Abstract
Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm−2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm−2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm−2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm−2, along with a high radiance of more than 3,200 W s−1 m−2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s−1 m−2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The data underlying this paper are available at the University of Cambridge repository (https://doi.org/10.17863/CAM.92711).
References
Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).
Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).
Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).
Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).
Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).
Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).
Zhao, B. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).
Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).
Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).
Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).
Chu, Z. et al. Perovskite light‐emitting diodes with external quantum efficiency exceeding 22% via small‐molecule passivation. Adv. Mater. 33, 2007169 (2021).
Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).
Chen, J. et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photon. 15, 238–244 (2021).
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).
Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).
Lian, Y. et al. Ultralow-voltage operation of light-emitting diodes. Nat. Commun. 13, 3845 (2022).
Santhanam, P., Gray, D. J. & Ram, R. J. Thermoelectrically pumped light-emitting diodes operating above unity efficiency. Phys. Rev. Lett. 108, 097403 (2012).
Anaya, M. et al. Best practices for measuring emerging light-emitting diode technologies. Nat. Photon. 13, 818–821 (2019).
Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).
Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 359, 679–684 (2018).
Pan, Z., Lu, Y.-Y. & Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58–63 (2012).
Bao, C. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3, 156–164 (2020).
Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).
Zhao, L. et al. Nanosecond‐pulsed perovskite light‐emitting diodes at high current density. Adv. Mater. 33, 2104867 (2021).
Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).
Jariwala, S. et al. Local crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3, 3048–3060 (2019).
Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).
Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).
Han, Q. et al. Single crystal formamidinium lead Iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016).
Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).
Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).
Draguta, S. et al. Spatially non-uniform trap state densities in solution-processed hybrid perovskite thin films. J. Phys. Chem. Lett. 7, 715–721 (2016).
Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).
Orri, J. F. et al. Using Using cathodoluminescence from continuous and pulsed-mode SEM to elucidate the nanostructure of hybrid halide perovskite materials. Microsc. Microanal. 28, 2006–2008 (2022).
Wang, J. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015).
Hu, J. et al. Aryl-perfluoroaryl interaction in two-dimensional organic–inorganic hybrid perovskites boosts stability and photovoltaic efficiency. Acs. Mater. Lett. 1, 171–176 (2019).
Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017).
Mello, J. C., de, Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).
Orri, J. F., Lähnemann, J., Prestat, E., Johnstone, D. N. & Tappy, N. LumiSpy/lumispy: release v0.1.2. Zenodo https://doi.org/10.5281/zenodo.5722508 (2021).
Cho, C. et al. Electrical pumping of perovskite diodes: toward stimulated emission. Adv. Sci. 8, 2101663 (2021).
Acknowledgements
Y.S. and L.D. acknowledge support from the China Scholarship Council and Cambridge Trust Scholarship. L.G., L.-S.C. and D.Y. acknowledge funding from the USTC Research Funds of the Double First-Class Initiative and the National Natural Science Foundation of China (NSFC) (grant no. 52103242). This work was partially carried out at the USTC Centre for Micro and Nanoscale Research and Fabrication. This work used resources of the supercomputing system in the Supercomputing Centre of University of Science and Technology of China. C.C. and S.D.S. acknowledge the BrainLink program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (grant no. NRF-2022H1D3A3A01077343). J.F.O. acknowledges funding from the Engineering and Physical Sciences Research Council (EPSRC) Nano Doctoral Training Centre (grant no. EP/L015978/1). SEM-CL studies were supported by the EPSRC (grant no. EP/R025193/1) and G. Kusch is thanked for his continued support with the cathodoluminescence system. K.J. acknowledges funding from the Royal Society. S.D.S. acknowledges funding from the Royal Society and Tata Group (UF150033). We acknowledge support from the European Research Council (European Union’s Horizon 2020, grant nos. HYPERION 756962 and PEROVSCI 957513). S.J.Z. acknowledges support from the Polish National Agency for Academic Exchange in the Bekker program (grant no. PPN/BEK/2020/1/00264/U/00001). Y.L. acknowledges support from Simons Foundation (grant no. 601946) and A*STAR under its Young Achiever Award. This work used resources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by the University of Cambridge Research Computing Service, provided by Dell EMC and Intel using Tier-2 funding from the EPSRC (grant no. EP/P020259/1) and DiRAC funding from the Science and Technology Facilities Council. GIWAXS studies were supported by Diamond Light Source for time on Beamline I07 under proposal numbers SI30575-1 and SI30043-1 and M. Anaya, Y. Lu, Y.-H. Chiang and Q. Gu helped with measurement. This work was supported by EPSRC grant nos. EP/R023980/1, EP/S030638/1 and EP/V06164X/1.
Author information
Authors and Affiliations
Contributions
Y.S., L.-S.C. and N.C.G. conceived the work. Y.S. developed efficient perovskite LEDs under the supervision of L.-S.C. and N.C.G. L.G. performed chemical synthesis, FTIR and XPS under the supervision of L.-S.C. L.D. performed transient absorption spectroscopy measurements. Y.S. and L.D. performed time-resolved PL measurements. C.C. performed confocal TCSPC measurements. J.F.O. and M.C.L. performed STEM–HAADF and energy-dispersive X-ray measurements under the supervision of C.D. J.F.O. performed SEM-CL measurements. K.J. performed hyperspectral imaging measurements. S.J.Z. performed PDS measurements. A.J.M. performed GIWAXS measurements. Y.L. performed DFT simulations. Y.Z. performed SEM measurements. L.G., Y.W., K.G. and D.Y. performed NMR measurements. L.Z. performed AFM measurements. J.-Y.H., J.L., E.M.T. and S.D.S. assisted in interpreting results. Y.S. wrote the manuscript, which was revised by L.-S.C. and N.C.G. All authors contributed to the work and commented on the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Shuxia Tao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains Supplementary Figs. 1–19, Notes 1–5, Tables 1–3 and References.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sun, Y., Ge, L., Dai, L. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023). https://doi.org/10.1038/s41586-023-05792-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-023-05792-4
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.