Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Basin-scale reconstruction of euxinia and Late Devonian mass extinctions

An Author Correction to this article was published on 05 April 2023

This article has been updated


The Devonian–Carboniferous transition marks a fundamental shift in the surface environment primarily related to changes in ocean–atmosphere oxidation states1,2, resulting from the continued proliferation of vascular land plants that stimulated the hydrological cycle and continental weathering3,4, glacioeustasy5,6, eutrophication and anoxic expansion in epicontinental seas3,4, and mass extinction events2,7,8. Here we present a comprehensive spatial and temporal compilation of geochemical data from 90 cores across the entire Bakken Shale (Williston Basin, North America). Our dataset allows for the detailed documentation of stepwise transgressions of toxic euxinic waters into the shallow oceans that drove a series of Late Devonian extinction events. Other Phanerozoic extinctions have also been related to the expansion of shallow-water euxinia, indicating that hydrogen sulfide toxicity was a key driver of Phanerozoic biodiversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geological setting of the Famennian–Tournaisian successions of the Williston Basin, USA and Canada.
Fig. 2: Lithostratigraphy, biostratigraphy, sea-level history and time-series geochemistry of the composite section constructed from the Sjol and Charlie Sorenson cores, North Dakota, USA.
Fig. 3: Basin-scale metal distribution heat maps.
Fig. 4: Distribution of Mo and V across an east–west-oriented dip-line through the Williston Basin during deposition of the Lower Bakken Shale.

Similar content being viewed by others

Data availability

All geochemical data generated here are publicly available at Splits of samples are reposited at Equinor US and George Mason University and are available upon request.

Code availability

Code (in MATLAB) for the Mo mass-balance model is available on GitHub at and on Zenodo at

Change history


  1. McGhee, G. R. The Late Devonian Mass Extinction: The Frasnian/Famennian Crisis (Columbia Univ. Press, 1996).

  2. Kaiser, S. I., Aretz, M. & Becker, R. T. The global Hangenberg Crisis (Devonian–Carboniferous transition): review of a first-order mass extinction. Geol. Soc. Spec. Publ. 423, 387–437 (2016).

  3. Algeo, T. J., Berner, R. A., Maynard, J. B. & Scheckler, S. E. Late Devonian oceanic anoxic events and biotic crisis: ‘rooted’ in the evolution of vascular land plants? GSA Today 5, 63–66 (1995).

    Google Scholar 

  4. Algeo, T. J. & Scheckler, S. E. Terrestrial–marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Phil. Trans. R. Soc. B 353, 113–130 (1998).

    Article  PubMed Central  Google Scholar 

  5. Grossman, E. L. & Joachimski, M. M. in Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 279–307 (Elsevier, 2020).

  6. Isaacson, P. E. et al. Late Devonian-earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 268, 126–142 (2008).

    Article  Google Scholar 

  7. Hartenfels, S. & Becker, R. T. The global Annulata Events: review and new data from the Rheris Basin (northern Tafilalt) of SE Morocco. Geol. Soc. Spec. Publ. 423, 291–354 (2016).

    Article  ADS  Google Scholar 

  8. Hartenfels, S. & Becker, R. T. Timing of the global Dasberg Crisis—implications for Famennian eustasy and chronostratigraphy. Palaeontographica Americana 63, 69–95 (2009).

  9. Blakey, R. Global Paleogeography and Tectonics in Deep Time Series (Deep Time Maps Paleogeography, 2016);

  10. Sonnenberg, S. A., Theloy, C. & Jin, H. The giant continuous oil accumulation in the Bakken petroleum system, U.S. Williston Basin. AAPG Mem. 113, 91–119 (2017).

    Google Scholar 

  11. Hogancamp, N. J. & Pocknall, D. T. The biostratigraphy of the Bakken Formation: a review and new data. Stratigraphy 15, 197–224 (2018).

    Article  Google Scholar 

  12. Spalletta, C., Perri, M. C., Jeffrey Over, D. & Corradini, C. Famennian (Upper Devonian) conodont zonation: revised global standard. Bull. Geosci. 92, 31–57 (2017).

    Article  Google Scholar 

  13. Corradini, C., Spalletta, C., Mossoni, A., Matyja, H. & Over, D. J. Conodonts across the Devonian/Carboniferous boundary: a review and implication for the redefinition of the boundary and a proposal for an updated conodont zonation. Geol. Mag. 154, 888–902 (2017).

    Article  ADS  Google Scholar 

  14. Becker, R. T., Kaiser, S. I. & Aretz, M. Review of chrono-, litho- and biostratigraphy across the global Hangenberg Crisis and Devonian–Carboniferous Boundary. Geol. Soc. Spec. Publ. 423, 355–386 (2016).

  15. Caplan, M. L. & Bustin, R. M. Devonian–Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: causes and consequences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 148, 187–207 (1999).

    Article  Google Scholar 

  16. Marynowski, L., Filipiak, P. & Zatoń, M. Geochemical and palynological study of the Upper Famennian Dasberg event horizon from the Holy Cross Mountains (central Poland). Geol. Mag. 147, 527–550 (2010).

    Article  ADS  CAS  Google Scholar 

  17. Racka, M. et al. Anoxic Annulata Events in the Late Famennian of the Holy Cross Mountains (Southern Poland): geochemical and palaeontological record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297, 549–575 (2010).

    Article  Google Scholar 

  18. Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232, 12–32 (2006).

    Article  ADS  CAS  Google Scholar 

  19. Lyons, T. W., Anbar, A. D., Severmann, S., Scott, C. & Gill, B. C. Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Annu. Rev. Earth Planet. Sci. 37, 507–534 (2009).

    Article  ADS  CAS  Google Scholar 

  20. Algeo, T. J. & Liu, J. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol. 540, 119549 (2020).

    Article  ADS  CAS  Google Scholar 

  21. Bennett, W. W. & Canfield, D. E. Redox-sensitive trace metals as paleoredox proxies: a review and analysis of data from modern sediments. Earth Sci. Rev. 204, 103175 (2020).

    Article  CAS  Google Scholar 

  22. Rudnick, R. L. & Gao, S. Compostion of the continental crust. Treatise Geochem. 3, 1–64 (2003).

    ADS  Google Scholar 

  23. Scott, C., Slack, J. F. & Kelley, K. D. The hyper-enrichment of V and Zn in black shales of the Late Devonian–Early Mississippian Bakken Formation (USA). Chem. Geol. 452, 24–33 (2017).

    Article  ADS  CAS  Google Scholar 

  24. Aderoju, T. E. & Bend, S. L. Reconstructing the palaeoecosystem and palaeodepositional environment within the Upper Devonian–Lower Mississippian Bakken Formation: a biomarker approach. Org. Geochem. 119, 91–100 (2018).

    Article  ADS  CAS  Google Scholar 

  25. Stüeken, E. E., Kipp, M. A., Koehler, M. C. & Buick, R. The evolution of Earth’s biogeochemical nitrogen cycle. Earth Sci. Rev. 160, 220–239 (2016).

    Article  ADS  Google Scholar 

  26. Jenkyns, H. C., Gröcke, D. R. & Hesselbo, S. P. Nitrogen isotope evidence for water mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 16, 593–603 (2001).

    Article  ADS  Google Scholar 

  27. Cao, H., Kaufman, A. J. & Shan, X. Coupled isotopic evidence for elevated pCO2 and nitrogen limitation across the Santonian–Campanian transition. Chem. Geol. 504, 136–150 (2019).

    Article  ADS  CAS  Google Scholar 

  28. Martinez, A. M., Boyer, D. L., Droser, M. L., Barrie, C. & Love, G. D. A stable and productive marine microbial community was sustained through the end-Devonian Hangenberg Crisis within the Cleveland Shale of the Appalachian Basin, United States. Geobiology 17, 27–42 (2019).

    Article  PubMed  Google Scholar 

  29. Boyer, D. L. et al. Living on the edge: the impact of protracted oxygen stress on life in the Late Devonian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 566, 110226 (2021).

    Article  Google Scholar 

  30. Abdi, Z., Rimmer, S. M., Rowe, H. D. & Nordeng, S. Controls on organic matter accumulation in the Bakken Formation, Williston Basin, USA. Chem. Geol. 586, 120588 (2021).

    Article  ADS  CAS  Google Scholar 

  31. Stolper, D. A. & Bucholz, C. E. Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proc. Natl Acad. Sci. USA 116, 8746–8755 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pisarzowska, A. et al. Large environmental disturbances caused by magmatic activity during the Late Devonian Hangenberg Crisis. Glob. Planet. Change 190, 103155 (2020).

    Article  Google Scholar 

  33. Marynowski, L. et al. Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 346–347, 66–86 (2012).

    Article  Google Scholar 

  34. Yao, L. et al. The longest delay: re-emergence of coral reef ecosystems after the Late Devonian extinctions. Earth Sci. Rev. 203, 103060 (2020).

    Article  Google Scholar 

  35. Ward, P., Labandeira, C., Laurin, M. & Berner, R. A. Confirmation of Romer’s Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proc. Natl Acad. Sci. USA 103, 16818–16822 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matyja, H., Sobien, K., Marynowski, L., Stempien-Salek, M. & Malkowski, K. The expression of the Hangenberg Event (latest Devonian) in a relatively shallow-marine succession (Pomeranian Basin, Poland): the results of a multi-proxy investigation. Geol. Mag. 152, 400–428 (2015).

    Article  ADS  CAS  Google Scholar 

  37. Brom, K. R., Salamon, M. A. & Gorzelak, P. Body-size increase in crinoids following the end-Devonian mass extinction. Sci. Rep. 8, 9606 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Friedman, M. & Sallan, L. C. Five hundred million years of extinction and recovery: a Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55, 707–742 (2012).

    Article  Google Scholar 

  39. Brocklehurst, N., Kammerer, C. & Frobisch, J. The early evolution of synapsids, and the influence of sampling on their fossil record. Paleobiology 39, 470–490 (2013).

    Article  Google Scholar 

  40. Zhang, F. et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 4, e1602921 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Stockey, R. G. et al. Persistent global marine euxinia in the early Silurian. Nat. Commun. 11, 1804 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pawlik, Ł. et al. Impact of trees and forests on the Devonian landscape and weathering processes with implications to the global Earth’s system properties—a critical review. Earth Sci. Rev. 205, 103200 (2020).

    Article  CAS  Google Scholar 

  43. Rakociński, M. et al. Mercury spikes as evidence of extended arc-volcanism around the Devonian–Carboniferous boundary in the South Tian Shan (southern Uzbekistan). Sci. Rep. 11, 5708 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Hetzel, A., Böttcher, M. E., Wortmann, U. G. & Brumsack, H. J. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeogr. Palaeoclimatol. Palaeoecol. 273, 302–328 (2009).

    Article  Google Scholar 

  45. Over, D. J. The Devonian–Carboniferous boundary in the United States. Palaeobiodivers. Palaeoenviron. 101, 529–540 (2021).

    Article  Google Scholar 

  46. Sandberg, C. A., Ziegler, W., Leuteritz, K. & Brill, S. M. Phylogeny, speciation and zonation of Siphonodella (Conodonta, Upper Devonian and Lower Carboniferous). Newsl. Stratigr. 7, 102–120 (1978).

    Article  Google Scholar 

  47. Ziegler, W. & Sandberg, C. A. The Late Devonian standard conodont zonation. Courier Forschungsinstitut Senckenberg 121, 1–115 (1990).

    Google Scholar 

  48. Kaiser, S. I., Becker, R. T., Spalletta, C. & Steuber, T. High resolution conodont stratigraphy, biofacies, and extinctions around the Hangenberg Event in pelagic successions from Austria, Italy, and France. Palaeontolographica Americana 63, 97–139 (2009).

    Google Scholar 

  49. di Pasquo, M. et al. Palynologic delineation of the Devonian–Carboniferous boundary, West-Central Montana, USA. Palynology 41, 189–220 (2017).

    Article  Google Scholar 

  50. Aretz, M., Corradini, C. & Denayer, J. The Devonian–Carboniferous noundary around the globe: a complement. Palaeobiodivers. Palaeoenviron. 101, 633–662 (2021).

    Article  Google Scholar 

  51. Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).

    Article  ADS  CAS  Google Scholar 

  52. Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

    Article  ADS  CAS  Google Scholar 

  53. Slotznick, S. P. et al. Unraveling the mineralogical complexity of sediment iron speciation using sequential extractions. Geochem. Geophys. Geosyst. 21, e2019GC008666 (2020).

  54. Nandy, D. Dolomitization and Porosity Evolution of Middle Bakken Member, Elm Coulee Field and Facies Characterization, Chemostratigraphy and Organic-richness of Upper Bakken Shale, Williston Basin (Colorado School of Mines, 2018).

  55. Borcovsky, D. et al. Sedimentology, facies architecture, and sequence stratigraphy of a Mississippian black mudstone succession—the upper member of the Bakken Formation, North Dakota, United States. AAPG Bull. 101, 1625–1673 (2017).

    Article  Google Scholar 

  56. Sahoo, S. K. et al. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489, 546–549 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Gilleaudeau, G. J. & Kah, L. C. Oceanic molybdenum drawdown by epeiric sea expansion in the Mesoproterozoic. Chem. Geol. 356, 21–37 (2013).

    Article  ADS  CAS  Google Scholar 

  58. Reinhard, C. T. et al. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl Acad. Sci. USA 110, 5357–5362 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Algeo, T. J. & Lyons, T. W. Mo–total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21, PA1016 (2006).

  60. Myrow, P. M. et al. High-precision U–Pb age and duration of the latest Devonian (Famennian) Hangenberg Event, and its implications. Terra Nova 26, 222–229 (2014).

    Article  ADS  CAS  Google Scholar 

  61. Zhang, F. et al. Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis. Earth Planet. Sci. Lett. 533, 115976 (2019).

    Article  Google Scholar 

  62. Gilleaudeau, G. J. et al. Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth Planet. Sci. Lett. 521, 150–157 (2019).

    Article  ADS  CAS  Google Scholar 

  63. Cole, D. B. et al. Uranium isotope fractionation in non-sulfidic anoxic settings and the global uranium isotope mass balance. Glob. Biogeochem. Cycles 34, e2020GB006649 (2020).

    Article  ADS  CAS  Google Scholar 

  64. Yao, L., Aretz, M., Chen, J., Webb, G. E. & Wang, X. Global microbial carbonate proliferation after the end-Devonian mass extinction: mainly controlled by demise of skeletal bioconstructors. Sci. Rep. 6, 39694 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hastings, D. W., Emerson, S. R. & Mix, A. C. Vanadium in foraminiferal calcite as a tracer for changes in the areal extent of reducing sediments. Paleoceanography 11, 665–678 (1996).

    Article  ADS  Google Scholar 

  66. Kaiser, S. I., Becker, R. T., Steuber, T. & Aboussalam, S. Z. Climate-controlled mass extinctions, facies, and sea-level changes around the Devonian–Carboniferous boundary in the eastern Anti-Atlas (SE Morocco). Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 340–364 (2011).

    Article  Google Scholar 

  67. Girard, C., Cornee, J., Corradini, C., Fravalo, A. & Feist, R. Palaeoenvironmental changes at Col des Tribes (Montagne Noire, France), a reference section for the Famennian of north Gondwana-related areas. Geol. Mag. 151, 864–884 (2014).

    Article  ADS  CAS  Google Scholar 

  68. Zhang, X., Over, D. J., Ma, K. & Gong, Y. Upper Devonian conodont zonation, sea-level changes and bio-events in offshore carbonate facies Lali section, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 531, 109219 (2019).

    Article  Google Scholar 

  69. Frey, L., Rücklin, M., Korn, D. & Klug, C. Late Devonian and Early Carboniferous alpha diversity, ecospace occupation, vertebrate assemblages and bio-events of southeastern Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 1–17 (2018).

    Article  Google Scholar 

Download references


This work was supported by Equinor US. We thank K. Hlava and V. Hallam at Equinor US for providing samples and access to core data; R. Ash and J. Farquhar at the University of Maryland for ICP-MS support and access to CRS extraction lines, respectively; Z. He for valuable discussion on data analytics and usage of Trinity software (Zetaware) package; R. Womack and K. J. Gomez for ArcGiS and Ocean Data View software support; H. Jin for sharing his thesis dataset; D. Nandy for several discussions on the Bakken stratigraphy; P. Sadler and N. Hogancamp for discussion on biostratigraphy; and D. J. Over for conodont consultation for Equinor US.

Author information

Authors and Affiliations



S.K.S., G.J.G. and A.J.K. conceived the idea and concepts. Samples were collected by S.K.S., G.J.G., A.J.K. and A.B. A.J.K. performed the bulk of laboratory analyses with additional analyses performed by G.J.G. T.F. provided laboratory support. A.J.K. provided conceptual insight into biogeochemical data interpretation. B.H. provided insight into core description and general geology. B.D.B. provided insight into stratigraphic correlations and T.L. provided additional samples and insight into XRF methodology. A.B. performed initial conodont studies. S.K.S. and K.W. performed the statistical data analysis and numerical models. G.J.G., S.K.S. and A.J.K. wrote the manuscript, with important contributions from B.H. and B.D.B. All authors contributed to editing the manuscript and validating the concepts and models.

Corresponding author

Correspondence to Swapan K. Sahoo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Phoebe Cohen, Sandra Kaiser, Leszek Marynowski and Eva Stueken for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Core photographs for the Sjol core.

Photos were taken by Stratum Reservoir at the Houston facility. Each box holds approximately 1 m (3 ft.) and the numbers at the top of each row represent the core depth in feet. We have not exhibited the full MB as it is not the focus of this study (the 10809–10845 ft. interval is not presented here). Individual formations are labelled on the photographs, with dashed white lines indicating unit boundaries. The blue star denotes the presence of a carbonate-rich horizon, which is traceable basin-wide as a marker between LB2 and LB3, here shown as the blue dashed line.

Extended Data Fig. 2 Integrated stratigraphy of the Devonian–Carboniferous transition.

Bio- and lithostratigraphic constraints, along with sea-level history, climate, and comparison between the Williston Basin and the classic Rhenish Massif section of Germany. Conodont zonation schemes and abbreviations are described in Fig. 1. Sea-level history compiled based on ref. 8,66,67,68,69. Rhenish nomenclature and lithology based on refs. 7,14,66.

Extended Data Fig. 3 Location of all wells used in XRF compilation study.

Well locations from various sources in northwestern North Dakota and northeastern Montana are represented by coloured dots with the USA-Canada border shown at the top. The map is taken from Google Maps.

Extended Data Fig. 4 Mass-balance model results for seawater [Mo]aq changes over time in response to expansion of seafloor euxinic area (Ex).

[Mo]aq in the Williston Basin during the Hangenberg Event is estimated from Mo/TOC ratios in LB3 sediments. This is based on empirical data from modern euxinic basins where the relationship between deep-water [Mo]aq and sediment Mo/TOC is expressed with the equation Mo/TOC = 4.7389e25.457x, where x = [Mo]aq (ref. 59). To test differences in model results across the spread of Mo/TOC ratios recorded in LB3, we explored the 25th percentile, median and 75th percentile Mo/TOC values (seen in box and whisker plot on the right and covered by the orange horizontal shading on the left). Maximum duration of the Hangenberg Event was estimated at ~200 kyr by ref. 60. This time frame is highlighted by the blue vertical shading.

Extended Data Fig. 5 Gridded heat maps for Mo and V concentrations across UB1 and UB2.

Mo is on the left and V is on the right. UB1 is on the bottom and UB2 is on the top. These graphics are analogous to the gridded heat maps for the LBS presented in Fig. 3. Trinity (T3) software was used to produce these maps and 3D visualization. Note that there are map artifacts of carbonate concretion-rich zones where metals are of low concentration. Although any wt.% Ca > 4.5% was removed from our calculations, some artifacts remain and should be interpreted carefully. Three white dots in each map represent three well locations (from west to east: Abe, Sjol and Charlie Sorenson).

Supplementary information

Supplementary Information

Contains Supplementary Discussion detailing further geologic background of the Williston Basin, framework for geochemical proxy interpretation, and additional interpretations and discussion of trace-metal data. Also contains Supplementary Table 1a–c, which details the 75 POFG well locations, 15 additional well locations and well locations for data used in Fig. 4, respectively. Also contains Supplementary Figs. 1–25, which display various items pertinent to the paper.

Supplementary Table 2

All geochemical data generated for the Sjol and Charlie Sorenson cores.

Supplementary Table 3

Compilation of all published geochemical data for the Annulata, Dasberg and Hangenberg black shales globally.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.K., Gilleaudeau, G.J., Wilson, K. et al. Basin-scale reconstruction of euxinia and Late Devonian mass extinctions. Nature 615, 640–645 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing