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Giant magnetoresistance of Dirac plasma in 
high-mobility graphene

Na Xin1,2,6, James Lourembam1,6, Piranavan Kumaravadivel1,2,6, A. E. Kazantsev1, Zefei Wu2, 
Ciaran Mullan1, Julien Barrier1,2, Alexandra A. Geim2, I. V. Grigorieva1, A. Mishchenko1, 
A. Principi1, V. I. Fal’ko1,2, L. A. Ponomarenko3 ✉, A. K. Geim1,2,4 ✉ & Alexey I. Berdyugin1,2,4,5 ✉

The most recognizable feature of graphene’s electronic spectrum is its Dirac point, 
around which interesting phenomena tend to cluster. At low temperatures, the 
intrinsic behaviour in this regime is often obscured by charge inhomogeneity1,2 but 
thermal excitations can overcome the disorder at elevated temperatures and create an 
electron–hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit 
unusual properties, including quantum-critical scattering3–5 and hydrodynamic 
flow6–8. However, little is known about the plasma’s behaviour in magnetic fields. Here 
we report magnetotransport in this quantum-critical regime. In low fields, the plasma 
exhibits giant parabolic magnetoresistivity reaching more than 100 per cent in a 
magnetic field of 0.1 tesla at room temperature. This is orders-of-magnitude higher 
than magnetoresistivity found in any other system at such temperatures. We show 
that this behaviour is unique to monolayer graphene, being underpinned by its 
massless spectrum and ultrahigh mobility, despite frequent (Planckian limit) 
scattering3–5,9–14. With the onset of Landau quantization in a magnetic field of a few 
tesla, where the electron–hole plasma resides entirely on the zeroth Landau level, 
giant linear magnetoresistivity emerges. It is nearly independent of temperature and 
can be suppressed by proximity screening15, indicating a many-body origin. Clear 
parallels with magnetotransport in strange metals12–14 and so-called quantum linear 
magnetoresistance predicted for Weyl metals16 offer an interesting opportunity to 
further explore relevant physics using this well defined quantum-critical two- 
dimensional system.

A variety of mechanisms—both intrinsic and extrinsic—can lead to large 
magnetoresistance (MR) in metallic systems. The quest to understand 
these mechanisms has continued for longer than a century but many 
gaps still remain, which is especially obvious for the MR reported in 
newcomer materials such as various Dirac and Weyl systems17–25, strange 
metals12–14 and so on. The history and current status of the research 
field are briefly reviewed in Methods. Whichever mechanism is behind 
a particular MR behaviour, it always relies on bending of electron tra-
jectories by a magnetic field B and, accordingly, high carrier mobility 
μ is an essential prerequisite for the observation of large MR. Colossal 
MR (reaching about 106% in a magnetic field of 10 T) was observed in 
a number of high-μ systems at liquid-helium temperatures17–25. How-
ever, because mobility decreases with increasing temperature T, this 
usually results in only a tiny MR above liquid-nitrogen temperatures. 
Those few materials in which carriers remain highly mobile at room 
temperature (such as doped graphene and indium antimonide)26–28 
are all non-compensated systems and, in agreement with the classical 
theory of normal metals29, their longitudinal resistivity ρxx saturates 
in high B, leading again to little MR. Only the presence of extended 

defects30–32 or a special design of four-probe devices26,33 that creates 
strongly non-uniform current flows can lead to large—but extrinsic—
MR (Methods).

As shown below, thermally excited charge carriers in monolayer 
graphene (MLG) at the neutrality point (NP) exhibit an anomalously 
high μ exceeding 100,000 cm2 V−1 s−1 at room temperature, despite 
the fact that the system is strongly interacting3–8 and the electron–
hole (e–h) scattering time τP is ultimately short, being limited by the 
uncertainty principle τP

−1 ≈ CkBT/h where kB and h are the Boltzmann  
and Planck constants, respectively, and C ≈ 1 is the interaction 
constant3–5,9–12. Importantly, unlike any known system with high μ 
at room temperature, the Dirac plasma is compensated (charge 
neutral) so that its zero Hall response allows non-saturating MR29 
whereas the high μ makes it colossal. To emphasize how unique 
magnetoresistivity ρxx(B) of the Dirac plasma is, we provide its com-
parison with graphite (multilayer graphene34) and charge-neutral 
bilayer graphene (BLG), another quantum-critical system exhibit-
ing Planckian scattering but having massive charge carriers with  
modest mobilities9,10.
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Giant MR in non-quantizing fields
Our primary devices were multiterminal Hall bars made from MLG 
encapsulated in hexagonal boron nitride (hBN; Fig. 1a). We have studied 
several such devices and focus here on two of them (devices D1 and D2) 
showing representative behaviour. At low T, their mobilities exceed 
106 cm2 V−1 s−1 at characteristic carrier densities of about 1011 cm−2, being 
limited by edge scattering despite the devices’ size being more than 
10 μm. The typical behaviour of ρxx as a function of the gate-induced 
density n is shown in Fig. 1b. If the same curves are replotted on a log 
scale (Fig. 1c), it becomes clear that ρxx responds to gate voltage only 
above a certain n dependent on T. This behaviour is commonly quanti-
fied as shown in Fig. 1c,d where δn marks the gate-induced density that 
leads to notable changes in ρxx. At high T, the peak in ρxx(n) broadens 
because of thermally excited electrons and holes in concentrations 
nth = (2π3/3)(kBT/hvF)2, where vF is the Fermi velocity (Methods). The 
extracted δn evolves proportionally to T2 as expected (Fig. 1d) and 
its absolute value is about 0.5nth, which means that to make changes 
in ρxx visible on such log plots, gate-induced carriers are required in 
concentrations of about 50% of the thermal concentration. At low T, δn 
saturates typically at about 1010 cm−2 because of residual charge inho-
mogeneity (e–h puddles of submicrometre scale)1,2. Below we focus on 
T > 100 K where thermal excitations totally overwhelm the residual δn.

The Dirac plasma’s response to small fields is shown in Fig. 1e. 
One can see that the longitudinal resistivity at the NP ρNP ≡ ρxx(n = 0) 
increases proportionally to B2, as expected from the classical Drude 
model29. However, the changes in ρNP are unexpectedly large for this 
T range. Indeed, if we consider 0.1 T as a characteristic field relevant 
for magnetic-sensor applications, then the relative magnetoresist-
ivity Δ = [ρxx(B) – ρxx(0)]/ρxx(0) reaches about 110% at 300 K near the 
NP (Fig. 1e) and increases by a factor of 3–4 at 200 K. For compari-
son, Δ in normal metals rarely exceeds a small fraction of 1% above 
liquid-nitrogen temperatures. Even high-quality encapsulated bilayer, 
few-layer and multilayer graphene exhibit Δ(0.1 T) reaching only about 
1% at room temperature (Methods). Also, the renowned giant MR based 

on spin flipping in ferromagnetic multilayers yields changes in resist-
ance that are one to two orders of magnitude smaller35,36 than those 
observed here for the Dirac plasma.

Further characterization of the e–h plasma is provided in Fig. 2. It 
shows that Δ rapidly diminishes away from the NP at characteristic den-
sities n ≈ nth (Fig. 2a). This is expected29 because, for non-compensated 
systems, changes in ρxx(B) should be small and saturate, if Hall resistivity 
ρxy > ρxx (Methods). In contrast, for charge-neutral systems (zero ρxy), 
the Drude model predicts non-saturating magnetoresistivity such that 
Δ = μB

2B2 where μB is the mobility in non-quantizing magnetic fields 
(Methods). The latter expression describes well the behaviour observed 
in small B (Fig. 2b). Figure 2c shows the extracted μB as a function of T.  
The mobility exceeds 100,000 cm2 V−1 s−1 at room temperature and 
grows above 300,000 cm2 V−1 s−1 below 150 K. Although high μ values 
are well known for the Fermi-liquid regime in doped graphene, it is 
unexpected that the mobility remains high in the presence of Planckian  
scattering, characteristic of the quantum-critical regime in neutral 
graphene5,6. For comparison, bilayer and multilayer graphene also 
exhibit very high mobilities at liquid-helium temperature, but their 
ρNP(B) are practically flat at elevated T (Fig. 1e), yielding μB of only about 
10,000 cm2 V−1 s−1 at 300 K (Extended Data Figs. 2 and 3). The marked 
difference in electronic quality between the e–h plasmas of relativistic 
and non-relativistic fermions (in MLG and BLG, respectively) stems from 
the small effective mass m characteristic of the Dirac spectrum (μ ∝ m−1) 
and its low density of states, which reduces the efficiency of electron 
scattering (Methods). It is noted, however, that the Dirac spectrum on 
its own is insufficient for achieving giant values of Δ, and the high qual-
ity of MLG devices is paramount. This is emphasized by Extended Data 
Fig. 8, which shows magnetotransport for non-encapsulated graphene 
on a silicon oxide substrate. Such low-quality MLG exhibits three orders 
of magnitude smaller MR.

It is instructive to compare the found μB with the zero-field mobil-
ity μ0. The latter can be evaluated using the standard Drude formula 
ρNP

−1 = 2ntheμ0, where e is the electron charge and the factor 2 accounts 
for equal concentrations of electrons and holes at the NP. Figure 2d 
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Fig. 1 | Electron transport in graphene’s Dirac plasma. a, Scanning electron 
micrograph of one of the studied MLG devices in false colour. The green areas 
indicate the encapsulated graphene intentionally misaligned with both top and 
bottom hBN to avoid superlattice effects, the golden areas indicate the metallic 
contacts and the brown areas indicate the oxidized silicon wafer serving as a 
gate. b, Zero-B resistivity of MLG near the NP as a function of gate-induced 
carrier density. c, Data from b replotted on a double logarithmic scale to 
evaluate δn as indicated by the dashed lines9. d, δn as a function of T. The black 
curve shows the parabolic dependence. Above 100 K, nth in this device becomes 

several times higher than the residual charge inhomogeneity. Inset: schematic 
of the graphene spectrum with thermally excited carriers indicated in blue and 
red. e, Resistivity of the compensated Dirac plasma in small B at representative 
T (solid curves). The black curve is the parabolic fit at 300 K. The black circles 
and values indicate Δ at 0.1 T. The short- and long-dash curves indicate the 
resistivity of charge-neutral BLG and graphite, respectively, at the NP at 200 K. 
All the MLG data are from device D1. More examples of MR behaviour for MLG, 
BLG and graphite are provided in Methods.



272 | Nature | Vol 616 | 13 April 2023

Article

shows that ρNP quickly decreases with increasing T from liquid-helium 
temperatures to about 100 K but, as the Dirac plasma gets established 
(nth >> residual δn), ρNP becomes almost T independent with a constant 
value of about 1 kΩ above 150 K (also, inset of Fig. 3b and Extended 
Data Fig. 1). The saturating behaviour of ρNP is attributed to the onset 
of the quantum-critical regime in which the scattering is dominated 
by the Planckian frequency, τP

−1. Indeed, ρNP ≈ 1 kΩ yields C ≈ 0.7 close 
to unity, as expected3–5,9–12. This analysis also agrees with that of the 
quantum-critical behaviour reported for BLG9,10 (Methods) and conclu-
sions about MLG from other measurements5.

Figure 2c shows that μ0 evolves proportionally to 1/T 2, as expected for 
Planckian systems with a Dirac spectrum (Methods). Surprisingly, μ0 is 
two to three times smaller than μB. As shown in Methods, this happens 

because μB is less sensitive than μ0 to the dominating e–h scattering. 
Qualitatively, the difference can be understood as arising from different 
relative motions of electrons and holes in zero and finite B. In zero B,  
the electric field forces electrons and holes to move in opposite direc-
tions so that e–h collisions are efficient in impeding a current flow. In 
contrast, cyclotron motion causes a drift of both electrons and holes 
in the same direction. Therefore, e–h collisions do not affect the Hall 
currents responsible for magnetoresistivity. This explanation is further 
substantiated by our measurements using screened graphene devices 
(encapsulated MLG with metallic gates placed at a distance of about 
1–3 nm)15. The screening is found to suppress Coulomb scattering, 
which results in smaller C and, therefore, higher μ0 (Extended Data 
Fig. 4a). However, the same screening has little effect on ρNP(B) and 
hence μB (Extended Data Fig. 4b), in agreement with theory. This con-
sideration is equally applicable for e–h plasma of massive fermions and, 
indeed, a similar difference between μ0 and μB is observed for neutral 
BLG (Extended Data Fig. 2). The above analysis allows us to conclude 
that the anomalously large MR in low B arises owing to ultrahigh mobil-
ity of Dirac fermions, combined with ineffectiveness of e–h scattering 
in suppressing Hall currents.

Strange linear MR in the extreme quantum limit
In high B, magnetotransport in the Dirac plasma exhibits profound 
changes such that, above a few tesla, ρNP(B) evolves from being parabolic 
to linear (Fig. 3 and Extended Data Fig. 5). Slopes of this linear MR are 
found to be similar for all the studied devices (Fig. 3b, inset) and almost 
independent of T. The crossover between parabolic and linear depend-
ences is marked by a flattened section on the curves which appears 
at T below 200 K. We attribute the flattening to the onset of Landau 
quantization (Extended Data Fig. 6). This attribution also agrees with 
the fact that at B ≈ 3–5 T, the main cyclotron gap between the zeroth and 
first Landau levels (LLs) reaches about 800 K, notably exceeding the 
thermal smearing kBT. As for the MR magnitude, Δ reaches about 104% 
at 10 T and, despite the linear (slower than parabolic) dependence in 
quantizing fields, this is again among the highest for room-temperature 
experiments32. Comparison with multilayer and low-quality graphene 
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B values are chosen for easier comparison with the highest MR observed 
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slope of 7.3 kΩ T−1. The data are for device D1. Device D2 shows similar behaviour 
(Extended Data Fig. 5). b, ρNP(B) for the screened Dirac plasma (colour coding as 
in a). The dashed line is 1.2 kΩ T−1. Inset: linear MR slope as a function of zero- 
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(Extended Data Figs. 3 and 8) shows the importance of both the Dirac 
spectrum and the electronic quality for such a giant MR response. 
Another notable feature of magnetotransport in the plasma of the 
zeroth LL is that ρNP at a given B increases with increasing T (Fig. 3a 
and Extended Data Fig. 5). This contradicts the orthodox MR behav-
iour observed in all other systems, which results in lower Δ at higher T 
because of increased scattering29 (Methods). To shed light on strange 
magnetotransport, we have also tested how ρNP(B) is affected by prox-
imity screening. Although the parabolic dependence of ρNP in low B 
was practically unaffected (as discussed above), the screening greatly 
suppressed MR in quantizing B (Fig. 3b). The linear slopes of ρNP(B) 
decrease from 5–8 kΩ T−1 in our primary devices to 1–3 kΩ T−1 in those 
with screening (inset of Fig. 3b), implying that magnetotransport in 
the zeroth LL depends on Coulomb interactions.

In discussing the high-B behaviour, we first note that the previously 
reported linear MR can in most cases be attributed to complex current 
flows that become increasingly non-uniform as ρxy ∝ B increases (Meth-
ods). The involved mechanisms are based on either the spatial inhomo-
geneity or the presence of edges. To check for possible edge effects in 
our case, we have studied Corbino disks fabricated from encapsulated 
MLG and found very similar ρNP(B) (Extended Data Fig. 7). Thus, for our 
zeroth-LL plasma with zero ρxy, those extrinsic mechanisms can be ruled 
out (Methods). It may also be tempting to evoke Abrikosov’s linear MR16 
predicted to occur in three-dimensional (3D) semimetals with Dirac-like 
spectra in the extreme quantum limit. However, the Born approxima-
tion used in the 3D model cannot be justified for two-dimensional (2D) 
transport in a smooth background potential37 because charge carriers 
remain localized within electron and hole puddles.

For the lack of a theory suitable to describe the observed linear MR, 
we employ the simple Drude model by considering cyclotron-orbit 
centres as quasiparticles that circle along equipotential contours 
and, also, diffuse between them owing to electron scattering. The 
density of such quasiparticles is determined by the capacity of the 
LL, nLL = 2B/ϕ0 >> nth, where ϕ0 = h/e. For charge neutrality, the Drude 
model yields ρNP(B) ≈ ρμ2B2 (Methods), where n and μ in the standard 
expression ρ = 1/neμ should be substituted with nLL and μQ, respec-
tively, to reflect the density and mobility for the plasma of the zeroth 
LL. This leads to

ρ B
h
e

µ B( ) ≈
2

(1)NP 2 Q

The linearity in B arises from the fact that the B2 dependence inher-
ent for compensated semimetals is moderated by the linear increase 
in the carrier density in the zeroth LL. Next, to estimate μQ, we assume 
that Planckian scattering moves quasiparticles by a typical distance ℓ 
between equipotentials, resulting in the diffusion coefficient 
D τ v τ≈ / =2

p T
2

pℓ  with the corresponding thermal velocity v τ≡ /T pℓ . 
Diffusion within individual puddles leaves carriers localized inside. 
Only if a quasiparticle covers a distance of approximately ξ between 
neighbouring puddles, those processes contribute to macroscopic 
currents along the electric field and, hence, global conductivity. 
Accordingly, the timescale relevant for electron transport in the zeroth 
LL is given by τtr ≈ ξ2/D >> τp and the corresponding diffusion coefficient 
can be written as Dtr = vT

2τtr ≈ vT
2ξ2/D = ξ2/τp. Then, using the Einstein–

Smoluchowski equation, we find the transport mobility μQ = eDtr/kBT ≈  
eξ2/kBTτp = Ceξ2/h, where both vT and ℓ fell out from the final expression. 
This result suggests that the MR of the zero LL is linear in B and inde-
pendent of T, as observed experimentally, and may also explain the 
suppression by proximity screening as smaller C result in lower μQ. 
Furthermore, equation (1) can be rewritten as

ρ
C h

e
ξ

≈
4π

, (2)NP 2

2

B
2ℓ

where ℓB is the magnetic length. Equation (2) closely resembles the 
result of a formal extension of Abrikosov’s model into the 2D case37. 
Although the above consideration catches the main physics and qualita-
tively agrees with our observations, further work is required to develop 
a microscopic theory of magnetotransport in the 2D Boltzmann plasma 
at the zeroth LL.

Outlook
The Dirac plasma in graphene exhibits the one of the highest MRs 
observed above liquid-nitrogen temperatures in both low and high 
fields. In low B, only ferromagnetic devices employing spin tunnel-
ling38 or the use of four-probe geometry26,33 allow stronger electronic 
response to magnetic fields. In contrast to the latter phenomena, 
the giant MR of graphene stems from its magnetoresistivity ρxx(B). 
In quantizing fields, graphene experiences a system transformation, 
becoming an e–h plasma residing in the zeroth LL. Our observations 
are also relevant to the physics of strange metals that exhibit Planckian 
scattering. Strange metals display the renowned linear T dependence 
of their resistivity, in obvious contrast to our case. However, this dif-
ference arises only because strange metals have a fixed carrier density 
whereas the carrier density and effective mass in the Dirac plasma 
increase with T, leading to the constant ρNP. Moreover, strange metals 
also exhibit linear MR that is weakly T dependent. This MR remains 
unexplained, although a recent ansatz13,14 suggests that in Planckian 
systems, τ−1 should be defined by the largest relevant energy scale, 
either kBT or some magnetic-field-induced energy proportional to B.  
The ansatz does not seem work for the Dirac plasma because the only 
relevant and sufficiently large magnetic energy is the cyclotron gap. 
It evolves as B1/2 rather than linearly in B. Notwithstanding any differ-
ences, Planckian systems in high fields remain poorly studied, and 
graphene’s Dirac plasma offers a model system to understand the rel-
evant physics. The possibility to modify magnetotransport by tuning 
electron–electron interactions using proximity screening is especially 
appealing in this context.
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Methods

Brief history of linear MR
Studies of the electrical response of metals to magnetic fields go back 
to experiments by Lord Kelvin and Edwin Hall over one-and-a-half 
centuries ago39,40. Although the subject continued to attract sporadic 
attention during the following decades (see, for example, ref. 41), the 
first systematic study of MR phenomena is usually credited to Pyotr 
Kapitsa. In 1928–1929, he reported high-field studies of MR in 37 differ-
ent materials42,43. This research brought up two major findings. First, 
some materials (for example, bismuth, arsenic, antimony and graphite) 
were found to exhibit MR exceeding 100% in a magnetic field of 30 T 
at room temperature, much higher than the others in that study. So 
large MR could not be explained by contemporary theories. Second, 
despite different absolute values of MR, all the studied materials fol-
lowed a universal B dependence. In small fields, it was always parabolic, 
in agreement with the already accepted understanding that cyclotron 
motion of current-carrying electrons should bend their trajectories 
and, hence, increase resistivity. However, in fields above several tesla, 
MR was found to increase linearly, which was unexpected.

The first puzzle of large MR values was solved relatively quickly, 
owing to the development of the band theory. Most of the materi-
als exhibiting large room-temperature MR in Kapitsa’s experiments 
appeared to be semimetals so that the electric current was carried by 
both electrons and holes. It is now well understood that the reduced 
Hall effect in this case leads to ρxx evolving in high fields approximately 
as 1/σxx, where σxx is the longitudinal conductivity. This is in contrast to 
the case of one type of charge carriers where ρxx ≈ σxx ρxy

2 (‘Drude model 
for charge-neutral graphene’ below). The second puzzle of linear MR 
has attracted numerous theories and explanations. In general, there 
are several mechanisms that can cause linear MR and, even today, its 
observation often leads to controversies because it is difficult to pin-
point the exact origin.

One of the first mechanisms causing linear MR was proposed by 
Lifshitz and Peschanskii44. In 1959, they considered magnetotransport 
in polycrystalline metals with open Fermi surfaces. For certain orien-
tations of the magnetic field with respect to crystallographic axes, 
such metals flaunt open cyclotron orbits that result in non-saturating 
MR proportional to B2 (refs. 45,46). However, this quadratic behav-
iour occurs within only a narrow interval of angles, which decreases 
proportionally to B−1. For the other angles, cyclotron orbits remain 
closed, and MR attributable to them saturates in high B. Averaging 
over all angles for polycrystalline samples resulted in linear MR, and 
this result helped to explain many—but not all—observations in the 
literature. Those ideas were further developed by Dreizin and Dykhne47 
who obtained MR proportional to B4/3 and MR proportional to B2/3, 
depending on whether a metal with an open Fermi surface was com-
pensated or not, respectively. Moreover, the authors presented a 
magnetotransport theory for not only polycrystalline but also inho-
mogeneous conducting media. Depending on the Fermi surface and 
compensation between charge carriers, various powers of B could be 
obtained including, for example, linear MR in compensated semimetals  
with 2D disorder47.

The MR theory relying on materials’ inhomogeneity was expanded 
both theoretically and experimentally in the 1970s and 1980s. It 
was shown that macroscopic strain48, voids49–52 and thickness varia-
tions53,54 could lead to linear MR in high B (μB >> 1). The next step was 
taken in 2003 by Parish and Littlewood who considered the case of 
very strong inhomogeneity that could not be described by the earlier 
theories55. Using a random 2D resistance network, they obtained linear 
MR that starts from small magnetic fields (μB < 1) and could explain 
the behaviour observed in some disordered semiconductors55. The 
fundamental reason for MR in all the cases involving inhomogene-
ous media is the following. In the presence of regions with different 
magnetotransport coefficients, the arising Hall voltages (large for 

μB >> 1) necessitate substantial changes in the electric current distri-
bution to satisfy boundary conditions at interfaces between different 
regions. As a result, the electric current becomes increasingly inho-
mogeneous, being squeezed into narrow streams near the interfaces. 
This current inhomogeneity increases the effective resistance of the  
medium53,54.

A different mechanism was suggested by Abrikosov16,56,57. He pointed 
out that some materials exhibiting linear MR were neither polycrystal-
line nor inhomogeneous but single crystals with closed Fermi surfaces 
including graphite, bismuth and other materials58,59. To explain these 
observations, Abrikosov considered a Weyl (3D Dirac-like) spectrum 
so that, in quantizing B, all charge carriers collapsed onto the low-
est (zeroth) LL. Assuming a scattering potential caused by screened 
charged impurities, linear MR was predicted in this case. Because 
of the essential role played by Landau quantization, the effect was 
called quantum linear MR16,56,57. The Abrikosov mechanism attracted 
considerable interest and was invoked as an explanation for many 
experiments60,61, even though the concerned materials often poorly 
matched the assumptions required by the theory (including being 
2D rather than 3D systems). Unfortunately, Abrikosov provided no 
explanation for the physics behind his theory and only recently37 it 
has been shown that his analysis is equivalent to calculations of dif-
fusion of cyclotron-orbit centres in an electrostatic potential. This 
conceptual overlap requires mentioning of the earlier theories by 
Kubo and Ando for diffusion of cyclotron-orbit centres62,63. Further-
more, within the self-consistent Bohr approximation, linear MR was 
shown to appear in the 2D case for strongly screened charged impuri-
ties whereas, for short-range scattering, MR becomes sublinear64. The 
formal extension of Abrikosov’s theory into two dimensions also leads  
to linear MR37.

Finally, two other mechanisms that result in linear MR have to be men-
tioned. First, Alekseev with colleagues showed that e–h annihilation at 
the edges of 2D semimetals could lead to linear MR65,66. This mechanism 
can be ruled in or out by comparing magnetotransport in Hall-bar and 
Corbino-disk devices, as done in our work. Second, so-called strange 
metals often exhibit resistivity that increases linearly not only with 
temperature but also with magnetic field13,14. Although such linear MR 
does not follow from the so-called holographic approach11, it was sug-
gested13,14,67 that the quantum-critical scattering rate τ−1 ≈ E/h could be 
controlled by the maximum relevant energy E in the uncertainty equa-
tion, that is, by either kBT or μBohr B where μBohr is the Bohr magneton. 
This could then explain both (T and B) linear dependences in strange 
metals. It is also worth mentioning that linear MR was recently reported 
in two other 2D strongly interacting systems, namely, twisted tungsten 
diselenide68 and magic-angle graphene69. It was suggested that the MR 
had the same origin as in strange metals.

Earlier studies of MR in graphene and Dirac-type materials
Over the past decade, there have been numerous studies of magne-
totransport using newly available materials such as graphene (see, 
for example, refs. 30–34,61,70–74), topological insulators (see, for example,  
refs. 75–77) and high-mobility Dirac and Weyl semimetals (see, for example,  
refs. 17–25). Graphene has attracted particular attention as a promising 
material for magnetic-field sensors owing to its high μ at room tem-
perature. The first generation of graphene devices (graphene placed on 
oxidized silicon and so-called epitaxial graphene) exhibited relatively 
low μ, and their MR was also relatively low, reaching only about 100% 
in fields above 10 T (refs. 30–32,61,70–72; ‘MR of low-mobility graphene’ 
below). The MR typically originated from charge inhomogeneity and 
other disorder, although some reports suggested61 the observation of 
Abrikosov’s linear MR in doped multilayer graphene. Later research 
ruled out this explanation, arguing that the observed linear MR origi-
nated from a polycrystalline disorder31,55.

The next generation of graphene devices using encapsula-
tion with hBN exhibited exceptional electronic quality2,78. So far, 
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magnetotransport in graphene-on-hBN devices has been studied at ele-
vated T only for few-layer graphene34 and MLG away from the NP33. Few- 
and multilayer graphene (graphite) exhibit a relatively low μ at elevated 
temperatures. This results in small quadratic MR in low B and also limits 
MR in high fields32,34, in agreement with our results in ‘MR in multilayer 
graphene’ below. Doped high-μ graphene exhibits saturating magne-
toresistivity and its magnitude is small, as expected. It is noted, however, 
that if one uses a geometry that instigates a non-uniform current flow, 
it is possible to enhance the apparent MR in four-probe measurements, 
for example, using the so-called extraordinary MR configuration26,33. 
In such a geometry, the central part of a MLG device is replaced with 
a highly conducting metal (for example, gold). In zero B, the current 
mainly flows through the metal, despite being injected into graphene. 
The magnetic field curves the current trajectories and forces charge car-
riers to move through graphene, which is much more resistive than gold 
films. Accordingly, the apparent four-probe MR could reach extraordi-
nary values of about 107% at 9 T and room temperature. This is compa-
rable to typical changes in Hall voltage that also require a four-probe 
geometry. It is noted that this extraordinary MR is not an intrinsic 
property of a material and, accordingly, translates into only modest 
changes for any two-probe measurements. Until now, no studies of 
magnetotransport at elevated T have been reported for charge-neutral  
MLG with high μ.

For completeness, let us mention extensive magnetotransport stud-
ies of 3D counterparts of graphene, which are different topological 
insulators, Dirac and Weyl semimetals, and other clean semimetals 
such as tungsten telluride (also suggested to be a Weyl semimetal79). 
Many of them showed huge MR, which in some cases exceeded 106% at 
liquid-helium temperatures17–22,25. Such colossal values were attributed 
to the high mobility of charge carriers in these materials (μ reaching 
above 106 cm2 V−1 s−1 at 4 K, similar to encapsulated graphene). However, 
the mobility rapidly decayed with increasing T, which resulted only in 
a tiny low-B MR at elevated T. This is not the case for MLG that exhibits 
high μ at room temperature even at the NP, which results in the colossal 
quadratic MR in low B, as reported in this work.

Drude model for charge-neutral graphene
To evaluate the magnetotransport properties of our devices, we have 
used the standard two-carrier model for electrons and holes, which 
allows the longitudinal and Hall conductivities to be written as80
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where ne(h) is the carrier density of electrons (holes) and μe(h) is the cor-
responding mobility. The relative magnetoresistivity is defined as
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with ne = nh and equal mobilities for electrons and holes (μe = μh = μ), 
the above equations yield

∆ µ B= (6)2 2

This expression was used in this work to extract the magnetotrans-
port mobility μB from parabolic dependences of ρNP(B) in small B.

Our analysis of the ρxx(n)-peak broadening and the zero-field mobility 
μ0 (see main text) have relied on theoretical expressions for the density 
of thermally excited electrons at the NP, nth. For MLG, this electron 
density is given by
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where ħ = h/2π is the reduced Planck constant, f(E) is the Fermi-Dirac 
distribution function, DOS is the density of states of MLG and x = E/kBT. 
Holes are excited with the same density. Thermally excited Dirac fer-
mions with a typical energy kBT can be assigned with the effective mass 
m* that is also T dependent

∗m π k T v= /(6ln2) (8)2
B F

2

This expression can be obtained from the Boltzmann equations cal-
culating the response of charge-neutral graphene to electric field and 
enforcing the resulting conductivity into a Drude-like form. It is noted 
that the above mass is proportional to the typical energy (thermal 
energy kBT of electrons and holes in the Dirac plasma) divided by their 
velocity squared, as expected for ultrarelativistic particles.

Using the same approach for BLG, we obtain its density of thermally 
exited electrons

n
ħ

m k T=
2ln(2)

π
* (9)th 2 B

The above expressions for nth and m* have been used to evaluate con-
ductivities of both charge-neutral MLG and BLG based on the standard 
Drude-like expression

ρ n e τ m= 2 / * (10)NP
−1

th
2

where τ is the scattering time, and the factor of 2 accounts for equal 
densities of thermally excited electrons and holes.

Additional examples of magnetotransport measurements  
for MLG
Several (more than ten) monolayer devices (Hall bars and Corbino disks) 
were studied during the course of this work. To indicate variations in 
their magnetotransport behaviour, below we present measurements 
for another Hall bar (device D2) exhibiting notably higher remnant 
δn at low T. Its resistivity ρNP(T ) at the NP is plotted in Extended Data 
Fig. 1a. Similar to device D1 (Fig. 2d), ρNP of device D2 decreases with 
T and saturates above 200 K. In this device, the saturation occurs at 
higher T than in device D1 because of stronger inhomogeneity (com-
pare Fig. 1d and Extended Data Fig. 1b). Despite an order-of-magnitude 
different inhomogeneities, both devices exhibit practically the 
same saturation value, ρNP ≈ 1 kΩ. The same was valid for the other  
MLG devices.

As discussed in the main text, we attribute the T-independent ρNP in 
MLG to the entry of the Dirac plasma into the quantum-critical 
regime3–5,9–12. In this regime, the electron scattering time is determined 
by Heisenberg’s uncertainty principle, τ C=

k T
hp

−1 B  where C is the interac-
tion constant of about unity and depends on screening3,4,11,12. By plug-
ging this scattering rate into equation (10) and using the effective mass 
from equation (8) and the carrier density given by equation (7), we 
obtain the quantum-critical resistivity

ρ C h e= ( / )/8πln2 (11)NP
2

which is independent of T. The observed ρNP ≈ 1 kΩ yields the interac-
tion constant C ≈ 0.7, close to unity, as expected for Planckian-limit 
scattering3–5,9–12.



As for the MR behaviour of device D2, Extended Data Fig. 1c shows 
that ρNP is parabolic in low B, similar to the case of device D1 in Fig. 1. The 
absolute value of Δ for device D2 is also similar, albeit slightly smaller, 
reaching 90% at 0.1 T and room temperature. The 20% reduction can be 
attributed to the lower electronic quality and homogeneity of device 
D2. Extended Data Fig. 1d shows zero-field and magnetotransport 
mobilities for device D2, which were extracted using the same approach 
as described in the main text. Both mobilities are slightly lower than 
those in Fig. 2. Nonetheless, at room temperature, μB in device D2 still 
exceeds 100,000 cm2 V−1 s−1. Overall, the results presented in Extended 
Data Fig. 1 corroborate our conclusions that the Dirac plasma flaunts 
exceptionally high carrier mobility at elevated T, with no analogues 
among compensated metallic systems. The figure also reiterates the 
considerable differences between μB and μ0, which were discussed 
in the main text and explained in ‘Difference between zero-field and 
magnetotransport mobilities’ below.

Electron–hole plasma in BLG
To emphasize how unique the Dirac plasma in MLG is, let us compare 
its magnetotransport properties with those of the closest electronic 
analogue, an e–h plasma at the NP in BLG. To this end, we fabricated 
and studied BLG devices that were also encapsulated in hBN to achieve 
high μ. They were double-gated and shaped into the standard Hall 
bars. At liquid-helium temperatures and away from the NP, the devices 
exhibited ballistic transport across their entire widths of about 10 μm. 
This was observed directly using bend resistance measurements81. 
The double-gating was required to tune the carrier density to the NP 
while maintaining zero bias between the two graphene layers. The 
latter ensured that no gap opened at the NP82, which otherwise would 
complicate the comparison10.

The typical behaviour of BLG’s resistivity in zero B is shown in 
Extended Data Fig. 2a. Similar to MLG (Fig. 2d and Extended Data 
Fig. 1a), ρNP(B = 0) of charge-neutral BLG reaches a few kiloohms at 
liquid-helium temperatures, but rapidly decreases to about 1 kΩ at 
higher T and becomes T independent above 50 K (Extended Data 
Fig. 2b). Such behaviour of high-quality BLG has already been reported 
recently, and constant ρNP was attributed to the e–h plasma entering 
the quantum-critical regime9,10. Indeed, plugging the quantum-critical 
scattering rate τ C=

k T
hp

−1 B  into equation (10) and using the thermally 
excited density from equation (9), we obtain the resistivity for the e–h 
plasma in BLG

ρ C h e= ( / )/16πln2 (12)NP
2

The T independent value of ρNP stems from the fact that both nth and 
scattering frequency τp

−1 evolve linearly with T. Equation (12) differs 
from equation (11) for MLG by only a factor of 2. From the data in 
Extended Data Fig. 2, we obtain C ≈ 1.4, close to unity as expected and 
in agreement with the previous reports9,10. This value is two times larger 
than C for the Dirac plasma in MLG. We are unaware of any theory that 
would allow quantitative comparison between C in the two graphene 
systems. Nonetheless, the smaller value of the interaction constant in 
MLG compared with BLG could probably be understood as owing to 
the lower density of states in the Dirac spectrum.

In addition, we analysed δn(T ) for our BLG devices using the same 
approach as described for MLG in the main text. Above 50 K, δn in 
Extended Data Fig. 2c exceeds the remnant charge inhomogeneity 
(in the limit of low T ) by a few times, which ensures that the smear-
ing of the peak in ρxx at T > 100 K was dominated by e–h excitations. 
Extended Data Fig. 2c also shows that δn in BLG increased linearly with 
T, in agreement with equation (9) and qualitatively different from the 
quadratic behaviour of δn(T ) in MLG (equation (7) and Fig. 1d). Using 
the usually assumed value m* ≈ 0.03 me for BLG (where me is the free 
electron mass), we find δn ≈ 0.5 nth, similar to the case of MLG as dis-
cussed in the main text.

The response of BLG’s e–h plasma to small B is shown in Extended 
Data Fig. 2d. Similar to the case of MLG, Δ evolves proportionally to 
B2 but its absolute value is two orders of magnitude smaller than that 
in MLG, reaching only 1.5% at 0.1 T at room temperature. For com-
pleteness, we have evaluated the mobilities for the compensated e–h 
plasma in BLG, using the same approach as in the main text. Both mag-
netotransport and zero-field mobilities (μB and μ0, respectively) are 
plotted in Extended Data Fig. 2e. They are found to be an order of mag-
nitude lower than those for the Dirac plasma, which is the underlying 
reason behind the two-orders-of-magnitude smaller low-B MR in BLG 
compared with MLG (Δ ∝ μ2). It is noted that μ0 for BLG is approximately 
two times lower than μB (Extended Data Fig. 2e), similar to the case of 
MLG in Fig. 2c. The difference between μ0 and μB is again attributed 
to electrons and holes moving against and along each other for lon-
gitudinal and Hall flows, respectively, as discussed in the main text 
and detailed in ‘Difference between zero-field and magnetotransport 
mobilities’ below.

Our experiments show that charge carriers in the Dirac plasma are 
several times more mobile than electrons and holes at the NP in BLG. 
The reason for the exceptionally high mobility in the Dirac plasma is 
twofold. First, the scattering rate τ C∝p

−1  is approximately two times 
lower in MLG compared with BLG, as discussed above. Second, the 
effective mass for Dirac fermions at room temperature can be estimated 
from equation (8) as m* ≈ 0.01 me, which is three times lower than the 
effective mass of charge carriers in BLG. Taken together, this suggests 
that the zero-field mobility µ eτ m= / *0  for the Dirac plasma should be 
a factor of 6 higher than that for BLG’s e–h plasma, in qualitative agree-
ment with the experiment (compare Extended Data Figs. 1d and 2e).

Magnetotransport in multilayer graphene
Another electronic system with high-mobility charge carriers at room 
temperature is multilayer graphene (thin films of graphite). The mate-
rial is an intrinsic semimetal with electrons and holes being present in 
approximately the same concentrations83. It is instructive to compare 
the magnetotransport properties of this nearly compensated semi-
metal with those of the Dirac plasma.

Our graphite devices were several nanometres thick (10–20 gra-
phene layers) and shaped into Hall bars. To preserve the high elec-
tronic quality, the multilayer films were again encapsulated with hBN. 
Measurements for one of the devices are shown in Extended Data Fig. 3. 
Graphite’s magnetoresistivity was found to increase quadratically in 
fields below 1 T. At room temperature, Δ was about 1.4% at 0.1 T, simi-
lar to the case of BLG and two orders of magnitude smaller than the 
MR of the Dirac plasma. Above 1 T, graphite exhibited notable devia-
tions from the parabolic dependence bending towards a lower power 
and becoming practically linear in B at low T and above a few tesla. 
Room-temperature Δ reaches 80% and 3,500% at 1 T and 9 T, respec-
tively, in agreement with a previous report for few-layer graphene34. 
Although MLG exhibits a few times larger Δ in high B, it is possible that 
the linear MR in graphite (first reported a century ago42,43 and still not 
fully understood; see ‘Brief history of linear MR’) has the same origin as 
in MLG. This possibility requires further investigation because graph-
ite’s electronic spectrum is complicated and, also, strongly evolves 
with magnetic field83.

To evaluate the magnetotransport mobility μB in graphite, we used 
the same approach as for MLG and BLG. The results are plotted in 
Extended Data Fig. 3b. At room temperature, μB for the e–h system in 
graphite was found to be about 10,000 cm2 V−1 s−1, that is, a factor of 
more than 10 lower than that for the Dirac plasma in MLG (Fig. 2с) but 
close to μB found for the e–h plasma in BLG (Extended Data Fig. 2e). 
This is perhaps not surprising as electronically, graphite is often con-
sidered as a stack of graphene bilayers. The provided comparison of 
graphene with its bilayers and multilayers highlights the unique nature 
of the Dirac plasma and its anomalously high mobility that results in the 
giant MR response, especially in low B. It is noted that μB for multilayer 
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graphene can be extracted more accurately, using both Hall and longi-
tudinal measurements, which does not require the used assumption 
of e–h symmetry at the NP. The latter analysis83 yields practically the 
same μB as our intentionally simplified approach.

Difference between zero-field and magnetotransport mobilities
Magnetotransport in graphene’s Dirac plasma was first analysed by 
Müller and Sachdev84 and later by Narozhny with colleagues85,86. Below 
we provide analogous calculations, for completeness and to simplify 
our evaluation of the magnetoresistivity observed experimentally.

In the presence of electric E and magnetic B fields, the Boltzmann 
equations for electrons and holes at the NP can be written as
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where ue and uh are the drift velocities of electrons and holes, respec-
tively, τeh is the e–h scattering time and τ is the electron–impurity and/
or electron–phonon scattering times. The effective mass m* for the 
Dirac plasma is given by equation (8).

Taking the sum and difference between the top and bottom expres-
sions in equation (13), we obtain
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where τ τ τ= +0
−1

eh
−1 −1 is the total scattering rate. Plugging ue + uh obtained 

from the top expression of equation (14) into the left-hand side of the 
bottom one, we obtain
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0. As shown below, these coefficients deter-
mine the magnetotransport and zero-field mobilities. If equation (15) 
is placed into the left-hand side of the first line of equation (14), this 
leads to
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where z is the unit vector in the direction of magnetic field. Combining 
equations (15) and (16) allows us to find
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Equation (17) yields σ n p e n e= ( + ) = 2xx
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 where n and  

p are the densities of thermally excited electrons and holes, respectively 
(n = p = nth). To obtain ρxx(B) at the NP, we take into account that for a 
compensated e–h plasma the Hall conductivity σxy = 0 and ρxx = 1/σxx, 
which leads to

ρ B
n eµ n eµ

µ B( ) =
1

2
+

1
2 (18)NP

th 0 th 0
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The first term defines the zero-B resistivity of the Dirac plasma and, 
as expected, depends on the total scattering rate 1/τ0. However, the 
second term is proportional to µ µ eτ m/ = / *B

2
0 , that is, the absolute 

value of MR ρxx(B) − ρxx(0) is independent of e–h collisions and depends 
on only impurity and/or phonon scattering.

As for relative MR, we obtain

∆
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ρ
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= (19)xx xx

xx
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2 2

The above analysis suggests different zero-field and magnetotrans-
port mobilities, and their ratio is given by

µ µ τ τ τ τ/ = / = 1 + / > 1 (20)B 0 0 eh

Our experiments found typical μB/μ0 of about 3, in agreement with 
the expectation that e–h scattering in the Dirac plasma should be the 
dominant scattering mechanism at room temperature.

Effect of proximity screening on mobility and MR
The observed difference between mobilities extracted from zero-field 
and magnetotransport measurements implies that μ0 and μB should 
be affected differently by screening. The latter mobility should be less 
sensitive to screening because e–h scattering does not contribute to 
Hall currents, as discussed above.

We have verified these expectations using MLG devices with proxim-
ity screening15. Such devices have previously been studied in the doped 
regime where electron scattering was found to be notably reduced by 
the screening15. Electron–hole interactions in charge-neutral graphene 
can also be expected to be modified by such proximity screening. We 
studied three MLG devices in which the graphite gate served as a metal-
lic screening plate and was separated from graphene by a thin hBN layer 
(thicknesses of about 0.9 nm, 1.2 nm and 2.4 nm; inset of Extended Data 
Fig. 4a). In the particular case of the 2.4-nm device shown in Extended 
Data Fig. 4, we have found the screening to reduce ρNP by a factor of 
about 2 below 250 K compared with similar-quality MLG devices with-
out screening. The reduction in ρNP yields a smaller interaction constant 
(about 0.4) and translates into higher μ0. It is noted that the difference 
between ρNP observed for screened and unscreened devices reduces at 
higher T (Extended Data Fig. 4a). This can be attributed to the fact that 
the screening is sensitive to the average separation between charge car-
riers, which is proportional to n−1/2. As the density of thermally excited 
carriers increases with T, the screening efficiency is reduced15.

The influence of proximity screening on magnetotransport in the 
Dirac plasma is found to be notably different from the case of zero B.  
Extended Data Fig. 4b shows that changes in ρNP as a function of B 
remained practically the same for devices with and without screen-
ing. This agrees with the results in ‘Difference between zero-field and 
magnetotransport mobilities’, which predict that changes in ρNP(B) 
should be insensitive to e–h scattering and, therefore, unaffected by 
proximity screening, in contrast to ρNP(B = 0) that is dominated by this 
scattering mechanism.

For quantitative analysis of the observed screening effects, we have 
extracted e–h and electron–impurity (inelastic) scattering times (τeh and 
τ, respectively) for the devices with and without proximity screening. 
To this end, we used the fact that the first (zero B) term in equation (18) 
depends on both τeh and τ whereas the second term is determined only 
by τ. The results are plotted in Extended Data Fig. 4c. Both screened 
and unscreened devices exhibit similar τ that is, several times longer 
than τeh. As expected, the proximity screening significantly suppresses 
electron interactions so that at about 150 K, τeh is twice longer in the 
devices with proximity screening than for the standard encapsulated 
graphene. The difference is reduced at higher T, with possible reasons 
for this being mentioned earlier in this section.

Linear magnetoresistivity in high fields
As discussed in the main text, the parabolic MR is observed only in small 
magnetic fields up to about 0.1 T. In higher B, a linear MR behaviour 
emerges. We observed the linear dependence over a wide range of mag-
netic fields up to 18 T, the highest B available in our experiments. This is 



shown in Extended Data Fig. 5 for device D2. Again, the slope of ρNP(B) 
depends weakly on T, and its absolute value is close to that exhibited 
by device D1 (within 20%), as shown in Fig. 3a. Overall, the described 
high-B behaviour was very similar for all five such MLG devices that we 
studied (inset of Fig. 3b). It is noted that the absence of T dependence 
for high-B MR indicates that many-body gaps caused by lifting of spin 
and valley degeneracies play little role within the discussed range of 
T and B. Otherwise, the gaps’ smearing should have led to a strong T 
dependence.

Landau quantization at room temperature
We have attributed the observed linear MR in high B to the transition of 
the Dirac plasma into the quantized regime where the linear spectrum 
of MLG splits into dispersionless LLs. This condition is an essential 
prerequisite for discussing magnetotransport for the compensated 
Boltzmann gas in the zeroth LL.

In MLG, the main cyclotron gap at the filling factor ν = 2 in units of 
the kelvin (K) is given by87 ℏE[K] = v (2e B) ≈ 400 × B[T]F

1/2 . The gap’s 
size notably exceeds the thermal energy at room temperature already 
in fields of a few tesla. Previously, the Landau quantization has been 
reported for ultrahigh magnetic fields of 30–40 T where even the quan-
tum Hall effect was observed at room temperature87. To demonstrate 
that Landau quantization in our devices becomes important at room 
temperature already in moderate B, Extended Data Fig. 6a shows the 
fan diagram measured for one of our Corbino devices at room tem-
perature. The found peaks in inverse conductivity follow the main gaps 
at ν = ±2, as expected, and become clearly visible at B above 6 T. The 
Landau quantization is also visible in ρxx measured in the standard 
Hall-bar geometry (Extended Data Fig. 6b). These observations support 
the description of high-B transport in neutral MLG in terms of the zeroth 
LL for the discussed temperature range up to 300 K.

Linear MR in Corbino devices
We have also used our Corbino devices to rule out edge effects in the 
appearance of strange linear MR. Extended Data Fig. 7 shows that the 
linear dependence ρNP(B) was also observed in this geometry, exhibit-
ing little difference with respect to the behaviour reported for the 
four-probe Hall-bar devices. Indeed, MR of Corbino disks is found to 
be weakly dependent on T and exhibit slopes with values close to those 
observed in the Hall-bar geometry (compare Fig. 3a and Extended Data 
Fig. 5). This proves that the linear MR is an intrinsic (bulk) effect and, 
for example, it is not related to e–h annihilation at graphene edges66 
or to spin and valley Hall currents reported for neutral graphene88.

MR of low-mobility graphene
To illustrate the importance of high quality for the reported MR behav-
iour of MLG in both low and high B, we have measured low-mobility 
devices obtained by exfoliation of graphene onto an oxidized silicon 
wafer (inset of Extended Data Fig. 8a). At liquid-helium temperatures, 
such devices exhibited strong charge inhomogeneity with δn ≈ 1011 cm−2 
(Extended Data Fig. 8a), which was nearly two orders of magnitude higher 
than that for hBN-encapsulated graphene (Fig. 1c). Even at 300 K, ther-
mally excited density nth remained smaller than the residual δn, which 
means that electron transport near the NP in such devices was domi-
nated by charge inhomogeneity (e–h puddles) at all T in the experiment. 
Accordingly, although ρNP decreased with increasing T (Extended Data 
Fig. 8), similar to the case of our high-mobility devices, it only reached 
about 4 kΩ at room temperature, significantly away from the intrinsic 
value of about 1 kΩ for the Dirac plasma in the quantum-critical regime.

In small magnetic fields, ρNP for MLG on silicon dioxide evolved quad-
ratically with B (Extended Data Fig. 8b). The measured Δ was found to 
be more than two orders of magnitude smaller than in high-quality 
MLG (<1% at 0.1 T), which corresponds to about 8,500 cm2 V−1 s−1 at the 
NP. With increasing B above 1 T, the MR of graphene on silicon dioxide 
deviated from the parabolic dependence and became sublinear at high 

T (Extended Data Fig. 8c), in agreement with the previous reports30,70. 
Such sublinear behaviour may be attributed to short-range scattering73,  
which is present in graphene on silicon dioxide89, but further research 
is required to unambiguously identify the origins of high-B MR in 
low-mobility MLG. Nonetheless, our observations clearly show the 
importance of electronic quality for the observation of the linear mag-
netoresistivity.

Data availability
All relevant data are available from the corresponding authors. Source 
data are provided with this paper.
 

39. Thomson, W. XIX. On the electro-dynamic qualities of metals:—effects of magnetization 
on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 8, 546–550 (1857).

40. Hall, E. H. On the new action of magnetism on a permanent electric current. Lond. Edinb. 
Dublin Phil. Mag. J. Sci. 10, 301–328 (1880).

41. Becker, J. A. & Curtiss, L. F. Physical properties of thin metallic films. I. Magneto-resistance 
effects in thin films of bismuth. Phys. Rev. 15, 457–464 (1920).

42. Kapitza, P. The study of the specific resistance of bismuth crystals and its change in 
strong magnetic fields and some allied problems. Proc. R. Soc. Lond. A 119, 358–443 
(1928).

43. Kapitza, P. The change of electrical conductivity in strong magnetic fields. Part I.—
experimental results. Proc. R. Soc. Lond. 123, 292–341 (1929).

44. Lifshitz, I. M. & Peschanskii, V. G. Galvomagnetic characteristics of metals with open 
Fermi surface. Sov. Phys. JETP 35, 875–883 (1959).

45. Lifshitz, I. M., Azbel’, M. I. A. & Kaganov, M. I. The theory of galvanomagnetic effects in 
metals. Sov. Phys. JETP 4, 41–54 (1957).

46. Alekseevskii, N. E. & Gaidukov, Y. P. Measurement of the electrical resistance of metals in 
a magnetic field as a method of investigating the Fermi surface. Sov. Phys. JETP 36,  
311–313 (1959).

47. Dreizin, Y. A. & Dykhne, A. M. Anomalous conductivity of inhomogeneous media in a 
strong magnetic field. Sov. Phys. JETP 36, 127–136 (1973).

48. Amundsen, T. & Jerstad, P. Linear magnetoresistance of aluminum. J. Low Temp. Phys. 15, 
459–471 (1974).

49. Sampsell, J. B. & Garland, J. C. Current distortion effects and linear magnetoresistance of 
inclusions in free-electron metals. Phys. Rev. B 13, 583–589 (1976).

50. Stroud, D. & Pan, F. P. Effect of isolated inhomogeneities on the galvanomagnetic 
properties of solids. Phys. Rev. B 13, 1434–1438 (1976).

51. Beers, C. J., van Dongen, J. C. M., van Kempen, H. & Wyder, P. Influence of voids on the 
linear magnetoresistance of indium. Phys. Rev. Lett. 40, 1194–1197 (1978).

52. Yoshida, K. Structural magnetoresistance of indium containing granular glass. J. Phys. F 
11, L245–L248 (1981).

53. Bruls, G. J. C. L., Bass, J., van Gelder, A. P., van Kempen, H. & Wyder, P. Linear 
magnetoresistance caused by sample thickness variations. Phys. Rev. Lett. 46, 553–555 
(1981).

54. Bruls, G. J. C. L., Bass, J., van Gelder, A. P., van Kempen, H. & Wyder, A. P. Linear 
magnetoresistance due to sample thickness variations: applications to aluminum. Phys. 
Rev. B 32, 1927–1939 (1985).

55. Parish, M. M. & Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered 
semiconductors. Nature 426, 162–165 (2003).

56. Abrikosov, A. A. Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998).
57. Abrikosov, A. A. Quantum magnetoresistance of layered semimetals. Phys. Rev. B 60, 

4231–4234 (1999).
58. Xu, R. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 

57–60 (1997).
59. Yang, F. Y. et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin 

films. Science 284, 1335–1337 (1999).
60. Hu, J. & Rosenbaum, T. F. Classical and quantum routes to linear magnetoresistance. Nat. 

Mater. 7, 697–700 (2008).
61. Friedman, A. L. et al. Quantum linear magnetoresistance in multilayer epitaxial graphene. 

Nano Lett. 10, 3962–3965 (2010).
62. Kubo, R., Miyake, S. J. & Hashitsume, N. Quantum theory of galvanomagnetic effect at 

extremely strong magnetic fields. Solid State Phys. 17, 269–364 (1965).
63. Ando, T. & Uemura, Y. Theory of quantum transport in a two-dimensional electorn systems 

under magnetic fields. J. Phys. Soc. Jpn 36, 959–967 (1974).
64. Klier, J., Gornyi, I. V. & Mirlin, A. D. Transversal magnetoresistance in Weyl semimetals. 

Phys. Rev. B 92, 205113 (2015).
65. Alekseev, P. S. et al. Magnetoresistance in two-component systems. Phys. Rev. Lett. 114, 

156601 (2015).
66. Alekseev, P. S. et al. Magnetoresistance of compensated semimetals in confined 

geometries. Phys. Rev. B 95, 165410 (2017).
67. Varma, C. M. Quantum-critical resistivity of strange metals in a magnetic field. Phys. Rev. 

Lett. 128, 206601 (2022).
68. Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 

597, 345–349 (2021).
69. Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. 

Phys. 18, 633–638 (2022).
70. Cho, S. & Fuhrer, M. S. Charge transport and inhomogeneity near the minimum 

conductivity point in graphene. Phys. Rev. B 77, 081402 (2008).
71. Pisana, S., Braganca, P. M., Marinero, E. E. & Gurney, B. A. Tunable nanoscale graphene 

magnetometers. Nano Lett. 10, 341–346 (2010).



Article
72. Liao, Z.-M. et al. Large magnetoresistance in few layer graphene stacks with current 

perpendicular to plane geometry. Adv. Mater. 24, 1862–1866 (2012).
73. Alekseev, P. S., Dmitriev, A. P., Gornyi, I. V. & Kachorovskii, V. Yu. Strong magnetoresistance 

of disordered graphene. Phys. Rev. B 87, 165432 (2013).
74. Vasileva, G. Y. et al. Linear magnetoresistance in compensated graphene bilayer. Phys. 

Rev. B 93, 195430 (2016).
75. Wang, X., Du, Y., Dou, S. & Zhang, C. Room temperature giant and linear 

magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys. Rev. Lett. 108, 
266806 (2012).

76. Zhang, S. X. et al. Magneto-resistance up to 60 tesla in topological insulator Bi2Te3 thin 
films. Appl. Phys. Lett. 101, 202403 (2012).

77. Piatrusha, S. U. et al. Topological protection brought to light by the time-reversal 
symmetry breaking. Phys. Rev. Lett. 123, 056801 (2019).

78. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 
(2013).

79. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).
80. Ziman, J. M. Principles of the Theory of Solids (Cambridge Univ. Press, 1964).
81. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at 

room temperature. Nano Lett. 11, 2396–2399 (2011).
82. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. 

Nature 459, 820–823 (2009).
83. Yin, J. et al. Dimensional reduction, quantum Hall effect and layer parity in graphite films. 

Nat. Phys. 15, 437–442 (2019).
84. Müller, M. & Sachdev, S. Collective cyclotron motion of the relativistic plasma in 

graphene. Phys. Rev. B 78, 115419 (2008).
85. Narozhny, B. N., Gornyi, I. V., Titov, M., Schütt, M. & Mirlin, A. D. Hydrodynamics in 

graphene: linear-response transport. Phys. Rev. B 91, 035414 (2015).
86. Narozhny, B. N., Gornyi, I. V., Mirlin, A. D. & Schmalian, J. Hydrodynamic approach to 

electronic transport in graphene: hydrodynamic approach to electronic transport in 
graphene. Ann. Phys. 529, 1700043 (2017).

87. Novoselov, K. S. et al. Room-temperature quantum Hall effect in graphene. Science 315, 
1379–1379 (2007).

88. Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332,  
328–330 (2011).

89. Ni, Z. H. et al. On resonant scatterers as a factor limiting carrier mobility in graphene. 
Nano Lett. 10, 3868–3872 (2010).

Acknowledgements We acknowledge financial support from the European Research Council 
(grant VANDER), the Lloyd’s Register Foundation, Graphene Flagship Core3 Project, and 
the EPSRC (grants EP/W006502, EP/V007033 and EP/S030719); J.L. and A.P. were supported 
by the EU Horizon 2020 programme under the Marie Skłodowska-Curie grants 891778 and 
873028, respectively; A.P. and A.E.K. acknowledge support from the Leverhulme Trust (grant 
RPG-2019-363).

Author contributions A.I.B., L.A.P. and A.K.G. designed and supervised the project; N.X., P.K. 
and Z.W. fabricated the graphene devices; A.M. provided multilayer graphene devices; J.L., 
A.I.B., L.A.P., J.B. and C.M. carried out the electrical measurements; A.I.B., J.L., L.A.P. and A.K.G. 
analysed data with help from V.I.F., A.P., A.E.K., A.A.G., N.X. and P.K.; A.K.G. and A.I.B. wrote the 
manuscript with contributions from I.V.G., A.P., A.E.K. and V.I.F. All authors contributed to 
discussions.

Competing interests The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L. A. Ponomarenko,  
A. K. Geim or Alexey I. Berdyugin.
Peer review information Nature thanks Jurgen Smet and the other, anonymous, reviewer(s) for 
their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

http://www.nature.com/reprints


Extended Data Fig. 1 | MR behaviour for another MLG device. a, Its zero-B 
resistivity at the NP as a function of T. b, δn as a function of T. The shadowed areas 
in a and b indicate the range in which the thermally excited density nth is less 
than the remnant inhomogeneity. c, Low-B resistivity for two characteristic T. 

Dashed curve: parabolic dependence. The black circles indicate Δ in the 
characteristic field of 0.1 T. d, μB and μ0 for this device as a function of T. Dashed 
curves: guides to the eye.
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Extended Data Fig. 2 | MR and mobility of e–h plasma in BLG. a, Its zero-B 
resistivity near the NP as a function of gate-induced carrier density. b, Resistivity 
of BLG at the NP as a function of T. c, Thermal smearing δn was extracted using 
the same approach as described in the main text. d, Magnetoresistivity at the NP 

in low B. e, Carrier mobility at the NP as a function of T. μB and μ0 were extracted 
from MR and zero-field measurements, respectively. Dashed lines: 1/T 
dependences. All the measurements were carried out at zero displacement.



Extended Data Fig. 3 | Magnetoresistivity of multilayer graphene. a, ρxx(B) 
for a 3.5 nm thick graphite film (∼10 graphene layers) measured between 75 and 
300 K in steps of 25 K. Inset: Log-log plot of the MR at three characteristic T. 
Dashed line: quadratic dependence. b, Magnetotransport mobility for graphite 

evaluated using parabolic fits of ρxx(B) over an interval of ±0.5 T. Dashed curve: 
1/T dependence. We measured several graphite devices, and all exhibited very 
similar MR behaviour. It changed little if additional carriers were induced near 
the surface by gate voltage83.
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Extended Data Fig. 4 | Influence of proximity screening. a, Resistivity of 
charge-neutral MLG with and without screening. Inset: schematics of our devices 
where the proximity screening is provided by a bottom graphite gate. b, Changes 
in graphene’s resistivity in small B for devices with and without proximity 

screening. The black circle marks Δ at 50 mT (colour-coded). c, Inelastic and 
electron–hole scattering times (top and bottom panels, respectively) for devices 
with and without proximity screening.



Extended Data Fig. 5 | Another example of quantum linear MR. Resistivity  
of MLG at the NP over a large range of B. Temperatures are between 100 and 
250 K in steps of 50 K; device D2. Dashed line: Guide to the eye with a slope of 
6.5 kOhm T−1.
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Extended Data Fig. 6 | Room-temperature Landau quantization in moderate 
magnetic fields. a, Conductivity σxx of MLG as a function of B and carrier density 
at 300 K. The measurements are for a Corbino-disk device. The vertical yellow 

line indicates the NP, and the red lines follow ν = ±2. b, Room-T resistivity for 
MLG measured in the Hall-bar geometry at three representative B. The traces 
are shifted for clarity by 0.1 kΩ. The vertical arrows mark ν = ±2.



Extended Data Fig. 7 | Quantum linear MR in Corbino devices. ρNP(B) 
measured for one of our Corbino-disk devices at different T (colour-coded). 
The contact resistance was about 0.1 kOhm (measured in the limit of high n and 
assumed to change little near the NP). Black line: guide to the eye with the slope 
4.8 kΩ T−1. Insert: false colour micrograph of the device. Green, hBN on top of 
graphene; gold, metallic contacts; purple, polymer bridges over the outer ring 
contact, which are required for the metallization to reach the inner contact.
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Extended Data Fig. 8 | Magnetotransport in graphene-on-silicon oxide.  
a, Resistivity at the NP as a function of n plotted for two characteristic T. The 
crossing of the two dashed lines indicates the charge inhomogeneity level. The 
inset shows an optical image of the studied device. Scale bar, 10 μm. b, Resistivity 
at the NP as a function of B. The open circles mark MR values at 0.1 T. Inset: same 

curves replotted on a log scale. The dashed line is the parabolic fit for the 250-K 
curve below 0.2 T. c, Resistivity of charge-neutral graphene-on-SiO2 over a large 
range of B at different T. No clear linear MR is observed at any T for such MLG 
devices.
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