Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protomelission is an early dasyclad alga and not a Cambrian bryozoan

Abstract

The animal phyla and their associated body plans originate from a singular burst of evolution occurring during the Cambrian period, over 500 million years ago1. The phylum Bryozoa, the colonial ‘moss animals’, have been the exception: convincing skeletons of this biomineralizing clade have been absent from Cambrian strata, in part because potential bryozoan fossils are difficult to distinguish from the modular skeletons of other animal and algal groups2,3. At present, the strongest candidate4 is the phosphatic microfossil Protomelission5. Here we describe exceptionally preserved non-mineralized anatomy in Protomelission-like macrofossils from the Xiaoshiba Lagerstätte6. Taken alongside the detailed skeletal construction and the potential taphonomic origin of ‘zooid apertures’, we consider that Protomelission is better interpreted as the earliest dasycladalean green alga—emphasizing the ecological role of benthic photosynthesizers in early Cambrian communities. Under this interpretation, Protomelission cannot inform the origins of the bryozoan body plan; despite a growing number of promising candidates7,8,9, there remain no unequivocal bryozoans of Cambrian age.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protomelission-like dasyclad algae from Xiaoshiba.
Fig. 2: Preservation of Protomelission? sp.
Fig. 3: Comparison of the Xiaoshiba Protomelission? sp. with Wirrealpa P. gatehousei and the Cambroclavid Deltaclavus graneus.

Similar content being viewed by others

Data availability

Specimens are accessioned at the Institute of Palaeontology, Yunnan University (YKLP 12436–42).

References

  1. Budd, G. E. & Mann, R. P. Survival and selection biases in early animal evolution and a source of systematic overestimation in molecular clocks. Interface Focus 10, 20190110 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Taylor, P. D., Berning, B. & Wilson, M. A. Reinterpretation of the Cambrian ‘bryozoan’ Pywackia as an octocoral. J. Paleontol. 87, 984–990 (2013).

    Article  Google Scholar 

  3. Peel, J. S. Dasyclad-like problematic fossils from the lower Cambrian of north Greenland. Paläontologische Zeitschrift 88, 367–374 (2014).

    Article  Google Scholar 

  4. Zhang, Z. et al. Fossil evidence unveils an early Cambrian origin for Bryozoa. Nature 599, 251–255 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brock, G. A. & Cooper, B. J. Shelly fossils from the Early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay Limestones of South Australia. J. Paleontol. 67, 758–787 (1993).

    Article  Google Scholar 

  6. Yang, J., Ortega-Hernández, J., Butterfield, N. J. & Zhang, X.-G. Specialized appendages in fuxianhuiids and the head organization of early euarthropods. Nature 494, 468–471 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Elias, M. K. Cambroporella and Coeloclema, Lower Cambrian and Ordovician bryozoans. J. Paleontol. 28, 52–58 (1954).

    Google Scholar 

  8. Pruss, S. B., Leeser, L., Smith, E. F., Zhuravlev, A. Y. & Taylor, P. D. The oldest mineralized bryozoan? A possible palaeostomate in the lower Cambrian of Nevada, USA. Sci. Adv. 8, eabm8465 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Landing, E., English, A. & Keppie, J. D. Cambrian origin of all skeletalized metazoan phyla–discovery of Earth’s oldest bryozoans (Upper Cambrian, southern Mexico). Geology 38, 547–550 (2010).

    Article  ADS  Google Scholar 

  10. Budd, G. E. & Jackson, I. S. C. Ecological innovations in the Cambrian and the origins of the crown group phyla. Phil. Trans. R. Soc. B 371, 20150287 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Budd, G. E. & Mann, R. P. The dynamics of stem and crown groups. Sci. Adv. 6, eaaz1626 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Briggs, D. E. G. & Fortey, R. A. Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology 31, 94–112 (2005).

    Article  Google Scholar 

  14. Smith, M. R., Harvey, T. H. P. & Butterfield, N. J. The macro- and microfossil record of the Cambrian priapulid Ottoia. Palaeontology 58, 705–721 (2015).

    Article  Google Scholar 

  15. Guo, J. et al. A Cambrian tommotiid preserving soft tissues reveals the metameric ancestry of lophophorates. Curr. Biol. 32, 4769–4778.e2 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Sun, H.-J. et al. Hyoliths with pedicles illuminate the origin of the brachiopod body plan. Proc. R. Soc. B 285, 20181780 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhao, F.-C. et al. Orthrozanclus elongata n. sp. and the significance of sclerite-covered taxa for early trochozoan evolution. Sci. Rep. 7, 16232 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Budd, G. E. The Cambrian fossil record and the origin of the phyla. Integr. Comp. Biol. 43, 157–165 (2003).

    Article  PubMed  Google Scholar 

  19. Kouchinsky, A. V. et al. Chronology of early Cambrian biomineralization. Geol. Mag. 149, 221–251 (2012).

    Article  ADS  Google Scholar 

  20. Zhuravlev, A. Y. & Wood, R. A. The two phases of the Cambrian explosion. Sci. Rep. 8, 16656 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Riding, R. in The ecology of the Cambrian radiation (eds Zhuravlev, A. & Riding, R.) 445–473 https://doi.org/10.7312/zhur10612-020 (Columbia Univ. Press, 2000).

  22. Ma, J.-Y., Taylor, P. D., Xia, F.-S. & Zhan, R.-B. The oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China. Palaeontology 58, 925–934 (2015).

    Article  Google Scholar 

  23. Maas, A. et al. The ‘Orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld 15, 266–282 (2006).

    Article  Google Scholar 

  24. Hou, X.-G. et al. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life https://doi.org/10.1002/9780470999950 (John Wiley & Sons, 2017).

  25. Yang, J., Smith, M. R., Zhang, X.-G. & Yang, X.-Y. Introvert and pharynx of Mafangscolex, a Cambrian palaeoscolecid. Geol. Mag. 157, 2044–2050 (2020).

    Article  ADS  CAS  Google Scholar 

  26. Luo, C., Yang, A., Zhuravlev, A. Y. & Reitner, J. Vauxiids as descendants of archaeocyaths: A hypothesis. Lethaia 54, 700–710 (2021).

    Google Scholar 

  27. Hou, Z. et al. Phylotranscriptomic insights into a Mesoproterozoic origin and early radiation of green seaweeds (Ulvophyceae). Nat. Commun. 13, 1610 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berger, S. & Kaever, M. J. Dasycladales: An Illustrated Monograph of a Fascinating Algal Order (Georg Thieme Verlag, 1992).

  29. Beadle, S. C. Dasyclads, cyclocrinitids and receptaculitids: Comparative morphology and paleoecology. Lethaia 21, 1–12 (1988).

    Article  Google Scholar 

  30. LoDuca, S. T., Kluessendorf, J. & Mikulic, D. G. A new noncalcified dasycladalean alga from the Silurian of Wisconsin. J. Paleontol. 77, 1152–1158 (2003).

    Article  Google Scholar 

  31. Conway Morris, S. & Chen, M.-E. Cambroclaves and paracarinachitids, early skeletal Problematica from the Lower Cambrian of South China. Palaeontology 34, 357–397 (1991).

    Google Scholar 

  32. Elicki, O. & Wotte, T. Cambroclaves from the Cambrian of Sardinia (Italy) and Germany: Constraints for the architecture of western Gondwana and the palaeogeographical and palaeoecological potential of cambroclaves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 195, 55–71 (2003).

    Article  Google Scholar 

  33. Conway Morris, S., Crampton, J. S., Xiao, B. & Chapman, A. J. Lower Cambrian cambroclaves (incertae sedis) from Xinjiang, China, with comments on the morphological variability of sclerites. Palaeontology 40, 167–189 (1997).

    Google Scholar 

  34. Wotte, T. The youngest cambroclaves: Cambroclavus absonus from the middle Cambrian of the Cantabrian zone (northwest Spain). J. Paleontol. 83, 128–134 (2009).

    Article  Google Scholar 

  35. Jiang, X. & Zhang, Y. Earliest calcified green algae from the 520 Ma old Cambrian dolostones in Xinjiang, China. Biopetrology 1, 9–18 (2021).

    Google Scholar 

  36. Bykova, N. et al. Seaweeds through time: morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae. Precambrian Res. 350, 105875 (2020).

    Article  ADS  CAS  Google Scholar 

  37. Walcott, C. D. Cambrian geology and paleontology. IV. No. 5, Middle Cambrian algae. Smithson. Misc. Collect. 67, 217–260 (1919).

    Google Scholar 

  38. Lan, T., Yang, J., Zhang, X. & Hou, J. A new macroalgal assemblage from the Xiaoshiba Biota (Cambrian Series 2, Stage 3) of southern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 499, 35–44 (2018).

    Article  Google Scholar 

  39. Wu, M., LoDuca, S. T., Zhao, Y. & Xiao, S. The macroalga Bosworthia from the Cambrian Burgess Shale and Kaili biotas of North America and China. Rev. Palaeobot. Palynol. 230, 47–55 (2016).

    Article  Google Scholar 

  40. Caron, J.-B. & Jackson, D. A. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 222–256 (2008).

    Article  Google Scholar 

  41. Zhao, F. et al. Diversity and species abundance patterns of the early Cambrian (Series 2, Stage 3) Chengjiang Biota from China. Paleobiology 40, 50–69 (2014).

    Article  Google Scholar 

  42. O’Brien, L. J. & Caron, J.-B. Paleocommunity analysis of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia: comparison with the Walcott Quarry and implications for community variation in the Burgess Shale. Paleobiology 42, 27–53 (2016).

    Article  Google Scholar 

  43. Maletz, J. & Steiner, M. Graptolite (Hemichordata, Pterobranchia) preservation and identification in the Cambrian Series 3. Palaeontology 58, 1073–1107 (2015).

    Article  Google Scholar 

  44. LoDuca, S. T., Caron, J.-B., Schiffbauer, J. D., Xiao, S. & Kramer, A. A reexamination of Yuknessia from the Cambrian of British Columbia and Utah. J. Paleontol. 89, 82–95 (2015).

    Article  Google Scholar 

  45. Riding, R. in Calcareous Algae and Stromatolites (ed. Riding, R.) 305–334 (Springer, 1991).

  46. Turner, E. C. Possible poriferan body fossils in early Neoproterozoic microbial reefs. Nature 596, 87–91 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, A. G. et al. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the late Ediacaran period (approx. 560 Ma). Proc. R. Soc. B 281, 20141202 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dunn, F. S. et al. A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK. Nat. Ecol. Evol. 6, 1095–1104 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fu, D.-J. et al. The Qingjiang biota—a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science 363, 1338–1342 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Bottjer, D. J., Yin, Z., Zhao, F. & Zhu, M. Comparative taphonomy and phylogenetic signal of phosphatized Weng’an and Kuanchuanpu Biotas. Precambrian Res. 349, 105408 (2020).

    Article  ADS  CAS  Google Scholar 

  51. Slater, B. J. & Bohlin, M. S. Animal origins: the record from organic microfossils. Earth Sci. Rev. 232, 104107 (2022).

    Article  Google Scholar 

  52. Hou, J.-B., Yang, J., Zhang, X.-G., Hughes, N. C. & Lan, T. Trilobite-based biostratigraphy of the Xiaoshiba Lagerstätte. Fossils Strata 64, 173–191 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J.-B. Hou, K.-S. Du, J.-F. He and K.-R. Li for assistance in fossil collection; X.-Y. Yang, Y. Wang and L.-J. Zou for performing the elemental map analysis; S. Conway Morris for images of Deltaclavus; and P. Taylor and Z.-F. Zhang for comments on earlier versions of the manuscript. This study was supported by the National Natural Science Foundation of China (41730318 to X.-g.Z. and 42162002 to J.Y.).

Author information

Authors and Affiliations

Authors

Contributions

X.-g.Z., M.R.S. and T.L. designed the project. X.-g.Z., M.R.S. and T.L. carried out the morphological and anatomical analyses and contributed to the final version of the manuscript. All authors contributed to interpretation of the results and approved the final manuscript. M.R.S. and X.-g.Z. wrote the manuscript with input from other authors. J.Y., with help from T.L., organized the fieldwork and prepared fossils for photography. X.-g.Z. and M.R.S. produced the figures.

Corresponding authors

Correspondence to Xi-guang Zhang or Martin R. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Graham Budd and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Elemental abundances in Protomelission? sp.

Reflected light, backscatter electron, and energy-dispersive X-ray spectroscopy images of a, central thallus of YKLP 12451, corresponding to region 3i in Fig. 2a; bc, flanges at thallus margin in b, YKLP 12451, corresponding to region b of Fig. 2a; c, YKLP 12446, corresponding to region of Fig. 1b.

Extended Data Table 1 Anatomical comparison between Protomelission and possible relatives

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Lan, T., Zhang, Xg. et al. Protomelission is an early dasyclad alga and not a Cambrian bryozoan. Nature 615, 468–471 (2023). https://doi.org/10.1038/s41586-023-05775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05775-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing