in magic-angle twisted bilayer graphene10 where low-energy excitations may mediate Cooper pairing of flat-band electrons11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The measurement device.
Fig. 2: Electrical and thermoelectric measurement results.
Fig. 3: Electronic thermal conductivity measurement results of the BC sample.
Fig. 4: Normalized Lorenz ratio.

Similar content being viewed by others

Data availability

Source data are provided with this paper.


  1. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).

    Article  CAS  Google Scholar 

  5. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    Article  CAS  Google Scholar 

  7. Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    Article  CAS  Google Scholar 

  8. Mariani, E. & von Oppen, F. Flexural phonons in free-standing graphene. Phys. Rev. Lett. 100, 076801 (2008).

    Article  ADS  PubMed  Google Scholar 

  9. Castro, E. V. et al. Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105, 266601 (2010).

    Article  ADS  PubMed  Google Scholar 

  10. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).

    Article  CAS  Google Scholar 

  14. Kim, T. Y., Park, C.-H. & Marzari, N. The electronic thermal conductivity of graphene. Nano Lett. 16, 2439–2443 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Principi, A. & Vignale, G. Violation of the Wiedemann–Franz Law in hydrodynamic electron liquids. Phys. Rev. Lett. 115, 056603 (2015).

    Article  ADS  PubMed  Google Scholar 

  16. Müller, M., Fritz, L. & Sachdev, S. Quantum-critical relativistic magnetotransport in graphene. Phys. Rev. B 78, 115406 (2008).

    Article  ADS  Google Scholar 

  17. Yiğen, S. & Champagne, A. R. Wiedemann–Franz relation and thermal-transistor effect in suspended graphene. Nano Lett. 14, 289–293 (2014).

    Article  ADS  PubMed  Google Scholar 

  18. Waissman, J. et al. Electronic thermal transport measurement in low-dimensional materials with graphene non-local noise thermometry. Nat. Nanotechnol.17,166–173 (2022)

  19. Sadeghi, M. M., Jo, I. & Shi, L. Phonon-interface scattering in multilayer graphene on an amorphous support. Proc. Natl Acad. Sci. USA 110, 16321–16326 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zarenia, M., Principi, A. & Vignale, G. Disorder-enabled hydrodynamics of charge and heat transport in monolayer graphene. 2D Mater. 6, 035024 (2019).

    Article  CAS  Google Scholar 

  21. Liao, B. et al. Significant reduction of lattice thermal conductivity by the electron–phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys. Rev. Lett. 114, 115901 (2015).

    Article  ADS  PubMed  Google Scholar 

  22. Vu, D. et al. Thermal chiral anomaly in the magnetic-field-induced ideal Weyl phase of Bi1−xSbx. Nat. Mater. 20, 1525–1531 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Yang, X. et al. Indirect electron–phonon interaction leading to significant reduction of thermal conductivity in graphene. Mater. Today Phys. 18, 100315 (2021).

    Article  CAS  Google Scholar 

  24. Yang, X., Liu, Z., Meng, F. & Li, W. Tuning the phonon transport in bilayer graphene to an anomalous regime dominated by electron–phonon scattering. Phys. Rev. B 104, L100306 (2021).

    Article  ADS  CAS  Google Scholar 

  25. Jaoui, A. et al. Departure from the Wiedemann–Franz law in WP2 driven by mismatch in T-square resistivity prefactors. npj Quantum Mater. 3, 64 (2018).

    Article  ADS  CAS  Google Scholar 

  26. Yao, M., Zebarjadi, M. & Opeil, C. P. Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal metals: Al, Cu, and Zn. J. Appl. Phys. 122, 135111 (2017).

    Article  ADS  Google Scholar 

  27. Poncé, S., Margine, E. R., Verdi, C. & Giustino, F. EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phys. Commun. 209, 116–133 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  28. Zakharchenko, K. V., Roldán, R., Fasolino, A. & Katsnelson, M. I. Self-consistent screening approximation for flexible membranes: application to graphene. Phys. Rev. B 82, 125435 (2010).

    Article  ADS  Google Scholar 

  29. Kuang, Y., Lindsay, L., Wang, Q. & He, L. Lattice chain theories for dynamics of acoustic flexural phonons in nonpolar nanomaterials. Phys. Rev. B 102, 144301 (2020).

    Article  ADS  CAS  Google Scholar 

  30. Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Herring, C. Theory of the thermoelectric power of semiconductors. Phys. Rev. 96, 1163–1187 (1954).

    Article  ADS  CAS  Google Scholar 

  32. Yoshino, H. & Murata, K. Significant enhancement of electronic thermal conductivity of two-dimensional zero-gap systems by bipolar-diffusion effect. J. Phys. Soc. Jpn 84, 024601 (2015).

    Article  ADS  Google Scholar 

  33. Lee, S., Broido, D., Esfarjani, K. & Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Unraveling the acoustic electron–phonon interaction in graphene. Phys. Rev. B 85, 165440 (2012).

    Article  ADS  Google Scholar 

  36. Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022).

    Article  CAS  Google Scholar 

  37. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references


We thank B. Fallahazad, K. Kim and Y. Wang for discussions on dry transfer of two-dimensional heterostructures. The experimental and DFT computational efforts were respectively supported by an award (DE-FG02-07ER46377) from the Physical Properties of Materials Program and an award (DE-SC0020129) from the Computational Materials Sciences Program of US Department of Energy Office of Basic Energy Science. Development of the analytical models was supported by a Multidisciplinary University Research Initiative (MURI) award (N00014-21-1-2377) from the US Office of Naval Research. Development of the heterostructure transfer technique was supported by the Army Research Office under grant no. W911NF-17-1-0312. The measurement device was fabricated at the Texas Nanofabrication Facility supported by US National Science Foundation (NSF) grant NNCI-1542159. The computation used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231, and the Texas Advanced Computing Center (TACC) at The University of Texas at Austin. Growth of hBN crystals was supported by JSPS KAKENHI (Grant Numbers 19H05790, 20H00354 and 21H05233).

Author information

Authors and Affiliations



L.S. initiated the study. M.M.S. and L.S. designed the experiment for the bottom-contacted sample. Y.H. and L.S. designed the experiment for the edge-contacted and hybrid-contacted samples. E.T. designed the 2D heterostructure transfer method. M.M.S. and Y.H. designed and fabricated the measurement devices, and conducted the measurements, data analysis and numerical simulations for the bottom-contacted and the other three samples, respectively. C.L. and F.G. carried out density functional theoretical calculations. A.H.M. and L.S. developed the analytical models. T.T. and K.W. synthesized the hBN crystals. L.S., M.M.S., Y.H., C.L., F.G., A.H.M. and E.T. wrote the paper with input from T.T. and K.W.

Corresponding author

Correspondence to Li Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Wenzhong Bao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This Supplementary Information file has 4 sections: 1. Experimental Methods; 2. Theoretical Analysis; 3 Density Functional Theory (DFT) Calculations; 4. Simplified Models. There are 23 Supplementary figures, 2 Supplementary tables and additional references.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, M.M., Huang, Y., Lian, C. et al. Tunable electron–flexural phonon interaction in graphene heterostructures. Nature 617, 282–286 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing