Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Degassing of early-formed planetesimals restricted water delivery to Earth

Abstract

The timing of delivery and the types of body that contributed volatiles to the terrestrial planets remain highly debated1,2. For example, it is unknown if differentiated bodies, such as that responsible for the Moon-forming giant impact, could have delivered substantial volatiles3,4 or if smaller, undifferentiated objects were more probable vehicles of water delivery5,6,7. Here we show that the water contents of minerals in achondrite meteorites (mantles or crusts of differentiated planetesimals) from both the inner and outer portions of the early Solar System are ≤2 μg g−1 H2O. These are among the lowest values ever reported for extraterrestrial minerals. Our results demonstrate that differentiated planetesimals efficiently degassed before or during melting. This finding implies that substantial amounts of water could only have been delivered to Earth by means of unmelted material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Δ17O versus ε54Cr in planetary materials8.
Fig. 2: Maximum water concentrations measured in NAMs from ungrouped achondrite meteorites (this study), angrites40, eucrites41, the Moon38,39,50, Mars51,52 and the Earth53,54.
Fig. 3: Critical radii required for retention of H-bearing species (H2 in red; H2O in blue; CH4 in cyan) at the surface of a growing planetesimal, calculated by equating the thermal velocity of vapour molecules to the escape velocity (which depends on planetesimal density and size).

Similar content being viewed by others

Data availability

All data are available in the main text, Methods or Supplementary Data Tables. Supplementary Data Tables are available at https://doi.org/10.5281/zenodo.7308443Source data are provided with this paper.

References

  1. O’Brien, D. P., Izidoro, A., Jacobson, S. A., Raymond, S. N. & Rubie, D. C. The delivery of water during terrestrial planet formation. Space Sci. Rev. 214, 47 (2018).

    Article  ADS  Google Scholar 

  2. McCubbin, F. M. & Barnes, J. J. Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids. Earth Planet. Sci. Lett. 526, 115771 (2019).

    Article  CAS  Google Scholar 

  3. Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Hirschmann, M. M. Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. Am. Mineral. 101, 540–553 (2016).

    Article  ADS  Google Scholar 

  5. Sarafian, A. R., Nielsen, S. G., Marschall, H. R., McCubbin, F. M. & Monteleone, B. D. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source. Science 346, 623–626 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Alexander, C. M. O’D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).

    Article  ADS  Google Scholar 

  8. Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    Article  ADS  CAS  Google Scholar 

  9. Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. 114, 6712–6716 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Morbidelli, A. et al. Contemporary formation of early Solar System planetesimals at two distinct radial locations. Nat. Astron. 6, 72–79 (2022).

    Article  ADS  Google Scholar 

  12. Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2022).

    Article  ADS  Google Scholar 

  13. Alexander, C. M. O’D., McKeegan, K. D. & Altwegg, K. Water reservoirs in small planetary bodies: meteorites, asteroids, and comets. Space Sci. Rev. 214, 36 (2018).

    Article  ADS  Google Scholar 

  14. Morbidelli, A. et al. Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016).

    Article  ADS  CAS  Google Scholar 

  15. Sarafian, A. R. et al. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20160209 (2017).

    Article  ADS  Google Scholar 

  16. Saal, A. E., Hauri, E. H., Van Orman, J. A. & Rutherford, M. J. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Alexander, C. M. O’D., Barber, D. J. & Hutchison, R. The microstructure of Semarkona and Bishunpur. Geochim. Cosmochim. Acta 53, 3045–3057 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Robert, F., Merlivat, L. & Javoy, M. Deuterium concentration in the early Solar System: hydrogen and oxygen isotope study. Nature 282, 785–789 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014).

    Article  ADS  Google Scholar 

  21. Sanborn, M. E. & Yin, Q.-Z. in Proc. 50th Lunar and Planetary Science Conference 2019, LPI contribution no. 2132, id. 1498 (2019).

  22. Budde, G. et al. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett. 454, 293–303 (2016).

    Article  ADS  CAS  Google Scholar 

  23. Hevey, P. J. & Sanders, I. S. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteorit. Planet. Sci. 41, 95–106 (2006).

    Article  ADS  CAS  Google Scholar 

  24. Elkins-Tanton, L. T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).

    Article  ADS  CAS  Google Scholar 

  25. McSween, H. Y. Jr, Ghosh, A., Grimm, R. E., Wilson, L. & Young, E. D. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 559–571 (Univ. Arizona Press, 2002).

  26. Lichtenberg, T. et al. A water budget dichotomy of rocky protoplanets from 26Al-heating. Nat. Astron. 3, 307–313 (2019).

    Article  ADS  Google Scholar 

  27. Schaefer, L. & Fegley, B. Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 186, 462–483 (2007).

    Article  ADS  CAS  Google Scholar 

  28. Hirschmann, M. M. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. Earth Planet. Sci. Lett. 502, 262–273 (2018).

    Article  ADS  CAS  Google Scholar 

  29. Schiller, M., Bizzarro, M. & Fernandes, V. A. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 507–510 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Hopp, T., Dauphas, N., Spitzer, F., Burkhardt, C. & Kleine, T. Earth’s accretion inferred from iron isotopic anomalies of supernova nuclear statistical equilibrium origin. Earth Planet. Sci. Lett. 577, 117245 (2022).

    Article  CAS  Google Scholar 

  32. Newcombe, M. E., Plan, T., Asimow, P. D., Barth, A. & Hauri, E. Water-in-olivine magma ascent chronometry: every crystal is a clock. J. Volcanol. Geotherm. Res. 398, 106872 (2020).

    Article  CAS  Google Scholar 

  33. Hauri, E. H., Gaetani, G. A. & Green, T. H. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 248, 715–734 (2006).

    Article  ADS  CAS  Google Scholar 

  34. Mittlefehldt, D. W., Bogard, D. D., Berkley, J. L. & Garrison, D. H. Brachinites: igneous rocks from a differentiated asteroid. Meteorit. Planet. Sci. 38, 1601–1625 (2003).

    Article  ADS  CAS  Google Scholar 

  35. Alexander, C. M. O’D. Quantitative models for the elemental and isotopic fractionations in chondrites: the carbonaceous chondrites. Geochim. Cosmochim. Acta 254, 277–309 (2019).

    Article  ADS  CAS  Google Scholar 

  36. Spitzer, F., Burkhardt, C., Nimmo, F. & Kleine, T. Nucleosynthetic Pt isotope anomalies and the Hf-W chronology of core formation in inner and outer solar system planetesimals. Earth Planet. Sci. Lett. 576, 117211 (2021).

    Article  CAS  Google Scholar 

  37. Sanborn, M. E. et al. Carbonaceous achondrites Northwest Africa 6704/6693: milestones for early Solar System chronology and genealogy. Geochim. Cosmochim. Acta 245, 577–596 (2019).

    Article  ADS  CAS  Google Scholar 

  38. Hui, H., Peslier, A. H., Zhang, Y. & Neal, C. R. Water in lunar anorthosites and evidence for a wet early Moon. Nat. Geosci. 6, 177–180 (2013).

    Article  ADS  CAS  Google Scholar 

  39. Hui, H. et al. A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 473, 14–23 (2017).

    Article  ADS  CAS  Google Scholar 

  40. Sarafian, A. R. et al. Angrite meteorites record the onset and flux of water to the inner solar system. Geochim. Cosmochim. Acta 212, 156–166 (2017).

    Article  ADS  CAS  Google Scholar 

  41. Sarafian, A. R. et al. The water and fluorine content of 4 Vesta. Geochim. Cosmochim. Acta 266, 568–581 (2019).

    Article  ADS  CAS  Google Scholar 

  42. Hauri, E. H., Saal, A. E., Rutherford, M. J. & Van Orman, J. A. Water in the Moon’s interior: truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015).

    Article  ADS  CAS  Google Scholar 

  43. Rubin, A. E. Carbonaceous and noncarbonaceous iron meteorites: differences in chemical, physical, and collective properties. Meteorit. Planet. Sci. 53, 2357–2371 (2018).

    Article  ADS  CAS  Google Scholar 

  44. Fu, R. R. et al. The interior structure of Ceres as revealed by surface topography. Earth Planet. Sci. Lett. 476, 153–164 (2017).

    Article  ADS  CAS  Google Scholar 

  45. Barrat, J.-A., Sansjofre, P., Yamaguchi, A., Greenwood, R. C. & Gillet, P. Carbon isotopic variation in ureilites: evidence for an early, volatile-rich Inner Solar System. Earth Planet. Sci. Lett. 478, 143–149 (2017).

    Article  ADS  CAS  Google Scholar 

  46. Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).

    Article  ADS  Google Scholar 

  47. Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020).

    Article  ADS  Google Scholar 

  49. Irving, A. J., Kuehner, S. M. & Ziegler, K. in Proc. 78th Annual Meeting of the Meteoritical Society, LPI contribution no. 1856, p. 5254 (2015).

  50. Mills, R. D., Simon, J. I., Alexander, C. M. O’D., Wang, J. & Hauri, E. H. Water in alkali feldspar: the effect of rhyolite generation on the lunar hydrogen budget. Geochem. Perspect. Lett. 3, 115–123 (2017).

    Article  Google Scholar 

  51. Hallis, L. et al. Effects of shock and Martian alteration on Tissint hydrogen isotope ratios and water content. Geochim. Cosmochim. Acta 200, 280–294 (2017).

    Article  ADS  CAS  Google Scholar 

  52. Mane, P. et al. Hydrogen isotopic composition of the Martian mantle inferred from the newest Martian meteorite fall, Tissint. Meteorit. Planet. Sci. 51, 2073–2091 (2016).

    Article  ADS  CAS  Google Scholar 

  53. Peslier, A. H. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J. Volcanol. Geotherm. Res. 197, 239–258 (2010).

    Article  ADS  CAS  Google Scholar 

  54. Johnson, E. A. & Rossman, G. R. A survey of hydrous species and concentrations in igneous feldspars. Am. Mineral. 89, 586–600 (2004).

    Article  ADS  CAS  Google Scholar 

  55. Schaefer, L. & Fegley, B. Jr Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208, 438–448 (2010).

    Article  ADS  CAS  Google Scholar 

  56. Thompson, M. A. et al. Composition of terrestrial exoplanet atmospheres from meteorite outgassing experiments. Nat. Astron. 5, 575–585 (2021).

    Article  ADS  Google Scholar 

  57. Gaillard, F. et al. Redox controls during magma ocean degassing. Earth Planet. Sci. Lett. 577, 117255 (2022).

    Article  CAS  Google Scholar 

  58. Gaillard, F. & Scaillet, B. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014).

    Article  ADS  CAS  Google Scholar 

  59. Gattacceca, J., Mccubbin, F. M., Bouvier, A. & Grossman, J. The Meteoritical Bulletin, No. 107. Meteorit. Planet. Sci. 55, 460–462 (2020).

    Article  ADS  CAS  Google Scholar 

  60. Huyskens, M. H., Sanborn, M. E., Yin, Q. Z. & Agee, C. B. in Proc. 49th Lunar and Planetary Science Conference, LPI contribution no. 2083, id. 2311 (2018).

  61. Srinivasan, P. et al. Silica-rich volcanism in the early solar system dated at 4.565 Ga. Nat. Commun. 9, 3036 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. Goodrich, C. A. et al. Petrogenesis and provenance of ungrouped achondrite Northwest Africa 7325 from petrology, trace elements, oxygen, chromium and titanium isotopes, and mid-IR spectroscopy. Geochim. Cosmochim. Acta 203, 381–403 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dunlap, D. R., Ku, Y. J., Garvie, L. A. J. & Wadhwa, M. in 46th Lunar and Planetary Science Conference, LPI contribution no. 1832, p. 2570 (2015).

  64. Ruzicka, A., Grossman, J., Bouvier, A., Herd, C. D. K. & Agee, C. B. The Meteoritical Bulletin, No. 101. Meteorit. Planet. Sci. 50, 1661–1661 (2015).

    Article  ADS  CAS  Google Scholar 

  65. Abe, D., Mikouchi, T. & Irving, A. J. in Proc. 52nd Lunar and Planetary Science Conference, LPI contribution no. 2548, id. 1813 (2021).

  66. Hibiya, Y. et al. The origin of the unique achondrite Northwest Africa 6704: constraints from petrology, chemistry and Re–Os, O and Ti isotope systematics. Geochim. Cosmochim. Acta 245, 597–627 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Sanborn, M. E., Yin, Q.-Z., Irving, A. J. & Bunch, T. E. in Proc. 46th Lunar and Planetary Science Conference, LPI contribution no. 1832, p. 2259 (2015).

  68. Bunch, T. E., Irving, A. J., Rumble, D. & Korotev, R. L. Evidence for a carbonaceous chondrite parent body with near-TFL oxygen isotopes from unique metachondrite Northwest Africa 2788. American Geophysical Union, Fall Meeting 2006, abstracts id. P51E-1246 (2006).

  69. Warren, P. H. et al. Northwest Africa 6693: a new type of FeO-rich, low-Δ17O, poikilitic cumulate achondrite. Geochim. Cosmochim. Acta 107, 135–154 (2013).

    Article  ADS  CAS  Google Scholar 

  70. Yin, Q.-Z., Wimpenny, J. & Amelin, Y. Al-Mg systematics in the ungrouped achondrites NWA 6704. Meteorit. Planet. Sci. Suppl. 76, 5160 (2013).

    ADS  Google Scholar 

  71. Barnes, J. J. et al. Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS. Chem. Geol. 337–338, 48–55 (2013).

    Article  ADS  Google Scholar 

  72. Hauri, E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002).

    Article  ADS  CAS  Google Scholar 

  73. Koga, K., Hauri, E., Hirschmann, M. & Bell, D. Hydrogen concentration analyses using SIMS and FTIR: comparison and calibration for nominally anhydrous minerals. Geochem. Geophys. Geosyst. 4, 1019 (2003).

    Article  ADS  Google Scholar 

  74. Mosenfelder, J. L. et al. Analysis of hydrogen in olivine by SIMS: evaluation of standards and protocol. Am. Mineral. 96, 1725–1741 (2011).

    Article  ADS  CAS  Google Scholar 

  75. Kumamoto, K. M., Warren, J. M. & Hauri, E. H. New SIMS reference materials for measuring water in upper mantle minerals. Am. Mineral. 102, 537–547 (2017).

    Article  ADS  Google Scholar 

  76. Long, G. L. & Winefordner, J. D. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 55, 712A–724A (1983).

    CAS  Google Scholar 

  77. Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345–348, 38–48 (2012).

    Article  ADS  Google Scholar 

  78. Bell, D. R., Rossman, G. R., Maldener, J., Endisch, D. & Rauch, F. Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res. Solid Earth 108, 2105 (2003).

    Article  ADS  Google Scholar 

  79. Withers, A. C., Bureau, H., Raepsaet, C. & Hirschmann, M. M. Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine. Chem. Geol. 334, 92–98 (2012).

    Article  ADS  CAS  Google Scholar 

  80. Mosenfelder, J. L. & Rossman, G. R. Analysis of hydrogen and fluorine in pyroxenes: I. Orthopyroxene. Am. Mineral. 98, 1026–1041 (2013).

    Article  ADS  CAS  Google Scholar 

  81. Warren, J. M. & Hauri, E. H. Pyroxenes as tracers of mantle water variations. J. Geophys. Res. Solid Earth 119, 1851–1881 (2014).

    Article  ADS  CAS  Google Scholar 

  82. King, P. L. et al. Analytical techniques for volatiles: a case study using intermediate (andesitic) glasses. Am. Mineral. 87, 1077–1089 (2002).

    Article  ADS  CAS  Google Scholar 

  83. Lin, Y., Hui, H., Li, Y., Xu, Y. & Van Westrenen, W. A lunar hygrometer based on plagioclase-melt partitioning of water. Geochem. Perspect. Lett. 10, 14–19 (2019).

    Article  Google Scholar 

  84. O’Leary, J. A., Gaetani, G. A. & Hauri, E. H. The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet. Sci. Lett. 297, 111–120 (2010).

    Article  ADS  Google Scholar 

  85. Dobson, P. F., Skogby, H. & Rossman, G. R. Water in boninite glass and coexisting orthopyroxene: concentration and partitioning. Contrib. Mineral. Petrol. 118, 414–419 (1995).

    Article  ADS  CAS  Google Scholar 

  86. Bouvier, A., Gattacceca, J., Agee, C., Grossman, J. & Metzler, K. The Meteoritical Bulletin, No. 104. Meteorit. Planet. Sci. 52, 2284–2284 (2017).

    Article  ADS  CAS  Google Scholar 

  87. Collinet, M. & Grove, T. L. Widespread production of silica- and alkali-rich melts at the onset of planetesimal melting. Geochim. Cosmochim. Acta 277, 334–357 (2020).

    Article  ADS  CAS  Google Scholar 

  88. Collinet, M. & Grove, T. L. Incremental melting in the ureilite parent body: initial composition, melting temperatures, and melt compositions. Meteorit. Planet. Sci. 55, 832–856 (2020).

    Article  ADS  CAS  Google Scholar 

  89. Caseres, J. R., Mosenfelder, J. L. & Hirschmann, M. M. in Proc. 48th Lunar and Planetary Science Conference, LPI contribution no. 1964, id. 2303 (2017).

  90. Callegaro, S. et al. The quintet completed: the partitioning of sulfur between nominally volatile-free minerals and silicate melts. Am. Mineral 105, 697–707 (2020).

    Article  ADS  Google Scholar 

  91. Dalou, C., Koga, K. T., Shimizu, N., Boulon, J. & Devidal, J.-L. Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib. Mineral. Petrol. 163, 591–609 (2012).

    Article  ADS  CAS  Google Scholar 

  92. Ustunisik, G., Nekvasil, H., Lindsley, D. H. & McCubbin, F. M. Degassing pathways of Cl-, F-, H-, and S-bearing magmas near the lunar surface: implications for the composition and Cl isotopic values of lunar apatite. Am. Mineral. 100, 1717–1727 (2015).

    Article  ADS  Google Scholar 

  93. Young, E. D. et al. Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323, 1–15 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Bullock and P. Piccoli for their assistance with SEM and EPMA analyses. We are also indebted to G. Rossman, who kindly provided a piece of synthetic forsterite for use as an analytical blank. We thank P. Warren and an anonymous reviewer for their helpful comments and we are grateful to J. VanDecar for editorial handling. Many of the ideas in this contribution were developed in close collaboration with E. Hauri, whose analytical prowess and generosity are greatly missed. Funding: NASA grant 80NSSC20K0336 (S.G.N., M.E.N., C.M.O’D.A.); NASA FINESST award 80NSSC22K0043 (L.D.P.); DTM Postdoctoral Fellowship (M.E.N.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.G.N., M.E.N., C.M.O’D.A. Methodology: M.E.N., J.W., L.R.N., A.R.S., K.S. Investigation: M.E.N., L.D.P., J.W. Funding acquisition: S.G.N., M.E.N., C.M.O’D.A. Writing, original draft: M.E.N., S.G.N. Writing, reviewing and editing: M.E.N., S.G.N., C.M.O’D.A., L.D.P., J.W., L.R.N., A.R.S., K.S., A.J.I.

Corresponding author

Correspondence to M. E. Newcombe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Paul Warren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Summary of highly volatile element analyses in CC and NC meteorite NAMs (olivine, pyroxene and feldspar).

None of the analyses in this plot are blank-corrected. Error bars represent one standard deviation of replicate analyses (see Supplementary Data Tables). Data were collected during two analytical sessions: NWA 6704, NWA 6962, NWA 2788, NWA 8409 and NWA 11558 were analysed during May 2019 and NWA 8777 and NWA 10132 were analysed during March 2019. Meteorites with CC affinity are labelled in blue and meteorites with NC affinity are labelled in orange. a, CO2 concentrations are primarily used to assess the impact of surface contamination; analyses were screened for outliers in 12C/30Si before their inclusion in this plot. The analytical blank and detection limit (labelled det. lim.) were assessed using Suprasil glass during the March session and synthetic forsterite during the May session. b, H2O concentration data. The analytical blank and detection limit were assessed using Suprasil glass during the March session (assumed to contain 2 μg g−1 H2O) and synthetic forsterite (assumed to contain 0 μg g−1 H2O) during the May session. c, Cl concentration data. The analytical blank and detection limit were assessed using replicate analyses of synthetic forsterite. d, S concentration data. The analytical blank and detection limit were assessed using replicate analyses of Suprasil. e, F concentration data. The analytical blank and detection limit were assessed using replicate analyses of Suprasil.

Extended Data Fig. 2 Blank-corrected highly volatile element analyses in CC and NC meteorite NAMs (olivine, pyroxene and feldspar).

Details of the analyses are provided in the caption to Extended Data Fig. 1. Error bars represent one standard deviation of replicate analyses (see Supplementary Data Tables). a, Blank-corrected H2O data. Analyses below the detection limit (labelled det. lim.) are plotted at 0 μg g−1. b, Blank-corrected Cl data. Analyses below the detection limit are plotted at 0 μg g−1. Only NWA 8409 contains detectable Cl. Cl was not analysed in NWA 8777 or NWA 10132. c, Blank-corrected S data. Analyses below the detection limit are plotted at 0 μg g−1. d, Blank-corrected F data. Analyses below the detection limit are plotted at 0.01 μg g−1.

Extended Data Fig. 3 Calculated upper bounds on the concentrations of H2O (a), Cl (b), S (c) and F (d) in hypothetical silicate melts that would be in equilibrium with the NAMs in the CC (labelled in blue) and NC (labelled in orange) ungrouped achondrites.

Concentrations are calculated using mineral–melt partition coefficients30,31,32. Ranges of H2O and S measured in bulk carbonaceous chondrites are shown in grey56: the ungrouped achondrites contain at least one order of magnitude less H2O than the driest (CV) carbonaceous chondrites and more than two orders of magnitude lower S than the most S-depleted (CK) carbonaceous chondrites.

Extended Data Fig. 4 Calculated H2O in the NWA 6962 parent body assuming that the precursor material underwent 10%, 30% and 50% batch melting and assuming that the water concentrations measured in olivine-hosted melt inclusions from this sample (containing 10–38 μg g−1 H2O) are representative of primitive mantle melts.

The petrogenetic history of NWA 6962 is poorly constrained but its olivine-rich mineralogy is petrographically similar to the NC brachinite meteorites that are thought to have been generated by crystallization of an approximately 30% partial melt of chondrite-like precursor materials35. Assuming a melt fraction of 30%, we estimate that the NWA 6962 parent body contained about 3–13 μg g−1 H2O.

Extended Data Fig. 5 Photomicrographs of the meteorite chips analysed during this study.

All chips are a few millimetres across; scale bars for individual chips are provided in Extended Data Figs. 612. Chips are pressed into indium.

Extended Data Fig. 6 Elemental concentration maps measured by EDS and BSE image of NWA 6704.

ae, Elemental concentration maps. f, BSE image.

Extended Data Fig. 7 Elemental concentration maps measured by EDS and secondary electron image of NWA 10132.

ae, Elemental concentration maps. f, Secondary electron image.

Extended Data Fig. 8 Elemental concentration maps measured by EDS and BSE image of NWA 2788.

ae, Elemental concentration maps. f, BSE image.

Extended Data Fig. 9 Elemental concentration maps measured by EDS and BSE image of NWA 6962.

ae, Elemental concentration maps. f, BSE image.

Extended Data Fig. 10 Elemental concentration maps measured by EDS and secondary electron image of NWA 8777.

ae, Elemental concentration maps. f, Secondary electron image.

Extended Data Fig. 11 Elemental concentration maps measured by EDS and BSE image of NWA 8409.

ae, Elemental concentration maps. f, BSE image.

Extended Data Fig. 12 Elemental concentration maps measured by EDS and BSE image of NWA 11558.

ae, Elemental concentration maps. f, BSE image.

Supplementary information

Supplementary Data Tables

Data tables containing raw and processed data collected by secondary-ion mass spectrometry and electron microprobe.

Peer Review File

Source Code

Figure 3 Source code

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newcombe, M.E., Nielsen, S.G., Peterson, L.D. et al. Degassing of early-formed planetesimals restricted water delivery to Earth. Nature 615, 854–857 (2023). https://doi.org/10.1038/s41586-023-05721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05721-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing