Abstract
The animal phyla and their associated body plans originate from a singular burst of evolution occurring during the Cambrian period, over 500 million years ago1. The phylum Bryozoa, the colonial ‘moss animals’, have been the exception: convincing skeletons of this biomineralizing clade have been absent from Cambrian strata, in part because potential bryozoan fossils are difficult to distinguish from the modular skeletons of other animal and algal groups2,3. At present, the strongest candidate4 is the phosphatic microfossil Protomelission5. Here we describe exceptionally preserved non-mineralized anatomy in Protomelission-like macrofossils from the Xiaoshiba Lagerstätte6. Taken alongside the detailed skeletal construction and the potential taphonomic origin of ‘zooid apertures’, we consider that Protomelission is better interpreted as the earliest dasycladalean green alga—emphasizing the ecological role of benthic photosynthesizers in early Cambrian communities. Under this interpretation, Protomelission cannot inform the origins of the bryozoan body plan; despite a growing number of promising candidates7,8,9, there remain no unequivocal bryozoans of Cambrian age.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
Specimens are accessioned at the Institute of Palaeontology, Yunnan University (YKLP 12436–42).
References
Budd, G. E. & Mann, R. P. Survival and selection biases in early animal evolution and a source of systematic overestimation in molecular clocks. Interface Focus 10, 20190110 (2020).
Taylor, P. D., Berning, B. & Wilson, M. A. Reinterpretation of the Cambrian ‘bryozoan’ Pywackia as an octocoral. J. Paleontol. 87, 984–990 (2013).
Peel, J. S. Dasyclad-like problematic fossils from the lower Cambrian of north Greenland. Paläontologische Zeitschrift 88, 367–374 (2014).
Zhang, Z. et al. Fossil evidence unveils an early Cambrian origin for Bryozoa. Nature 599, 251–255 (2021).
Brock, G. A. & Cooper, B. J. Shelly fossils from the Early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay Limestones of South Australia. J. Paleontol. 67, 758–787 (1993).
Yang, J., Ortega-Hernández, J., Butterfield, N. J. & Zhang, X.-G. Specialized appendages in fuxianhuiids and the head organization of early euarthropods. Nature 494, 468–471 (2013).
Elias, M. K. Cambroporella and Coeloclema, Lower Cambrian and Ordovician bryozoans. J. Paleontol. 28, 52–58 (1954).
Pruss, S. B., Leeser, L., Smith, E. F., Zhuravlev, A. Y. & Taylor, P. D. The oldest mineralized bryozoan? A possible palaeostomate in the lower Cambrian of Nevada, USA. Sci. Adv. 8, eabm8465 (2022).
Landing, E., English, A. & Keppie, J. D. Cambrian origin of all skeletalized metazoan phyla–discovery of Earth’s oldest bryozoans (Upper Cambrian, southern Mexico). Geology 38, 547–550 (2010).
Budd, G. E. & Jackson, I. S. C. Ecological innovations in the Cambrian and the origins of the crown group phyla. Phil. Trans. R. Soc. B 371, 20150287 (2016).
Budd, G. E. & Mann, R. P. The dynamics of stem and crown groups. Sci. Adv. 6, eaaz1626 (2020).
Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000).
Briggs, D. E. G. & Fortey, R. A. Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology 31, 94–112 (2005).
Smith, M. R., Harvey, T. H. P. & Butterfield, N. J. The macro- and microfossil record of the Cambrian priapulid Ottoia. Palaeontology 58, 705–721 (2015).
Guo, J. et al. A Cambrian tommotiid preserving soft tissues reveals the metameric ancestry of lophophorates. Curr. Biol. 32, 4769–4778.e2 (2022).
Sun, H.-J. et al. Hyoliths with pedicles illuminate the origin of the brachiopod body plan. Proc. R. Soc. B 285, 20181780 (2018).
Zhao, F.-C. et al. Orthrozanclus elongata n. sp. and the significance of sclerite-covered taxa for early trochozoan evolution. Sci. Rep. 7, 16232 (2017).
Budd, G. E. The Cambrian fossil record and the origin of the phyla. Integr. Comp. Biol. 43, 157–165 (2003).
Kouchinsky, A. V. et al. Chronology of early Cambrian biomineralization. Geol. Mag. 149, 221–251 (2012).
Zhuravlev, A. Y. & Wood, R. A. The two phases of the Cambrian explosion. Sci. Rep. 8, 16656 (2018).
Riding, R. in The ecology of the Cambrian radiation (eds Zhuravlev, A. & Riding, R.) 445–473 https://doi.org/10.7312/zhur10612-020 (Columbia Univ. Press, 2000).
Ma, J.-Y., Taylor, P. D., Xia, F.-S. & Zhan, R.-B. The oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China. Palaeontology 58, 925–934 (2015).
Maas, A. et al. The ‘Orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld 15, 266–282 (2006).
Hou, X.-G. et al. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life https://doi.org/10.1002/9780470999950 (John Wiley & Sons, 2017).
Yang, J., Smith, M. R., Zhang, X.-G. & Yang, X.-Y. Introvert and pharynx of Mafangscolex, a Cambrian palaeoscolecid. Geol. Mag. 157, 2044–2050 (2020).
Luo, C., Yang, A., Zhuravlev, A. Y. & Reitner, J. Vauxiids as descendants of archaeocyaths: A hypothesis. Lethaia 54, 700–710 (2021).
Hou, Z. et al. Phylotranscriptomic insights into a Mesoproterozoic origin and early radiation of green seaweeds (Ulvophyceae). Nat. Commun. 13, 1610 (2022).
Berger, S. & Kaever, M. J. Dasycladales: An Illustrated Monograph of a Fascinating Algal Order (Georg Thieme Verlag, 1992).
Beadle, S. C. Dasyclads, cyclocrinitids and receptaculitids: Comparative morphology and paleoecology. Lethaia 21, 1–12 (1988).
LoDuca, S. T., Kluessendorf, J. & Mikulic, D. G. A new noncalcified dasycladalean alga from the Silurian of Wisconsin. J. Paleontol. 77, 1152–1158 (2003).
Conway Morris, S. & Chen, M.-E. Cambroclaves and paracarinachitids, early skeletal Problematica from the Lower Cambrian of South China. Palaeontology 34, 357–397 (1991).
Elicki, O. & Wotte, T. Cambroclaves from the Cambrian of Sardinia (Italy) and Germany: Constraints for the architecture of western Gondwana and the palaeogeographical and palaeoecological potential of cambroclaves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 195, 55–71 (2003).
Conway Morris, S., Crampton, J. S., Xiao, B. & Chapman, A. J. Lower Cambrian cambroclaves (incertae sedis) from Xinjiang, China, with comments on the morphological variability of sclerites. Palaeontology 40, 167–189 (1997).
Wotte, T. The youngest cambroclaves: Cambroclavus absonus from the middle Cambrian of the Cantabrian zone (northwest Spain). J. Paleontol. 83, 128–134 (2009).
Jiang, X. & Zhang, Y. Earliest calcified green algae from the 520 Ma old Cambrian dolostones in Xinjiang, China. Biopetrology 1, 9–18 (2021).
Bykova, N. et al. Seaweeds through time: morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae. Precambrian Res. 350, 105875 (2020).
Walcott, C. D. Cambrian geology and paleontology. IV. No. 5, Middle Cambrian algae. Smithson. Misc. Collect. 67, 217–260 (1919).
Lan, T., Yang, J., Zhang, X. & Hou, J. A new macroalgal assemblage from the Xiaoshiba Biota (Cambrian Series 2, Stage 3) of southern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 499, 35–44 (2018).
Wu, M., LoDuca, S. T., Zhao, Y. & Xiao, S. The macroalga Bosworthia from the Cambrian Burgess Shale and Kaili biotas of North America and China. Rev. Palaeobot. Palynol. 230, 47–55 (2016).
Caron, J.-B. & Jackson, D. A. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 222–256 (2008).
Zhao, F. et al. Diversity and species abundance patterns of the early Cambrian (Series 2, Stage 3) Chengjiang Biota from China. Paleobiology 40, 50–69 (2014).
O’Brien, L. J. & Caron, J.-B. Paleocommunity analysis of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia: comparison with the Walcott Quarry and implications for community variation in the Burgess Shale. Paleobiology 42, 27–53 (2016).
Maletz, J. & Steiner, M. Graptolite (Hemichordata, Pterobranchia) preservation and identification in the Cambrian Series 3. Palaeontology 58, 1073–1107 (2015).
LoDuca, S. T., Caron, J.-B., Schiffbauer, J. D., Xiao, S. & Kramer, A. A reexamination of Yuknessia from the Cambrian of British Columbia and Utah. J. Paleontol. 89, 82–95 (2015).
Riding, R. in Calcareous Algae and Stromatolites (ed. Riding, R.) 305–334 (Springer, 1991).
Turner, E. C. Possible poriferan body fossils in early Neoproterozoic microbial reefs. Nature 596, 87–91 (2021).
Liu, A. G. et al. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the late Ediacaran period (approx. 560 Ma). Proc. R. Soc. B 281, 20141202 (2014).
Dunn, F. S. et al. A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK. Nat. Ecol. Evol. 6, 1095–1104 (2022).
Fu, D.-J. et al. The Qingjiang biota—a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science 363, 1338–1342 (2019).
Bottjer, D. J., Yin, Z., Zhao, F. & Zhu, M. Comparative taphonomy and phylogenetic signal of phosphatized Weng’an and Kuanchuanpu Biotas. Precambrian Res. 349, 105408 (2020).
Slater, B. J. & Bohlin, M. S. Animal origins: the record from organic microfossils. Earth Sci. Rev. 232, 104107 (2022).
Hou, J.-B., Yang, J., Zhang, X.-G., Hughes, N. C. & Lan, T. Trilobite-based biostratigraphy of the Xiaoshiba Lagerstätte. Fossils Strata 64, 173–191 (2019).
Acknowledgements
We thank J.-B. Hou, K.-S. Du, J.-F. He and K.-R. Li for assistance in fossil collection; X.-Y. Yang, Y. Wang and L.-J. Zou for performing the elemental map analysis; S. Conway Morris for images of Deltaclavus; and P. Taylor and Z.-F. Zhang for comments on earlier versions of the manuscript. This study was supported by the National Natural Science Foundation of China (41730318 to X.-g.Z. and 42162002 to J.Y.).
Author information
Authors and Affiliations
Contributions
X.-g.Z., M.R.S. and T.L. designed the project. X.-g.Z., M.R.S. and T.L. carried out the morphological and anatomical analyses and contributed to the final version of the manuscript. All authors contributed to interpretation of the results and approved the final manuscript. M.R.S. and X.-g.Z. wrote the manuscript with input from other authors. J.Y., with help from T.L., organized the fieldwork and prepared fossils for photography. X.-g.Z. and M.R.S. produced the figures.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Graham Budd and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Elemental abundances in Protomelission? sp.
Reflected light, backscatter electron, and energy-dispersive X-ray spectroscopy images of a, central thallus of YKLP 12451, corresponding to region 3i in Fig. 2a; b–c, flanges at thallus margin in b, YKLP 12451, corresponding to region b of Fig. 2a; c, YKLP 12446, corresponding to region of Fig. 1b.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, J., Lan, T., Zhang, Xg. et al. Protomelission is an early dasyclad alga and not a Cambrian bryozoan. Nature 615, 468–471 (2023). https://doi.org/10.1038/s41586-023-05775-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-023-05775-5
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.