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Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune 
evasion and resistance to therapy1. Here, using paired whole-exome and RNA 
sequencing data, we investigate intratumour transcriptomic diversity in 354 non- 
small cell lung cancer tumours from 347 out of the first 421 patients prospectively 
recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing 
both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue 
samples implicate the transcriptome as a major source of phenotypic variation. Gene 
expression levels and ITH relate to patterns of positive and negative selection during 
tumour evolution. We observe frequent copy number-independent allele-specific 
expression that is linked to epigenomic dysfunction. Allele-specific expression can 
also result in genomic–transcriptomic parallel evolution, which converges on cancer 
gene disruption. We extract signatures of RNA single-base substitutions and link their 
aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby 
revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing 
the transcriptomes of primary–metastatic tumour pairs, we combine multiple 
machine-learning approaches that leverage genomic and transcriptomic variables to 
link metastasis-seeding potential to the evolutionary context of mutations and 
increased proliferation within primary tumour regions. These results highlight the 
interplay between the genome and transcriptome in influencing ITH, lung cancer 
evolution and metastasis.

An understanding of the causes of cancer cell-to-cell variation is essen-
tial to understand tumour evolution. Recent work has emphasized that 
much of this variation is transcriptomic, arising from diverse mech-
anisms that relate to, or are independent of, genomic variation4. In 
mouse models of non-small cell lung cancer (NSCLC), transcriptomic 
plasticity has been shown to underpin ITH5. While genomic variation 
reflects the relics of past somatic events acquired during the evolu-
tionary history of a tumour, transcriptomic variation may provide 
an accurate approximation of the phenotypic state of a tumour at 
the time of sampling1. To date, most studies of tumour evolution in 
humans have focused on the impact of genomic alterations on cancer. 
Transcriptomic studies that leverage bulk tumour RNA sequencing 
(RNA-seq) data tend to focus on the amplitude of gene expression in 
a single biopsy taken at a single time point. This approach might fail 

to capture poorly understood transcriptomic processes, including 
allele-specific expression (ASE) and RNA editing that can exert impor-
tant effects on cancer evolution1,4.

Here we leverage multiregion sequencing data from patients recruited 
into the TRACERx study2 to better understand the impact of multiple 
transcriptomic features and their interplay with genomic and phenotypic 
diversity in NSCLC evolution at different spatial and temporal scales.

Cohort overview
We analysed matched RNA-seq and whole-exome sequencing data 
from 347 patients recruited into the prospective study TRACERx 
(TRACERx 421 cohort). Samples from the cohort comprised 947 tumour 
regions from 354 NSCLC tumours (6 patients harboured multiple 
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primaries at diagnosis), as well as 96 tumour-adjacent normal lung 
tissue regions (see the consolidated standards of reporting trials (CON-
SORT) diagram in Supplementary Information)6,7. Of these patients, 
344 had 886 primary tumour regions, 21 also had 29 metastatic lymph 
node (LN) regions sampled at surgical resection of the primary tumour 
and 24 patients had 30 metastatic tumour regions sampled at relapse 
or progression. In total, 168 primary tumour regions and 4 LN regions 
from 64 patients in this cohort were previously described in the TRAC-
ERx 100 cohort8. The cohort of paired primary–metastatic regions 
analysed here (and reported in a companion paper6) comprises 61 
metastatic regions including LN regions and intrapulmonary metas-
tases resected at surgery (henceforth termed primary LN/satellite 
lesions) and LN and metastatic regions at recurrence or progression.

Expression diversity in NSCLC evolution
We first examined patterns of gene expression across tumour samples. 
A uniform manifold approximation and projection (UMAP) analysis 
(Extended Data Fig. 1a) based on gene expression across the cohort 
revealed that samples clustered in three main groups dominated 
by lung adenocarcinomas (LUADs), lung squamous cell carcinomas 
(LUSCs) and tumour-adjacent normal lung tissue. Notably, 27 out 
of 184 non-LUAD tumours, defined by central pathological review, 
clustered with LUADs. These tumours, which included four LUSCs, 
were 23 times more likely to harbour a LUAD-specific driver mutation 
(Methods) than other non-LUADs (P = 2.7 × 10−11, Fisher’s exact test; 
Extended Data Fig. 1b). Although not classified as LUADs, 67% of these 
tumours (18 out of 27) were positive for common LUAD immunohisto-
chemical staining markers such as TTF-1 or exhibited LUAD morphology 
(Extended Data Table 1). This enrichment for LUAD driver mutations 
among non-LUAD NSCLC tumours that cluster with LUADs suggests 
that phenotypically, this subset of tumours may be similar to LUADs. 
This result is also consistent with some such tumours harbouring an 
adenocarcinomatous component9 and with other reports of LUAD 
drivers in non-LUAD tumours10.

Next, to establish determinants of intertumour and intratumour 
transcriptomic diversity, we performed independent principal com-
ponent analyses (PCAs) within the two major NSCLC histologies 
(LUAD and LUSC) and related these to 39 underlying genomic and 
clinico-pathological variables (Fig. 1a; see Methods for the rationale 
of feature selection). Principal components (PCs) were more frequently 
significantly correlated with genomic variables in LUAD than in LUSC. 
This trend persisted when LUADs were downsampled to account for 
differences in the sample size (Extended Data Fig. 1c). PCs exhibited 
lower relative ITH in LUADs compared to LUSCs; that is, the ratio of 
intratumour to intertumour heterogeneity of the PC amplitude was 
lower within LUADs (Fig. 1a). Taken together, these results are sug-
gestive of more deterministic genomic–transcriptomic relationships 
within LUADs than LUSCs. Furthermore, LUAD PC activity correlated 
with orthogonal signatures that quantify RAS pathway activation11, 
which highlights that PCs might represent transcriptional programmes 
that are preserved across datasets (Extended Data Fig. 1d).

In LUADs, this analysis further revealed two relationships consistent 
with mutual exclusivity, with separate features showing significant and 
opposing correlations with a given PC. First, PC5 was positively associ-
ated with predicted driver mutations in KRAS and invasive mucinous 
adenocarcinomas (IMAs). IMAs were enriched in tumours harbouring 
non-G12C KRAS predicted driver mutations (P = 0.003, χ2 test; Extended 
Data Fig. 1e), which were less likely to be associated with a history of 
smoking12. This result provides transcriptomic context to previous work 
suggesting that IMAs are more common in never-smokers13. Second, 
PC1 was strongly negatively correlated with MSigDB Hallmark gene sets 
related to proliferation14 (Extended Data Fig. 1f), yet positively associated  
with activating mutations in EGFR (linear mixed-effect, model false 
discovery rate (FDR) = 0.0008). In keeping with this, EGFR driver 

mutations were associated with low Ki-67 levels (P = 0.028, Wilcoxon 
test; Extended Data Fig. 1g). This finding suggests that the phenotype 
of EGFR mutant LUADs is one of reduced proliferation compared with 
EGFR wild-type LUADs.

To further assess transcriptomic ITH independently from the number 
of tumour regions sampled, we developed the intratumour expres-
sion distance (I-TED) metric, which is calculated as the mean normal-
ized gene expression correlation distance for a given region paired 
with every other region from the same tumour (Methods and Fig. 1b).  
A high I-TED value reflects high expression ITH. Hierarchical cluster-
ing of all samples based on the gene expression correlation distance 
revealed that tumour regions from a given patient tended to cluster 
together (in 231 out of 280 multiregion primary tumours, all regions 
within a given tumour clustered together). Within the 49 tumours for 
which constituent regions did not all cluster, those regions clustering 
apart harboured increased weighted genome instability index scores 
(P = 0.002, linear regression, 104 regions). Consistently, the fraction 
of the genome affected by subclonal somatic copy number alterations 
(SCNAs) and intratumour variation in purity were independently asso-
ciated with increased I-TED values (Fig. 1c; 13.3% and 2.8% of variance 
explained, respectively). Conversely, I-TED was not associated with 
the heterogeneity of subclonal mutations nor the number of regions 
sampled per tumour. This result underlines the link between SCNAs 
and changes in gene expression.

To further evaluate the relationship between tumour purity and tran-
scriptomic heterogeneity, we estimated the tumour transcript fraction 
(a ploidy-adjusted estimate of the proportion of all transcripts that were 
derived from the tumour) from RNA-seq reads (Methods). We observed 
that the tumour transcript fraction was consistently greater than the 
tumour purity (Fig. 1d). This result suggests that per chromosome copy, 
gene expression from tumour cells tends to exceed that of non-tumour 
cells within a bulk sample, which is in keeping with results from another 
study15. Of note, the tumour transcript fraction was a better predictor 
of I-TED than purity, which highlights that DNA-derived estimates of 
tumour diversity may not always be representative of phenotypic diver-
sity (P = 5.03 × 10−8, linear regression; Extended Data Fig. 1h).

Next, we sought to understand whether patterns of gene expres-
sion and their heterogeneity are related to selection during tumour 
evolution. We measured selection within established lung cancer and 
non-cancer genes using the ratio between the observed number of non-
synonymous mutations per nonsynonymous site and the number syn-
onymous mutations per synonymous site (dN/dS), calculated through 
the dNdScv method16. Genes were grouped into tertiles according to 
the average amplitude of their expression across the cohort (Fig. 1e). 
Within cancer genes, significant positive selection (implied when  
dN/dS with ±95% confidence intervals is >1) was most readily observed 
within truncating mutations in genes in the highest expression ter-
tile. Notably, within non-cancer genes, signals of negative selection  
(dN/dS ± 95% confidence intervals of <1) were identified within trun-
cating mutations in genes within the highest expression tertile only  
(242 truncating mutations, relative to 3,932 observed truncating muta-
tions, were estimated to have been lost through negative selection in 
these genes). Similar patterns were observed when dividing the data 
by different expression quantiles (Extended Data Fig. 1i).

Expanding on this analysis, we next explored the relationship 
between the ITH of gene expression (measured as the standard devia-
tion of normalized gene expression among all regions within a tumour) 
and selection in tumour evolution17. Cancer genes within the lowest 
tertile of expression ITH exhibited the strongest signals of positive 
selection. By contrast, within non-cancer genes of the same tertile, 
negative selection was identified (188 truncating mutations, relative 
to 3,083 observed truncating mutations, were estimated to have been 
lost through negative selection; Fig. 1e). Furthermore, the lowest ITH 
quantile and highest expression quantile were significantly enriched 
for NSCLC essential genes as identified in the Project Achilles study18  
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(χ2 test, P = 2.8 × 10−81; Extended Data Fig. 1j). These results are consis-
tent with the idea that a subset of highly and homogeneously expressed 
non-cancer genes are conserved during somatic evolution and with 
the presence of weak negative selection among mutations in cancer.

ASE in NSCLC
Next, we focused on transcriptomic diversity arising from ASE, which 
may result from genomic allelic imbalance (termed copy number 
(CN)-dependent ASE) or from unequal allelic expression per chromo-
some copy (CN-independent ASE).

We analysed genes that contained at least one heterozygous ger-
mline single-nucleotide polymorphism (SNP) with an RNA coverage of 
>8 reads (Methods). It was possible to evaluate ASE in a total of 16,378 
different genes across all samples within the cohort at an average of 

3,809 (s.d. ± 885) and 4,064 (s.d. ± 485) genes per tumour and normal 
tissue sample, respectively.

We evaluated CN-dependent and CN-independent ASE using an 
approach that controls for the difference in tumour purity and tumour 
transcript fraction of each sample (Figs. 1d and 2a and Methods)19. 
The mean percentage of evaluable genes with CN-dependent ASE in 
each tumour region was 17.4% (s.d. ± 12.7%), compared with 1.01% with 
CN-independent ASE (s.d. ± 0.47%), which partially reflects our strin-
gent approach to calling CN-independent ASE (Fig. 2b).

ASE can result from genomic imprinting or truncating mutations that 
lead to nonsense-mediated decay of the mutant allele. In keeping with 
this, imprinted genes20 were significantly enriched among genes most 
frequently affected by CN-independent ASE (odds ratio (OR) = 71.3, 
P < 2.2 × 10−16) and explained 5.4% of the observed CN-independent 
ASE. CN-independent ASE was also enriched in genes that contained 
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Fig. 1 | Expression diversity in the TRACERx 421 cohort. a, Relationship 
between PCs of transcriptomic diversity and genomic (black labels) and  
clinical (blue labels) variables. Displayed are the top PCs within LUADs (n = 480 
regions from 190 tumours) and LUSCs (n = 303 regions from 119 tumours) that 
together explain at least 30% of the total variance, alongside their median  
ratio of heterogeneity (intratumour heterogeneity of PC activity divided by 
intertumour heterogeneity of PC activity). The colour of the border around 
each square indicates the direction of the association between each covariate 
and PC. In total, 39 variables were tested (Methods). Significance was 
determined using a mixed-effects linear model with purity as a fixed covariate 
and tumour as a random variable. Only features significant (P < 0.05) after  
FDR correction with at least one PC are displayed. *PC1 in LUAD was strongly 
negatively associated with the expression of hallmark gene sets related to 
proliferation (Extended Data Fig. 1f, Methods). GD, genome doubling; TMB, 
tumour mutational burden; wGII, weighted genome instability index. b, I-TED, 
calculated as the mean normalized gene expression correlation distance for a 
given region paired with every other region from the same tumour, displayed 
by histology. c, Proportion of variance in I-TED explained by selected genomic 
and clinical features from a linear model using 260 tumours with at least  
2 primary tumour regions, and purity and genome instability estimates. 

Histological types represented by only a single tumour were excluded to 
ensure a sufficiently large sample size to estimate the effect of histology. 
**P = 0.003, ***P = 5.15 × 10−10. d, ASCAT-derived tumour purity and RNA 
estimate of the tumour transcripts fraction. Each dot represents one tumour 
region. A modified version of ASCAT50 was used to estimate the proportion of 
tumour and non-tumour cells within an admixed sequencing sample. e, dN/dS, 
inferring positive and negative selection of truncating somatic mutations, for 
cancer genes and non-cancer genes, by tertiles of median gene expression 
across the cohort (left) and by tertiles of gene expression ITH across the cohort 
(right). Dots represent the estimated dN/dS and the error bars represent the 
95% confidence intervals calculated using the genesetdnds function in R from 
the package dNdScv. A dN/dS estimate is considered significant if the 95% 
confidence intervals do not overlap 1. Expression level tertiles contained 76, 24 
and 9 cancer genes, and 4,856, 5,100 and 5,166 non-cancer genes, for tertiles 3, 
2 and 1, respectively. Expression ITH tertiles contained 54, 24 and 31 cancer 
genes and 4,994, 5,082 and 5,046 non-cancer genes, for tertiles 3, 2 and 1, 
respectively. Median expression levels and expression ITH were based on the 
total number of tumour samples collected at surgical resection from tumours 
with more than one sample at that time point (n = 845 regions from 283 
tumours).
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a stop-gain mutation (OR = 2.23, P = 1.4 × 10−11), an insertion or deletion 
leading to a frameshift (OR = 3.73, P < 2.2 × 10−16) or a splice-site muta-
tion (OR = 1.66, P = 0.006) (Fig. 2c). Such mutations explained 0.7% of 
the total observed CN-independent ASE and had a reduced impact on 
CN-dependent ASE (Extended Data Fig. 2a).

ITH of CN-independent ASE, defined as the proportion of events that 
were detected in only a subset of the tumour regions in which it was 
possible to evaluate ASE, was correlated with I-TED (Pearson’s r = 0.25, 

P = 4 × 10−5; Extended Data Fig. 2b). A linear model of the determinants 
of I-TED revealed that the heterogeneity of SCNAs and CN-independent 
ASE were independent predictors of I-TED, accounting for 13.9% and 
2.7% of variance, respectively (Extended Data Fig. 2c, P = 2.4 × 10−10 and 
P = 0.004, respectively). This result highlights the link between ASE 
and transcriptional diversity.

Next, we assessed whether patterns of CN-independent ASE varied 
between tumour and tumour-adjacent normal tissue samples. The lack 
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evaluable genes with CN-independent ASE and the ratio of differentially 
hypomethylated clusters of neighbouring CpGs compared to all differentially 

methylated genomic positions. The P value was calculated using a linear 
mixed-effects model with tumour as the random variable. e, Linear 
mixed-effects model showing the impact of driver mutations in candidate 
epigenetic modifier genes22 (mutated in more than five tumours) and tumour 
mutational burden on the proportion of evaluable genes with CN-independent 
ASE. Factors independently associated with increased CN-independent ASE in 
a multivariable model are coloured blue. *P < 0.05, **P < 0.01, ***P < 0.001. f, An 
example of genomic–transcriptomic mirrored subclonal allelic imbalance 
occurring in FAT1 within CRUK0640. DNA and RNA B allele frequencies (BAFs) 
for each SNP in FAT1 are plotted and coloured according to the reference and 
variant status of each allele for each region sampled within the tumour. In this 
instance, there is evidence of CN-dependent ASE in two regions and 
CN-independent ASE in one region. These events favour overexpression of 
different parental alleles and occur on different branches of the phylogenetic 
tree; a simplified version is displayed. MRCA, most recent common ancestor.
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of expressed SNPs within many genes necessitated the imputation of 
missing data; therefore we considered genes in which ASE was evalu-
able in ≥100 tumour regions across the cohort (Methods). PCA revealed 
that normal tissue samples were distinguishable from tumour samples, 
which suggests that patterns of CN-independent ASE are fundamen-
tally different between normal tissue and tumour samples (Extended 
Data Fig. 2d). Gene-level analysis showed that 11 genes were subject 
to differential CN-independent ASE between normal and tumour tis-
sue when controlling for repeated measures: NTM (more frequent 
CN-independent ASE in normal tissue); and NLRP2, PRIM2, CSNK2A3, 
GALNT18, ZNF597, RAB5B, RRM1, CAST, PDE4DIP and LOC653513 (more 
frequent CN-independent ASE in tumours) (Extended Data Fig. 2e).

To investigate the mechanisms that underpin CN-independent ASE, 
we examined tumour regions (96 regions from 31 tumours) with DNA 
methylation data from reduced representation bisulphite sequencing 
(RRBS). Copy-number-aware methylation deconvolution analysis of 
cancers (CAMDAC)21 was used to estimate allele-specific methylation 
(ASM) rates, excluding the signal from non-cancer cells (Methods). 
ASM was 8.4 times more likely to occur at the promoters of genes show-
ing CN-independent ASE than those without CN-independent ASE 
(P < 2.2 × 10−16, Fisher’s exact test; Fig. 2c). When global levels of methyla-
tion in a tumour region (measured as the percentage of all differentially 
methylated positions that comprise hypomethylated CpG loci) were 
compared with the proportion of evaluable genes with CN-independent 
ASE, a correlation was observed in LUADs but not LUSCs (Pearson’s 
r = 0.56, P = 0.0008, linear mixed-effects model; Fig. 2d and Extended 
Data Fig. 2f). In LUADs, CN-independent ASE might therefore represent 
a surrogate for methylation patterns.

Given the relationship between CN-independent ASE and epigenetic 
variation, we proposed that tumours that harbour driver mutations in 
epigenetic modifier genes22 might contain more CN-independent ASE. 
Consistent with this hypothesis, univariate linear regression analysis 
revealed that mutations within epigenetic modifier genes, in particular 
CREBBP, KDM5C, SMARCA4, SETD2 and KMT2B, were associated with 
higher levels of CN-independent ASE. By contrast, KDM6A predicted 
driver mutations were associated with decreased CN-independent ASE 
(P < 0.05; Fig. 2e). A multivariable linear mixed-effects model, control-
ling for tumour mutational burden and repeated measures, confirmed 
that mutations in SETD2, KDM5C and KMT2B were independently predic-
tive of higher levels of CN-independent ASE. To validate this observa-
tion, we explored publicly available RNA-seq data from SETD2-deficient 
isogenic human cell lines. Across H1650 (lung)23, 786-0 (renal)24 and 
HepG2 (liver)25 cell lines, we observed an increase in CN-independent 
ASE in SETD2-deficient cells compared with wild type (P = 0.009, linear 
mixed-effects model; Extended Data Fig. 2g).

Cataloguing CN-dependent and CN-independent ASE within multi-
region tumours also enabled the identification of examples of paral-
lel evolution in which genomic and transcriptomic events affecting 
the same gene evolve independently in different subclones within 
a tumour. Such events would not be detected with a genomic-only 
approach. We utilized haplotype phasing to explore evidence of mir-
rored subclonal allelic imbalance (MSAI), in which the maternal allele 
is gained or lost in one subclone of a tumour but the paternal allele 
is gained or lost in another subclone independently. We provide an 
example of this phenomenon in the context of allelic expression data 
in tumour CRUK0640 (Fig. 2f). Here the tumour suppressor gene FAT1 
contained a loss of heterozygosity with associated CN-dependent ASE 
in two tumour regions. However, in one other tumour region, FAT1 did 
not contain a SCNA but instead showed evidence of CN-independent 
ASE, which might represent transcript repression favouring the expres-
sion of the parental allele subject to copy number loss in the other 
two regions. Phylogenetic reconstruction demonstrated that the 
tumour regions showing CN-dependent and CN-independent ASE 
were found on different branches, suggestive of parallel evolution, 
with convergence upon the loss of different alleles of FAT1 through 

different mechanisms. This example of genomic–transcriptomic MSAI 
highlights that CN-independent ASE can provide an alternative source 
of diversity to genomic variation in an evolving cancer.

RNA-editing diversity in NSCLC
Another potential source of transcriptomic diversity is RNA editing, a 
post-transcriptional process characterized by changes in the nucleotide 
sequence of RNA molecules. We applied a stringent approach to define 
exonic RNA substitutions (single nucleotide changes exclusive to RNA 
molecules and absent in DNA) and identified 40,057 RNA substitutions 
across 6,019 specific sites across the cohort (mean of 1.26 RNA substi-
tutions per Mb per tumour; Fig. 3a,b and Extended Data Fig. 3a). The 
majority (mean 59.7% per tumour region) were A>G substitutions, in 
keeping with ADAR-linked RNA editing, which deaminates adenosine 
to inosine, a nucleotide that is then read as guanosine by the translation 
machinery26 and sequencing platforms. Of these substitutions, 65% 
were present in the REDIportal database27 of known A>G editing events 
in human tissues. C>T substitutions28 represented 11.8% of the total 
substitutions detected. Of all the RNA substitutions detected, 67% 
were tumour specific (not present within a TRACERx panel of sam-
ples of normal tissue), and of these, 29.4% were shared between two 
or more tumours.

To investigate the molecular processes that underlie RNA editing 
in an unbiased manner, we generated RNA single-base substitution 
(RNA-SBS) signatures, which considered not only the mutated base 
but also the two adjacent bases and the strand on which the muta-
tion occurred29. We detected five RNA-SBS signatures: RNA-SBS1 to 
RNA-SBS5 (Fig. 3c). RNA-SBS1 consisted predominantly of A>G transi-
tions, whereas RNA-SBS2 consisted mainly of C>T transitions. RNA-SBS3 
consisted mainly of A>G and T>C transitions, RNA-SBS4 of G>A transi-
tions and RNA-SBS5 of G>T transversions. RNA-SBS1 and RNA-SBS3 
were identified in most tumours (RNA-SBS1 in 98% and RNA-SBS3 in 
85%). RNA-SBS1 exhibited the lowest ITH and was detected within all 
regions of 87.4% of multiregion tumours.

An unbiased correlation of the activity of each RNA-SBS signature with 
gene expression (Extended Data Fig. 3b) revealed a relationship between 
RNA-SBS1 and ADAR expression (Pearson’s r = 0.42, FDR = 2.4 × 10−14, 
linear mixed-effects model; Fig. 3d). The RNA 192-channel substitution 
spectrum (encompassing all possible trinucleotide contexts of RNA sub-
stitutions across both transcribed strands) derived when considering 
only those events that overlapped curated A>G sites from REDIportal 
was highly similar to RNA-SBS1 (cosine similarity = 0.97), consistent 
with the A>G activity of ADAR underpinning RNA-SBS1.

RNA-SBS2 was dominated by C>T transitions at TpC sites (67%), a 
motif consistent with the RNA editing activity of APOBEC3A (ref. 30). 
In keeping with this, an unbiased analysis showed that RNA-SBS2 cor-
related more strongly with APOBEC3A expression than with any other 
gene in the transcriptome (Pearson’s r = 0.73, FDR = 4.7 × 10−108; Fig. 3d). 
A multiple linear regression considering all APOBEC enzymes revealed 
that the expression of APOBEC3A was the strongest independent pre-
dictor of RNA-SBS2 activity, although APOBEC3F was also significant 
(P = 2.6 × 10−57 and P = 0.01 for APOBEC3A and APOBEC3F, respectively, 
linear mixed-effects model). Investigating the link between RNA-SBS2 
and C>T enrichment at APOBEC3A-specific motifs30,31 further con-
firmed that RNA-SBS2 was strongly influenced by APOBEC3A expression 
(Extended Data Fig. 3c,d). Associations between gene expression or 
genomic features and the activity of the three remaining RNA-SBS sig-
natures did not produce any obvious explanations for their aetiology.

Next we tested whether the processes that underlie RNA substitutions 
were also identified within paired normal tissue samples and whether they 
were preserved over time during cancer evolution (Fig. 3e and Extended 
Data Fig. 3e). For all RNA-SBS signatures, activity was correlated between 
metastatic regions and their paired primary tumours. However, signature 
activity was also preserved between tumour regions and paired normal 
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tissue samples in the case of RNA-SBS3, RNA-SBS4 and RNA-SBS5, but not 
in RNA-SBS1 or RNA-SBS2. These findings suggest that the processes that 
underlie changes in RNA-SBS1 and RNA-SBS2 might be tumour-specific. 
Moreover, they might occur de novo within the regions of primary 
tumours that seed metastasis and persist within their metastases. By 
contrast, those that fuel RNA-SBS3, RNA-SBS4 and RNA-SBS5 might be 
influenced by germline, environmental or technical factors.

ADAR has previously been linked to epigenomic dysregulation32. 
Accordingly, we tested whether RNA-SBS1 activity might be influenced 
by epigenomic dysregulation within tumours. We observed a significant 
correlation between global levels of hypomethylation and RNA-SBS1 
activity in tumour regions but not in paired normal tissue samples. This 
result highlights that these processes might be linked in NSCLC evolu-
tion (Pearson’s r = –0.35, P = 0.008, linear mixed-effects for tumour 
regions; P = 1 for normal tissue samples; Extended Data Fig. 3f).

Multi-omic features of metastasis
Finally, we evaluated the dynamics of transcriptomic diversity during 
metastatic progression. We observed significantly higher transcrip-
tomic diversity between paired primary–metastatic tumour regions 
than between primary regions derived from the same tumour (Fig. 4a). 

This relationship remained consistent when considering only intratho-
racic non-LN metastases (Extended Data Fig. 4a), which suggests that 
there are consistent differences between primary and metastatic tran-
scriptomes that cannot be fully explained by microenvironmental 
differences between metastatic organ sites. To further explore this find-
ing, we compared transcriptomic diversity between metastasis-seeding 
or non-seeding primary tumour regions and their paired metastatic 
tumours (Fig. 4b). Across the cohort, expression patterns in metasta-
ses were more similar to the metastasis-seeding primary regions than 
non-seeding primary regions (n = 22 primary–metastasis pairs from  
18 tumours6; P = 0.0019, two-tailed paired Wilcoxon test; Fig. 4c). Gene 
set enrichment analyses between these regions showed an enrich-
ment within seeding regions for gene sets linked to proliferation and 
a depletion in immune-linked groups14 (Extended Data Fig. 4b). Taken 
together, these results suggest that a proportion of the transcriptomic 
patterns observed in metastatic tumours are underpinned by somatic 
changes that originated in the primary tumour and are capable of 
influencing ongoing evolution, including metastasis.

To further explore this result, we evaluated the impact of relevant 
molecular features on the metastatic potential of a tumour region. In 
particular, we tested whether transcriptomic features are informative 
for inferring metastatic potential. To achieve this, we built an ensemble 
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(top) or RNA-SBS2 (bottom) substitutions with the expression of all genes in the 

transcriptome. P values were calculated using a linear mixed-effects model, 
using the tumour of origin of each region as random effect. P values were 
adjusted for repeated measures. Correlations were based on 765 primary 
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tumour regions, and metastatic tumour regions and their respective seeding 
regions in the primary tumour. Primary tumour exposure was calculated as the 
median exposure across all primary regions for the comparison with tumour- 
adjacent normal tissue, and across all seeding regions for the comparison  
with metastases. Only primary–metastasis pairs where more than 20 RNA 
substitutions were detected in the metastasis and primary region were used  
(n = 50 pairs for normal samples, n = 31 for metastases). P values were computed 
with a two-sided t test testing the null hypothesis that the Pearson correlation 
coefficient r = 0.
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machine-learning classifier to predict whether a tumour region con-
tained a seeding clone (or seeding clones) (Methods and Extended 
Data Fig. 4c). Leveraging a recently published approach33, we defined 
three feature sets: genomic only; transcriptomic only; and combined 
genomic and transcriptomic (see Methods for details on initial feature 
selection). For each feature set, we trained three model types (logistic 
regression, random forest, multilayer perceptron with support vec-
tor machine terminal layer) and selected the best model in each case 
(hyperparameter tuning using a randomized search grid across relevant 
parameters with K-fold stratified cross validation; the best model was 
selected as that with the highest balanced accuracy — see Methods for 
full details). The combined genomic and transcriptomic feature set 
generated a marginally better classifier relative to the classifiers gener-
ated from the independent genomic and transcriptomic feature sets 
(Fig. 4d, combined receiver operator characteristic (ROC) area under 
the curve (AUC) = 0.79; genomic only ROC AUC = 0.69, transcriptomic 
only ROC AUC = 0.73). Overall, the combined feature classifier showed 
promising performance with an accuracy of 71% (significantly greater 
than the no-information rate, P = 0.0007), although with much greater 
specificity than sensitivity (sensitivity = 0.51, specificity = 0.86). Of the 

variables tested, the two most important to infer metastatic poten-
tial related to the evolutionary context of the mutations within the 
tumour region: a decreased proportion of subclonal mutations that 
were present in only a subset of tumour cells within the tumour region 
(that is, were not regionally dominant)7 and a decreased number of 
mutations linked to the smoking signature SBS4 (likely a proxy for the 
trunk length of the phylogenetic tree)34,35 (Fig. 4e and Extended Data 
Fig. 4d). Similarly, increased CIN70 (ref. 36) and ORACLE17 expression 
signature scores, both associated with proliferation, were also associ-
ated with metastatic potential and demonstrated strong weighting 
across different models. Other variables described in this work also 
helped the classifier to discriminate regions with metastatic potential. 
These included CN-independent ASE within NLRP2, RNA-SBS1 activity 
and the proportion of genes with CN-independent ASE per region.

Discussion
Multiregion sequencing studies in the past decade have highlighted 
important genomic alterations in cancer, including point mutations 
and CN alterations, that drive ITH and fuel cancer evolution2,3,37–39.
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The symbols at the end of the bars indicate either a significantly positive (+) or 
negative (–) association, with increased weight for seeding potential based on a 
two-sided Wilcoxon test comparing seeding to non-seeding regions. MLP-SVM, 
multilayer perceptron with support vector machine. All box plots in this figure 
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here (paired or unpaired) were two sided.
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Through paired genomic–transcriptomic analysis and multiregion 

sampling of NSCLC, we highlight sources of variation that would be 
missed by an exclusively genomic approach. Highly expressed cancer 
genes with low intratumour variance were more likely to be under posi-
tive selection. This finding could inform studies seeking to discover 
new cancer genes. Our results also imply the presence of limited yet 
significant negative selection in cancer evolution, consistent with con-
straints to tumour development16,40. The additional resolution gained 
by restricting to uniformly expressed genes mirrors results reported 
in a previous publication, in which an expression signature composed 
of such genes represented a robust biomarker in NSCLC17.

We find pervasive ASE in NSCLC and find that, as expected in a disease 
characterized by significant chromosomal instability, in the majority 
of tumours, ASE is predominantly explained by SCNAs. However, we 
highlight an important fraction of ASE that is linked to epigenomic 
dysfunction, in particular to changes in DNA methylation and inacti-
vating mutations in the histone methyltransferase SETD2, the lysine 
demethylase KDM5C and the lysine methyltransferase KMT2B genes. 
Our observations build on in vivo single-cell studies of mouse models of 
LUAD, which have highlighted the importance of a dynamic epigenome 
in governing tumour progression41. Furthermore, our results provide 
orthogonal insight into the role of these genes in transcription: loss of 
SETD2 has been linked to increased oncogenic transcriptional output42, 
and KDM5C regulates transcription through H3K4 demethylation43. In 
addition, previous work has linked ASE to epigenomic changes through 
enhancer activity44. Future work should focus on the interplay between 
mutated epigenetic modifiers and enhancer activity in cancer.

We also utilize approaches that have previously been leveraged to 
define DNA mutational signatures to extract unbiased trinucleotide sig-
natures of RNA single-base substitutions from paired DNA and RNA-seq. 
We show that these signatures underlie RNA editing. Importantly, two 
signatures, RNA-SBS1 (linked to ADAR editing) and RNA-SBS2 (linked 
to APOBEC3A editing) seemed to be underpinned by heritable somatic 
mechanisms. That is, their activities were preserved between paired 
primary and metastatic samples, which is consistent with recent work 
linking genomic variants with RNA editing45. Their potential importance 
to tumour evolution is underlined by the roles that APOBEC enzymes 
play in driving genome instability46 and by the observed relationship 
between RNA-SBS1 activity and patterns of aberrant hypomethylation 
(Extended Data Fig. 3f). ADAR, which we suggest underpins RNA-SBS1, 
has been proposed as a tumour suppressor gene that is essential to 
cancer cells in the context of epigenomic dysfunction owing to its ability 
to target otherwise immunogenic double-stranded RNAs within short 
interspersed nuclear elements32. Furthermore, our data strongly sug-
gests that APOBEC3A drives the observed RNA-SBS2 signature, consist-
ent with a stronger role for APOBEC3A compared with other APOBEC3 
gene family members, including APOBEC3B in RNA47,48.

Multiregion paired genomic–transcriptomics enables characteriza-
tion of the phenotype of the metastasis-seeding region of the primary 
tumour. To elucidate the influence of transcriptomic features on the 
biology of metastasis, we used a combined machine-learning approach, 
which revealed key features of the metastatic transition and demon-
strated that both genomic and transcriptomic features are able to pre-
dict metastatic potential. In particular, we found that two genomic 
metrics relating to the evolutionary context of mutations (proxies for 
the dominance of a subclone within a tumour region and decreased 
phylogenetic trunk length) and two gene expression signatures related 
to proliferation were markers of metastatic potential. In a companion 
paper7, we report that the presence of recent subclonal expansions (that 
is, large subclones at the terminus of a phylogenetic branch) are associ-
ated with shorter disease-free survival. We also observed that within 
both circulating tumour DNA and primary tumour tissue, the size of 
subclonal mutational clusters is linked to their metastatic potential6,49. 
Conceivably, recent subclonal expansions might be driven by increased 
proliferation, which is captured by transcriptomic signatures. Also, for 

a given tumour region, metrics related to the evolutionary background 
of its constituent mutations were associated with metastatic potential. 
The finding that such metrics tended to be more useful at differenti-
ating primary tumour regions with and without metastasis-seeding 
potential than the specific genes in which mutations occurred may 
have important implications for biomarker discovery.

Of note, this machine-learning approach combined multiple vari-
ables, which together might render some features redundant within 
the classifier. This could mean that variables not presented within 
Fig. 4e might be biologically important.

A limitation of this work is that it is unlikely to have captured the true 
extent of transcriptomic variation in these tumours. We did not consider 
all forms of transcriptional variation, including alternative splicing. 
Furthermore, we could only study ASE in the minority of genes that 
contain an expressed SNP, and we applied a strict, but specific, approach 
to defining CN-independent ASE. Similarly, the filters applied to identify 
RNA variants, rather than transcribed DNA mutations, were stringent, 
and only exonic events (capturing only a fraction of RNA editing)26 were 
considered. Therefore, it is likely that we have underestimated the vari-
ation and biological impact attributable to these processes in tumours. 
Nevertheless, in this way, we were able to identify previously unknown 
RNA-SBS signatures, including three of unknown aetiology. This result 
highlights the need for further studies that examine patterns of RNA 
editing in larger datasets. Finally, our machine-learning approach uti-
lized tumour region transcriptomic data that was not deconvolved 
at the subclone level. Therefore we could not test subclone-specific 
metrics, which are also likely to affect metastatic potential6.

Despite these limitations, this work has shown that transcriptional 
variation is likely to play an important part in NSCLC evolution. It 
has revealed sources of diversity that would not have been identified 
by a focused analysis of the cancer genome and underlined the impor-
tance of multi-omic sequencing and systems biology approaches to 
the study of tumour evolution.
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Methods

Data generation and processing
TRACERx cohort. The TRACERx study (ClinicalTrials.gov identifier 
NCT01888601) is a prospective observational cohort study that aims 
to transform our understanding of NSCLC, the design of which has been 
approved by an independent research ethics committee (13/LO/1546). 
Informed consent for entry into the TRACERx study was mandatory 
and obtained from every participant. All participants were assigned 
a study identity number that was known to the individual. These were 
subsequently converted to linked study identities such that the partici-
pants could not identify themselves in study publications. All human 
samples (tissue and blood) were linked to the study identity number and 
barcoded such that they were anonymized and tracked on a centralized 
database, which was overseen by the study sponsor only.

The cohort in this manuscript includes the fraction of samples 
from the first 421 participants (described in detail in two companion 
manuscripts6,7) with RNA-seq data available after quality checking 
before and after sequencing (CONSORT diagram in the Supplementary 
Information).

Seven samples from individuals with disease relapse (CRUK0046_
BR_T1-R1, CRUK0046_BR_T1-R2, CRUK0069_MR_T1-R1, CRUK0069_
MR_T1-R2, CRUK0280_BR_T1-R1, CRUK0280_BR_T1-R2 and 
CRUK0679_BP_T1-R1) were not associated with any primary tumour, 
and one normal sample (CRUK0643_SU_N01) was not paired with any 
tumour sample with RNA-seq data. These eight samples are present in 
the raw data but were not included in downstream analyses. Addition-
ally, for four LN samples (CRUK0099_SU_LN01, CRUK0227_SU_LN01, 
CRUK0240_SU_LN01 and CRUK0240_SU_LN02) the seeding tumour 
region could not be established6, and these samples were therefore 
not used in paired primary–metastatic analyses.

RNA extraction and sequencing. For each sample, total RNA was  
extracted using a dual extraction method for RNA and DNA using  
AllPrep DNA/RNA Mini kits (Qiagen). Frozen samples were transferred 
onto cold Petri dishes kept on dry ice and dissected into 20–30 mg 
samples. Before extraction, the freshly dissected tissue was transferred 
directly to homogenization tubes with RLT plus lysis buffer. Homo-
genization of tissues was carried out using a TissueRuptor II probe or 
bead methods and by passing the lysate through a QIAshredder column 
(Qiagen). Libraries were prepared using a minimum of 100 ng input of 
total RNA, where possible, using an Illumina TruSeq Stranded Total RNA 
Human/Mouse/Rat ribo-depletion library preparation kit (20020597), 
and PCR was amplified for 15 cycles according to the manufacturer’s 
guidelines. Final libraries were quality checked using Agilent Tapesta-
tion and Promega QuantiFluor dsDNA and were then pooled in equi-
molar solutions. Sequencing was performed using an Illumina HiSeq 
4000 platform at a depth of 50 million paired reads per sample, with 
a length of 75 bp or 100 bp per read.

DNA methylation sequencing. A subset of previously published pri-
mary NSCLC data of the first 100 participants of the TRACERx study 
with multiple tumour regions were selected for RRBS21.

The NuGEN Ovation RRBS Methyl-Seq system adapted for automa-
tion was applied by using 100 ng of gDNA per sample, digested with 
MspI, ligated to sequencing adapters and processed using Qiagen’s 
EpiTect Fast DNA Bisulfite kit. Bisulfite-converted DNA libraries were 
then amplified by PCR (12 cycles) and purified using Agencourt RNA-
Clean XP magnetic beads. The quantity and quality of the resulting 
libraries were evaluated using a Qubit dsDNA HS assay (Invitrogen) 
and an Agilent Bioanalyzer High Sensitivity DNA assay (Agilent Tech-
nologies), respectively. Samples were multiplexed in pools of 8 and 
sequenced on a HiSeq2500 system in single-end 100 bp runs. Sequenc-
ing outputs were converted into fastq files. FastQC (v.0.11.2)51 was used 
for quality control, and Trim Galore! (Babraham Institute), a wrapper 

around Cutadapt52, was applied with default settings to perform qual-
ity and adapter trimming for each set of paired-end fastq files. The 
bisulfite-converted DNA sequence aligner Bismark (v.0.14.4)53 was 
used to align reads to the UCSC reference genome hg19 build, and 
PCR deduplication was carried out using NuDup, leveraging NuGEN’s 
molecular tagging technology (v.2.3; https://github.com/nugentech-
nologies/nudup).

In total, 96 tumour and 31 tumour-adjacent normal regions from 31 
patients (average 3 tumour regions per patient) had matched RRBS 
and RNA-seq data available.

RNA-seq alignment and gene expression. Illumina adapters were 
trimmed from raw sequencing reads using Cutadapt (v.2.10)52 with 
standard parameters, and the quality of the trimmed reads were esti-
mated per flow cell lane using FastQC (v.0.11.9)51. Only fastq files with 
less than 80% of total reads being duplicates were kept for alignment. 
Fastq read files passing these quality checks were aligned to the UCSC 
hg19 human reference genome build using STAR (v.2.5.2a)54 in two-pass 
mode with ENCODE 3 parameters, generating one BAM file per tumour 
region. The same reads were also mapped to the human transcriptome 
(RefSeq GCA_000001405.1 build) using the same STAR parameters 
to generate gene expression data. Next, we marked duplicates using 
the MarkDuplicates function from GATK (v.4.1.7.0)55. Aligned reads 
were quality checked using QoRTs (v.1.3.6)56 to assess RNA integrity. 
Somalier (v.0.2.7)57 was used to detect potential instances of sample 
mislabelling and FastQ Screen (0.14.0)58 was used to detect potential 
instances of contamination. FastQC, QoRTs and Somalier outputs 
were visualized using MultiQC (v.1.9)59. RSEM (v.1.3.3)60 was used with 
default parameters to quantify gene expression from the BAM files 
aligned to the transcriptome. Gene expression patterns were used for 
further quality checking of each sample. Tumour regions with >40% of 
all genes with zero counts (estimated using the QoRTS output Genes_
WithZeroCounts) were excluded. Additionally, samples with <20% 
of reads mapping to a genomic area covered by exactly one gene in a 
coding sequence genomic region (estimated using the QoRTS output 
ReadPairs_UniqueGene_CDS) were excluded. Next, RNA coverage was 
calculated for single nucleotide variants (SNVs) detected in matched 
whole-exome sequencing data per tumour region using SAMtools 
(v.1.9)61 mpileup. Mutation expression was used to further quality 
check the mapping of RNA reads. The expression of SNVs exclusive 
to a given tumour region was used to detect potential instances of 
within-patient mislabelling of RNA–DNA matched tumour regions as 
well as to exclude normal adjacent lung tissue regions that expressed 
mutations present in paired tumour regions. A similar approach was 
applied to germline SNPs to further assess potential sample swaps 
based on patterns of CN variation from matched DNA per tumour 
region. Tumour regions in which fewer than 10 mutations, or fewer 
than 25% of the total mutation count, had evidence of expression, 
and/or less than 10% of SNPs had evidence of biallelic expression, were 
excluded. Finally, tumour regions clustering with tumour-adjacent 
normal tissue regions (see the section ‘UMAP clustering’) and tumour 
regions with a low purity were also excluded from further analyses. To 
ensure the reproducibility and portability of the above pipeline, all 
steps described were implemented through the Nextflow (v.20.07.1)62 
pipeline manager.

Analyses
Unless explicitly specified otherwise, all Wilcoxon tests performed 
in this work are two-sided, using the function wilcox.test() in base R. 
To account for the effect of each individual tumour when compar-
ing tumour regions in the cohort, we use linear mixed-effects mod-
els throughout the manuscript. These were fitted using the package  
lmerTest (v.3.1-3)63 in R, using the parent tumour from which the tumour 
region was derived as a random effect. Significance was obtained com-
paring a null model with the model containing the variable of interest 

https://clinicaltrials.gov/ct2/show/NCT01888601
https://github.com/nugentechnologies/nudup
https://github.com/nugentechnologies/nudup
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using the base R function anova(), and setting refit = TRUE to test the 
impact of fixed effects.

Unless stated otherwise, plots were generated in the R environment 
(v.3.6.3), using ggplot2 (v.3.2.1)64, ggpubr (v.0.4.0), cowplot (v.1.0.0), 
scales(v.1.0.0) and ggrepel (v.0.8.1).

Gene expression distance. RSEM raw read counts were first nor-
malized using the median of ratios method implemented in DESeq2 
(v.1.24.0)65. Genes with more than 5 read counts in at least 20% of 
the cohort (a total of 20,136 genes) were kept after filtering. Variant 
stabilizing transformation (VST) was performed on the normalized 
reads. Distance correlation was calculated for each sample to all other 
samples in the cohort for the top 500 most variable genes using the 
dcor() function from the R package energy (v.11.7-6)66. In total, 500 
was chosen as the number of variable genes to keep, as previous tests 
showed that this number represented the variance in the cohort while 
reducing the computational resources needed to calculate a cohort 
wide correlation distance. The correlation distance provides a meas-
ure from 0 (no similarity) to 1 (maximum similarity); to transform this 
metric into distance, we subtracted the resulting distance correlation 
from 1. Primary tumour regions were then clustered on the basis of the 
minimum distance to other samples across the cohort.

UMAP clustering. VST counts from all samples in the cohort were 
used to generate a UMAP67 of expression patterns across the cohort. 
UMAP was performed using the umap (v.2.7.7.0) package in R with 
default parameters.

LUAD drivers within non-LUAD NSCLCs. Samples that were con-
sidered to fall within the LUAD cluster (UMAP 1<2.5 and UMAP 2>0) 
were evaluated for an enrichment in driver mutations more commonly  
associated with LUADs.

Differential mutation analysis was conducted to establish driver altera-
tions that were enriched in LUADs relative to non-LUAD NSCLCs. For each 
driver mutation (a total of 266 genes were considered; see the section 
‘Epigenetic drivers’ and a companion manuscript7 for how these muta-
tions were annotated), a Fisher’s exact test was performed comparing 
the numbers of non-LUAD and LUAD tumour regions that harboured the 
mutation with those that did not. After adjusting for repeated measures 
using the Benjamini–Hochberg method68, the four genes in which driver 
mutations were significantly enriched among LUADs compared with 
non-LUADs were KRAS, EGFR, STK11 and RBM10. A Fisher’s exact test was 
then performed to test the relative enrichment of these ‘LUAD-favoured’ 
events within non-LUADs clustering with LUADs in the UMAP compared 
with non-LUADs not clustering with LUADs in the UMAP.

Although these non-LUAD tumours had been subjected to independ-
ent histological review, we further reviewed histological features of 
these tumours in terms of morphological heterogeneity and immuno-
histochemistry staining profiles, including TTF-1, p63 and p40, CD56, 
synaptophysin and chromogranin, and pan-cytokeratin to confirm 
the histological diagnosis and to investigate the presence and extent 
of the adenocarcinomatous components in these non-LUAD tumours.

PCA. A PCA was performed using VST counts for tumour regions  
extracted at surgery, in LUAD and LUSC tumours separately. PCA was 
performed using the prcomp() function in base R, centring the data 
but not scaling, as expression data had already been scaled through 
VST. The PCs adding up to 30% of variance explained in LUAD and LUSC 
separately were subjected to further analysis.

Each PC was then linked at the tumour region level with multiple 
genomic and clinical features using a linear-mixed effects model 
accounting for the tumour from which the regions were derived and 
tumour purity as a covariate. PC ITH was calculated as the standard 
deviation for each PC divided by the median PC value. The selection of 
features is described in the section ‘PCA feature selection’.

RNA ASCAT. Estimates of tumour fraction were calculated using the 
tumour purity values from ASCAT50. The RNA-derived estimates of 
tumour fraction (referred to in the main text as tumour transcript frac-
tion) were calculated using a modified version of ASCAT. In brief, using 
this approach, at SNP sites, the B allele frequency (BAF) was calculated 
using the non-duplicated RNA-seq reads aligning to each allele using 
SAMtools (v.1.9)61 mpileup. This RNA BAF was then used as input to 
ASCAT instead of DNA BAF, whereas DNA-derived logR was maintained. 
The RNA-derived estimate of tumour fraction was the estimated tumour 
purity when ploidy was identical to that of the DNA.

I-TED. To estimate ITH, we focussed only on tumours with more than 
one region sampled (813 samples from 280 tumours). Because standard 
measures of heterogeneity might be affected by the number of regions 
available per tumour, a pairwise approach was used to estimate ITH. 
For each region of a tumour, 1 minus the correlation distance between 
VST gene expression to all other regions in the same tumour was calcu-
lated for the top 500 most variable genes. The correlation distance was 
calculated using the function dcor() in the R package energy (v.1.7-6)66.  
Only genes with read counts above 5 in at least 20% of the cohort  
(a total of 20,136 genes) were considered for this analysis. Tumour- 
level I-TED was calculated as the median I-TED of all regions. This metric 
was independent of the number of regions sampled (Fig. 1c).

The relationship between I-TED and purity, CN and mutation het-
erogeneity as well as histological subtype and number of regions per 
tumour was tested using a multivariable linear regression. The percent-
age of variance explained by each type of alteration was calculated using 
the Anova function from the R package car (v.3.0-6)69.

Mutational and CN heterogeneity were calculated based on metrics 
from a companion manuscript7. In brief, for CN heterogeneity, the 
total proportion of region-specific CN events compared with the total 
number of CN events was determined. For mutation heterogeneity, the 
proportion of subclonal mutations at the tumour level was obtained 
compared with the total number of mutations per tumour. Both metrics 
were bootstrapped by resampling to account for differences in the 
number of regions samples per tumour.

Differential gene expression and gene set enrichment analyses. 
All differential gene expression and subsequent gene set enrichment 
analyses (GSEAs) were performed using the following approach. First, 
trimmed mean of M-values normalization from the edgeR (v.3.26.5)70 
R package was performed on RSEM raw counts. Genes with expression 
below 30 counts per million in <70% of the smallest group size were 
removed using the function filterByExpr() with min.count set to 30. 
Expression differences were performed at the region level through the 
limma-voom analytical pipeline, taking tumour as a blocking factor, 
by performing within-tumour expression correlations and including 
them within the voom model estimate using the duplicateCorrelation() 
function. This method is analogous to using tumour as a random effect 
in a linear mixed-effects model. The raw P values provided by limma for 
differential expression were then corrected for multiple testing using 
the Benjamini–Hochberg (FDR) method68.

The t-statistic generated by limma was used as input for GSEA for 
MSigDB hallmark gene sets14 using the R package fgsea (v.1.10.1)71 with 
default parameters.

ASE analysis. To understand patterns of ASE in the TRACERx cohort, 
we focused on genes containing an expressed heterozygous SNP and 
quantified the number of unique reads aligning to each parental allele 
with a minimum mapping quality of 0 and a minimum base quality score 
of 13 using SAMtools (v.1.9)61 mpileup. Only SNPs with a total coverage of 
greater than eight such reads were considered to be expressed. Further 
filtering removed SNPs in blacklisted regions of the genome with poor 
mappability. The blacklisted genomic regions were obtained from 



UCSC Genome Table Browser and include regions excluded from the 
ENCODE project (both DAC and Duke list), simple repeats, segmental 
duplications and microsatellite regions72.

In accordance with the expected distribution of allelic expression, 
a beta-binomial test was used to test for ASE73 using the pbetabinom 
function from the R package VGAM (v.1.1-2)74 and an overdispersion 
parameter σ of 0.05. We attribute allele-specific RNA reads to the 
major and minor alleles, as inferred from multiregion DNA-derived 
allele-specific CN data. Specifically, for each SNP, the allele with the 
greatest number of reads in the corresponding whole-exome DNA 
sequencing (DNA-seq) data was considered the major allele. RNA-seq 
reads reporting this allele were designated major allele RNA reads and 
vice versa for the minor allele RNA reads.

To assess the probability of obtaining allele-specific read counts at 
least as disparate as the observed distribution, given an expected allelic 
expression ratio of 0.5, the following beta-binomial (Betabin) test was 
performed with the following parameters:

X m tBetabin( ≥ , , 0.5) (1)

where m represents the major allele RNA reads and t the total RNA reads 
at that heterozygous SNP. To alleviate the multiple testing burden and 
preserve statistical power, we performed independent filtering by 
using the following binomial test criterion and retaining only those 
heterozygous SNPs for which P < 0.001:

X t t PBin( ≥ , , CPNratio); < 0.001 (2)

where t is the total RNA reads at that heterozygous SNP and CPNratio 
is the raw major allele copy number divided by the total copy number 
at that site. In effect, this removes sites with low read counts and/or  
extreme CN ratios such as regions with loss of heterozygosity or 
high-level allele-specific amplifications.

To test whether ASE was CN-dependent or CN-independent, two 
further beta-binomial tests were performed using the following  
parameters:

X m tBetabin( < , , 0.5) (3)

X m tBetabin( ≥ , , CPNratio) (4)

where m again represents the major allele RNA-seq read count, t the 
total RNA reads at that heterozygous SNP, and CPNratio the raw local 
major allele CN divided by the total CN. Following this, two combined 
P values were generated from all SNPs within each gene using the 
Fisher method: one (A) using the P value from test equation (1); and 
the second (B) using the smallest P value from either test equation (3) 
or equation (4). The Benjamini–Hochberg approach was used to adjust 
for multiple hypothesis testing across all genes considered. Genes 
with an adjusted P value (FDR) < 0.05 from test equation (1) but not 
either equation (3) or (4) were considered to show CN-dependent 
ASE, whereas those with an adjusted P value < 0.05 from either test 
equation (3) or (4) were considered to show CN-independent ASE. The 
adjusted P value threshold of <0.05 for either one of two one-tailed 
tests was chosen given the stringency of this approach to investigate 
CN-independent ASE.

The RNA allelic ratio can vary between 0.5 and the CPNratio, given 
the tumour allele-specific CN, owing to expression levels in the tumour 
and admixed non-tumour cells. This approach therefore in effect tests 
for ASE beyond that which would be seen given expression only from 
the tumour, or non-tumour component, of the bulk sample, accounting 
for the estimated CN status of the gene of interest within the tumour.

Combining point mutation and insertion–deletion calls within 
each gene and their corresponding gene ASE classifications, we com-
puted the Fisher exact test statistics of the odds of observing each 

mutation type listed at ASE versus non-ASE genes, within genes in 
which we were powered to detect ASE (that is, containing an expressed  
heterozygous SNP).

We also considered the potential impact of reference bias, whereby 
heterozygous sites are incorrectly assigned as being homozygous as a 
result of the use of a generic reference genome, potentially resulting in 
false-positive ASE calls, on our results. To account for this, we quanti-
fied the extent to which reference bias was present in each sample. For 
each sample, the total instances of CN-independent ASE in which the 
reference allele was overexpressed relative to the alternative allele was 
divided by the total instances in which the reverse was true. To ensure 
this phenomenon was not affecting our results, we tested the impact 
of adding this per-sample quantification of reference bias as an addi-
tional covariate to the linear mixed-effects models within Fig. 2d,e. The 
statistical associations presented in those figures remained consistent 
after this additional test.

ASM analysis. To evaluate the relationship between ASM and expres-
sion, we leveraged previously published CAMDAC pure tumour meth-
ylation rates, mt, derived from multiregion bulk tumour and adjacent 
normal RRBS performed on a subset of TRACERx samples21. We subset 
these methylomes to promoter-associated CpGs in CpG islands with 
read depths of ≥10 in the adjacent-matched normal sample and at the 
promoters of genes with CN-dependent or CN-independent ASE infor-
mation in at least one sample. In total, 11,254 genes met these criteria. 
On average, 4,345 and 2,771 genes had promoter methylation informa-
tion and could be tested for CN-dependent and CN-independent ASE 
per sample, respectively.

For each sample, genes were classified with respect to their 
CN-dependent and CN-independent ASE test statistics. Genes with 
P < 0.05 were deemed as ASE and those with P > 0.5 as not significantly 
ASE. In the case of CN-dependent ASE, genes were required to show no 
significant ASE, irrespective of CN, to be categorized as not significantly 
ASE. Genes with no phasing information were not tested for ASE.

Previously reported findings21 indicated that intermediate mt signals 
are in large part due to subclonal ASM. We therefore used intermediate 
CAMDAC mt values as a proxy for ASM. CpGs with methylation rates 
99% highest density intervals (HDI99) ⊆ [0.15,0.75] and point estimates 
� [0.2, 0.7] were deemed ASM. We required three consecutive ASM loci 
to classify a gene promoter as ASM.

Combining promoter ASM and corresponding gene ASE classifica-
tions, we computed Fisher’s exact test statistics of the odds of observing 
ASM at ASE versus non-ASE genes, within genes in which we were pow-
ered to detect ASE (that is, containing an expressed heterozygous SNP).

Tumour–normal differential methylation analysis. For a subset of 
TRACERx samples with previously published RRBS data, we obtained 
a list of tumour–normal differentially methylated positions based on 
CAMDAC mt values and using the tumour-adjacent normal methylation 
rate as a proxy for the cell of origin, mn (P < 0.01 and |mt – mn| > 0.2). For 
each of these, we computed the number of CpGs that were significantly 
hypomethylated and hypermethylated in tumour samples compared 
to the normal samples, taking only loci that had coverage in all samples 
(minnormal = 10, mintumour = 3). We then calculated the fraction of differ-
entially methylated positions that were hypomethylated. Using a linear 
mixed effects model, with tumour identity as random effect, we then 
compared this metric to the percentage of genes showing evidence 
of CN-independent ASE per sample (separately for LUAD and LUSC).

ASE PCA and imputation. PCA was performed to test for differences 
in patterns of CN-independent ASE between tumour and normal tissue 
samples. Only genes in which it was possible to test for CN-independent 
ASE (that is, having an expressed SNP that was not in a region of extreme 
CN) in at least 100 samples across the cohort were considered. The 
negative natural logarithm of the FDR from the test for CN-independent 
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ASE in the section ‘ASE analysis’ for each gene was computed. In sam-
ples for which it was not possible to test for CN-independent ASE for 
a given gene, the median negative natural logarithm for that gene in 
all tumour and normal tissue samples across the cohort was imputed. 
Data were scaled and centred, and PCA performed using the function 
prcomp() in base R.

Epigenetic drivers. A list of epigenetic modifier genes was obtained 
from previous work22. We collated a cancer gene list out of all genes iden-
tified in the COSMIC cancer gene census (v.75)75, supplemented with 
those identified in large-scale pan-cancer analyses (using FDR < 0.05 
as cut-off)76 and previous large-scale NSCLC sequencing studies77–79 
(this list is also utilized in a companion paper7). Genes overlapping the 
epigenetic modifier and cancer gene lists (see the companion paper7 
for the definition of cancer genes in our cohort) were considered. Any 
non-silent variant located within one of these genes underwent further 
categorization on the basis of the following criteria: if the mutation was 
found to be deleterious (either a stop-gain or predicted deleterious in 
two of the three computational approaches applied (Sift80, Polyphen81 
and MutationTaster82)) and the gene was annotated as being reces-
sive by COSMIC (tumour suppressor), the variant was classified as a 
driver mutation. Also, if the gene was annotated as being dominant 
(oncogene) by COSMIC and we could identify ≥3 exact matches of the 
specific variant in COSMIC, it was classified as a putative driver muta-
tion. Frequently mutated genes, containing more than five putative 
driver mutations across the cohort, were incorporated into the below 
model.

A univariable linear-mixed effects model using region-level mutation 
and CN-independent ASE data was run to establish the effect of driver 
mutations in individual genes on the proportion of genes tested show-
ing CN-independent ASE. P values were adjusted for repeated measures 
using the Benjamini–Hochberg method68. Independent predictors 
were defined using a multivariable linear-mixed effects model, using 
all epigenetic modifiers taking the tumour containing the region as a 
random factor.

Validation of link between SETD2-inactivating mutation and 
CN-independent ASE with cell line data. A literature search was 
conducted to find publicly available cell line data with which it would 
be possible to test the impact of SETD2, KDM5C or KMT2B knockdown 
or knockout after ASE in an isogenic human setting.

Three separate relevant publications23–25 were identified for SETD2, 
only one for KDM5C83 and none for KMT2B. Therefore, we proceeded to 
focus solely on the impact of SETD2 on CN-independent ASE. This was 
done in lung cells (H1650; three biological replicates with shRNA knock-
down23), kidney cells (786-0; single replicate with ZFN knockout24) and 
liver cells (HepG2; single replicate with CRISPR-mediated knockout25).

In each study, DNA-seq was not performed alongside RNA-seq, and 
it was therefore not possible to obtain a highly accurate and contem-
poraneous record of heterozygous sites across the genome (used to 
measure ASE) and CN events. Conceivably, both of these sources of 
variation might fluctuate with passaging. A proxy was therefore sought: 
SNPs and SCNAs listed within the Cancer Cell Line Encyclopaedia84  
(in the case of H1650 and 786-0); or within another publication (in the 
case of HepG2, SNPs were derived from variant calling of whole-genome 
sequencing data85). To mitigate the possibility of false-positive ASE calls 
arising from inaccurate genotyping and subsequent misclassifying 
of homozygous sites as heterozygous, a site was only considered as 
heterozygous if it was both annotated as such in the relevant DNA-seq 
study while also harbouring at least one expressed read from both 
alleles within the RNA-seq data. At sites of DNA allelic imbalance, the 
allele with the majority of available RNA reads assigned to it was con-
sidered likely to be the major allele. With this record of heterozygous 
sites, analysis of CN-independent ASE was performed in the same way 
as described in section ‘ASE analysis’. Finally, the impact of SETD2 on 

CN-independent ASE was evaluated using a linear mixed-effects model, 
with the study added as a random factor to control for the additional 
biological replicates within ref. 23.

Detection of RNA variants. RNA-specific variants were called using 
the somatic variant caller Mutect2 from GATK (v.4.1.7.0)55,86. Each 
BAM file was first pre-processed following GATK’s best practices for 
RNA-variant calling. In brief, marked duplicated reads were removed 
and splice junctions split followed by a base quality recalibration to  
ensure the compatibility of the mapped reads with GATK’s variant callers.  
The somatic variant caller Mutect2 was then run to generate raw puta-
tive RNA variant calls in exonic regions only, integrating information 
from multiple regions per tumour, using the multiple-sample mode. 
To filter germline variants, a blood DNA sample was added as a ‘normal’ 
region per tumour, along with GATK’s panel of normal samples based 
on DNA-seq from 4,136 normal samples from The Cancer Genome 
Atlas and Genome Aggregation Database (gnomAD) sites. The option-
tumour-lod-to-emit was set to 2.0 to ensure a maximum number of 
raw calls. Variant calls were run per chromosome in parallel using GNU 
parallel (v.20210422)87. FilterMutectCalls was then used to filter the 
raw calls with the additional option -read-filter NotSupplementary-
AlignmentReadFilter to exclude variants supported exclusively by 
supplementary reads. After this first filtering step, BCFtools (v1.10.2)88 
was run to select only PASS biallelic SNVs.

Next, bam-readcount (v.0.8)89 was used to obtain RNA reads with 
a base and mapping quality above 20 supporting the variants called 
by Mutect2 as an orthogonal measure of variant calls at these sites. 
On the basis of the bam-readcount output, the following criteria were 
applied to remove variants: variants with fewer than 30 reads in the 
germline DNA; with fewer than 30 reads in total for all DNA tumour 
regions; with an RNA coverage below 10 reads; for which the alterna-
tive base was supported by fewer than 3 reads; or present at less than 
1% variant allele frequency. Additionally, further filtering was applied 
to variants in regions of the genome with poor mappability such as 
centromeres, repetitive regions, genomic regions with high nucleo-
tide variability in the sample. These included blacklisted genomic 
regions obtained from UCSC Genome Table Browser, excluded from 
the Encode project (both DAC and Duke list)72 as well as regions coding 
for immunoglobulin antibodies in hg19: chromosome 14, positions 
beyond 106000000, chromosome 22 between positions 22385572 
and 23265082, and chromosome 2 between positions 132032200 and 
133174000. In positions at which the RNA variant was supported by 
one or more reads from the DNA tumour samples, support in the DNA 
might arise from sequencing errors in very high coverage regions. 
To distinguish between this scenario and expressed mutations, a 
one-tailed Fisher’s test was performed comparing the number of DNA 
reads supporting the RNA variant to the number of reads supporting 
other variants compared to the total coverage  at the same position. If 
the number of DNA reads supporting the RNA variant was distinguish-
able from sequencing noise (with a non-stringent P value threshold of 
0.1), the RNA variant was excluded. Furthermore, variants flanked by 
the same four nucleotides as either the reference or alternative allele 
were also excluded.

Because the libraries used for RNA-seq were stranded, variant reads 
from each strand were compared to obtain the difference in stranded-
ness relative to the total depth at the variant position.

Additionally, we selected ten putative editing events for Sanger 
sequencing, all of which were validated with this orthogonal method 
(Extended Data Table 2).

RNA-SBS signatures. The R package hdp (v.0.1.5)90, available on GitHub 
(https://github.com/nicolaroberts/hdp), was used to call de novo  
RNA-SBS signatures using default parameters and 15 iterations  
using the trinucleotide context of strand-independent variants  
(192 possibilities in total). To prevent sample size biases for which RNA 

https://github.com/nicolaroberts/hdp


variants present in all regions in highly sampled tumours could be 
artificially over-represented during de novo signature calling, we ran 
this step using unique RNA variants  across all samples per patient. 
Only de novo signatures with significant exposure (as determined by 
hdp) in at least 1% of the cohort were considered for further analyses. 
A signature present in only one patient was therefore discarded for 
downstream analyses. deconstructSigs (v1.9.0)91 was then applied to 
each individual sample to estimate RNA-SBS signatures per sample. 
Only tumour regions with more than 20 RNA variants were considered 
for further analyses.

To test the potential relationship between signature activity and 
the expression of specific genes, we performed a linear mixed-effects 
model using the number of RNA variants attributed to each signature 
as the dependent variable, and gene expression of all genes in our 
dataset (n = 20,136). Expression was measured as log10(transcripts per  
million + 1) for genes with at least 5 read counts in 20% of the RNA-seq 
cohort.

To further test the relationship between APOBEC expression and 
RNA-SBS2, a linear mixed-effects model was performed, using the 
number of RNA variants attributed to RNA-SBS2 as the dependent 
variable, the expression of all APOBEC genes in the transcriptome as 
explanatory variables and the tumour identifier as a random effect.

Detection of RNA loops. RNA loops were detected in the flanking  
regions of RNA variants. Flanking regions were derived using the 
flanks() function from the R package GenomicRanges (v.1.36.0)92. Loops 
were defined by the flanking regions 3′ and 5′ of a 3–5-nucleotide-long 
sequence containing an RNA variant being complementary at a length 
of at least 3 nucleotides.

RNA-editing motif enrichment. To confirm the role of specific APOBEC 
enzymes in RNA-SBS2, we tested the relative proportions of C>T events 
at known RNA-editing APOBEC motifs. APOBEC enzymes typically edit 
C>T variants at the fourth position of 4-nucleotide-long RNA hairpin 
loops. In particular, APOBEC3A favours the CAT[C>T] motif30,31.

APOBEC motif enrichment analyses were performed based on a previ-
ously reported local enrichment method93. In brief, for each C>T variant 
site, a Fisher’s test was performed to test whether C>T changes within 
20 upstream or downstream nucleotides occurred more than expected 
by chance at specific motifs (CAT[C>T]) in either strand.

ITH of CN-independent ASE. The ITH of CN-independent ASE was 
calculated for each tumour as follows. The total number of genes in a 
tumour showing CN-independent ASE in all of two or more tumour reg-
ions was divided by the total number of genes in that tumour showing 
CN-independent ASE in at least two regions. A gene showed homogene-
ous CN-independent ASE if it was detected in all regions of a tumour 
for which it was possible to test as outlined in the section ‘ASE analysis’.

The relationship between I-TED and the ITH of other forms of altera-
tions was tested using a multivariable linear regression in a similar 
fashion as that detailed in the section ‘I-TED’.

dN/dS analysis. The dndscv function in R from the dNdScv package 
(v.0.1.0.0)16 was run on all mutations available in the cohort. The func-
tion genesetdnds() was then run on the resulting object on various 
subsets of gene lists divided by expression quantiles for ITH, intertu-
mour heterogeneity or amplitude. This ensured that the global dN/dS 
metrics obtained for each group were based on the same mutational 
background, making them more comparable.

Expression amplitude was measured as VST counts, whereas ITH was 
measured as the standard deviation in expression amplitude across all  
regions in multiregion tumours. Intertumour heterogeneity was meas-
ured as the bootstrapped (ten iterations) standard deviation in expres-
sion per gene sampling one tumour region per tumour per iteration, 
as in the previously described17.

Cancer genes were defined as specified in7 the section ‘Epigenetic 
drivers’ as well as in a companion manuscript7. Non-cancer genes were 
those not present in the pan-cancer COSMIC database (v.75)75 or the list 
of cancer genes from ref. 94. Essential genes were identified from the 
Project Achilles list of essential genes for NSCLC18.

PCA feature selection. The following clinical and genomic features per 
primary tumour region were tested for association with the foremost 
PC of gene expression:
(1) Clinical features, including age of the patient, sex, years spent smok-

ing cigarettes and TNM stage of the primary tumour at resection. 
See methods in a companion manuscript7 for details on how these 
features were obtained.

(2) LUAD-specific subtype as defined by central pathological review 
(acinar, lepidic, cribriform, micropapillary, mucinous, papillary 
or solid). This feature was available only for LUAD tumours and is 
described in more detail in a companion paper95.

(3) Tumour mutation burden: the number of mutations per region. 
Only mutations that are likely to have a phenotypic effect are inclu-
ded, in line with calculations of a harmonized tumour mutation 
burden96. These include all exonic single-nucleotide mutations, 
except synonymous changes, as well as insertions and deletions. 
All metrics below that depend on mutation numbers are based on 
this set of mutations.

(4) Presence or absence of driver mutations in cancer genes with a 
driver mutation in at least 5% of the cohort. This included driver 
mutations in ARID1A, ATM, ATRX, CDKN2A, COL5A2, CREBBP, EGFR, 
FAT1, KEAP1, KMT2D, KRAS, MGA, NF1, PIK3CA, RBM10, SMARCA4, 
STK11 and TP53. See a companion manuscript7 on the definition of 
cancer genes in our cohort.

(5) Proportion of subclonal mutations: the number of exonic mutations  
in the focal tumour region belonging to subclonal mutational 
clusters in the tumour, divided by the total number of exonic 
mutations in that region. Subclonal mutations were defined as 
those belonging to any mutation cluster with a cancer cell fraction  
below 1 across the tumour (that is, not present in all cells in the focal  
tumour). Details on how clonal clusters are determined are avail-
able from a companion manuscript7. This metric gives a measure 
of the proportion of smaller clones present in the tumour region.

(6) Genome instability at the tumour region level, a common feature in 
tumour evolution38, was measured through the weighted genome 
instability index (wGII), which measures the extent of genome insta-
bility per tumour region. See methods in a companion manuscript7 
for details on the calculation of this index.

(7) Similarly, the number of whole genome duplication events per 
tumour region was also considered. See methods in a companion 
manuscript7 for details on the calculation of genome doubling 
events.

(8) COSMIC mutational signatures SBS1, SBS2, SBS4, SBS5, SBS13 and 
SBS92 (ref. 34). Signature activity was measured as the fraction of 
mutations per tumour region corresponding to each signature’s 
weight. SBS2 and SBS13 were combined into a single SBS DNA signa-
ture for APOBEC activity. See methods in a companion manuscript7 
for details on the mutational signature analysis.

(9) The immune microenvironment was assessed by estimating the T cell 
fraction from DNA using the R package T-Cell ExTRECT(v.1.0.1)97.

Additionally, we performed a single sample GSEA (ssGSEA) for the 
50 MSigDB hallmark gene sets using the R package fgsea (v.1.10.1)71 
on VST counts using a Gaussian distribution and default parameters. 
The resulting enrichment scores per sample were correlated to each 
PC using a linear mixed-effects model that controlled for the tumour 
of origin. The resulting P values were merged by MSigDB functional 
group14 (Extended Data Table 3) using the harmonic mean and cor-
rected for multiple testing using FDR.
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Classifier feature selection. The seeding region classifier was based 
on a cohort of regions from primary tumours that had metastasized 
or that had not metastasized after 3 years of follow up. Only tumour 
regions with a seeding clone at >0.2 CCF were considered as seeding 
for this analysis. In total, 516 primary tumour regions from 206 tumours 
for which seeding status could be established and for which all metrics 
tested could be measured (307 non-seeding regions, 209 seeding) were 
analysed. The following features were also considered for the classifier:
(1) Tumour mutation burden: the number of mutations per region. Only 

mutations that are likely to have a phenotypic effect are included, in 
line with calculations of a harmonized tumour mutation burden96. 
These include all exonic single-nucleotide mutations, except syn-
onymous changes, as well as insertions and deletions. All metrics 
below that depend on mutation numbers are based on this set of 
mutations.

(2) Regionally truncal and clonal mutation burden: the number of clonal 
mutations per tumour region. Clonal mutations were defined as 
those belonging to a mutation cluster with a cancer cell fraction of 1 
(that is, present in all cells) in the tumour region. This included muta-
tions that are clonal in the entire tumour (trunk mutations) as well as 
mutations that were clonal in the focal region, but subclonal or absent 
in other regions of the same tumour. See methods in a companion 
manuscript7 for details on the determination of the truncal cluster.

(3) Clonal illusion tumour mutation burden: the number of mutations 
that were clonal in the focal region, but not clonal within all other 
regions of the same tumour. Only mutations belonging to clusters 
with a cancer cell fraction of 1 (that is, present in all tumour cells) 
in the focal region, but not in the rest of the tumour, were counted. 
See methods in a companion manuscript7 for more details on the 
definition of the truncal cluster.

(4) Proportion of regionally subclonal mutations: the number of  
mutations belonging to subclonal mutational clusters in the focal 
tumour region divided by the total number of mutations in that 
region. Subclonal mutations were defined as those belonging to 
any mutation cluster with a cancer cell fraction below 1 (that is, not 
present in all cells in the focal tumour region). Details on how clonal 
clusters were determined are available in a companion paper7. This 
metric gives a measure of the proportion of smaller clones present 
in the tumour region.

(5) Proportion of expressed mutations: the number of expressed muta-
tions divided by the total mutation burden in the tumour region. 
A mutation is considered expressed if it had at least three reads 
with the mutated allele in the RNA-seq data. This metric serves as 
a proxy for the proportion of tumour mutations that were present 
in the bulk RNA-seq transcripts.

(6) Number of region clonal driver mutations: the number of driver 
mutations that belong to clonal mutation clusters in the focal  
region. This included both truncal mutations (that is, clonal across 
the tumour) and clonal illusion mutations (that is, clonal in the focal 
region but not in the rest of tumour regions). Details on how driver 
mutations and clonal clusters were determined are available in a 
companion manuscript7.

(7) Number of region subclonal driver mutations: the number of driver 
mutations that belong to subclonal mutation clusters (cancer cell 
fraction below 1) in the focal region. Details on how driver mutations 
and clonal clusters were determined are available in a companion 
manuscript7.

(8) Presence or absence of driver mutations in cancer genes that con-
tained a driver mutation in at least 10% of the cohort. This included 
driver mutations in CDKN2A, KEAP1, KMT2D, KRAS, SMARCA4, STK11 
and TP53.

(9) Presence or absence of CN drivers, that is, amplification of a subset 
of oncogenes or the homozygous loss of a subset of tumour sup-
pressor genes. Genes with at least copy number driver alterations 

in 10% of the cohort were included. These include SOX2, TERT, TERC, 
CDKN2A, MYC, CCND1, FGFR1, NKX2-1, AKT2, EGFR and CCNE1. Details 
on how driver mutations and clonal clusters are determined are 
available in a companion paper7.

(10) COSMIC mutational signatures SBS1, SBS2, SBS4, SBS5, SBS13 and 
SBS92 (ref. 34). Signature activity was measured as the fraction of 
mutations per tumour region corresponding to each signature’s 
weight. SBS2 and SBS13 were combined into a single SBS DNA sig-
nature for APOBEC activity. Details on how mutational signatures 
were extracted are available in a companion manuscript7.

(11) Genome instability at the tumour region level, a common feature 
in tumour evolution38, was measured through the wGII, which 
measures the extent of genome instability per tumour region. 
Details on how this metric was calculated per tumour region are 
available in a companion paper7.

(12) Similarly, the number of genome-doubling events per tumour  
region was also considered. Details on how genome-doubling 
events per tumour region were calculated are available in a com-
panion paper7.

(13) In a companion paper7, the presence of expanded subclones in a  
tumour were taken as evidence of recent subclonal sweeps and 
linked to poor prognosis. To test the potential impact of this met-
ric on seeding potential, per tumour region, we calculated the 
maximum cancer cell fraction of all mutation clusters on terminal 
nodes of the phylogenetic tree  as a measure of clone dominance. 
A higher cancer cell fraction indicates a larger terminal mutation 
cluster in the focal region. Details on how driver mutations and 
clonal clusters are determined are available in the companion 
paper7.

(14) To measure the impact of expression diversity within a tumour, 
we included the per tumour region I-TED score. I-TED was imputed 
as the median score across the cohort for samples for which only 
one region per tumour was available.

(15) To characterize the phenotype of the tumour region, we measured 
the tumour-region enrichment score through ssGSEA (using the  
R package fgsea (v.1.10.1)71 using a Gaussian distribution and default 
parameters on VST counts) for three cancer-specific gene sets: (1) 
CIN70 (ref. 36): an expression signature linked to genome instability 
and cell proliferation, phenotypes that have been linked to poor 
prognosis and metastasis98; (2) Oracle17: a lung cancer-specific 
prognostic maker, in which increased expression of this gene 
set is linked to poor prognosis; (3) a high-plasticity cell state: an  
expression signature for phenotypic plasticity extracted from the 
recent publication from ref. 5. biomaRt (v.2.40.1)99 1:1 orthologues 
between human and mice genes from cluster 5 were used to cal-
culate this signature, as described in the publication.

(16) The tumour microenvironment was characterized using expres-
sion markers consistent with previously described immune cell 
types100.

(17) Additionally, tumour purity as calculated using ASCAT (v.2.3)50 
was included.

(18) To test the potential effect of overall tumour-specific expression 
in the metastatic potential, we added the differential between the 
transcript tumour fraction (described in section ‘RNA ASCAT’) 
and tumour purity as calculated using ASCAT from DNA.

(19) We tested the potential impact of CN-independent ASE on the meta-
static potential of tumour regions by including the proportion of 
genes with CN-independent ASE compared with the total number 
of genes for which ASE could be measured per tumour region.

(20) We also included the ASE status of genes with significant 
enrich ment in CN-independent ASE in tumours compared to 
tumour-adjacent normal lung tissue. These included CSN2KA3, 
DNAH11, DOCK1, GALNT18, NLRP2, PRIM2 and ZNF597. In cases 
when ASE could not be measured in a tumour region, the ASE status 
was encoded as unknown to prevent missing values.



(21) The potential impact of RNA editing on seeding potential was 
included through the two RNA-editing signatures characterized 
in this paper: RNA-SBS1 (ADAR) and RNA-SBS2 (APOBEC3A). Their 
activity was measured as the fraction of RNA variants per tumour 
region corresponding to each signature’s weight.

(22) We additionally included the RNA-editing levels (fraction of RNA 
molecules with edited sites) of three genes reported to play a role 
in cancer development from the literature101–103: AZIN1, COPA and 
COG3. This feature was added only for tumour regions with at 
least 30 unique RNA reads covering the editing sites of interest.

Classifier to predict seeding and non-seeding tumour regions. We 
built the machine-learning framework in Python using Tensorflow 
(v.2.6.0)104 and sklearn (v.0.0)105. Specifically, we built an ensemble 
classifier that used three different model types: (1) logistic regression, 
(2) random forest and (3) multilayer perceptron with support vector 
machine embedded in the final layer. We describe the structure of the 
machine-learning pipeline in more detail below.
Pre-processing. To pre-process the input data, we first explored the 
correlation structure among potential explanatory features (n = 61) 
and removed those features with high correlation coefficients (r > 0.75, 
n = 11). We one-hot-encoded categorical features using get_dummies 
from Pandas (v1.3.3)106 and then split the data into training and test 
datasets (75/25 split). After encoding, we had a total of 60 features. We 
scaled the continuous features using MinMaxScaler from sklearn.pre-
processing (v.0.0)107 and used SMOTENC from imblearn.over_sampling 
(v.0.8.0)105 to improve the balance of the dataset in terms of numbers of 
seeding and non-seeding regions. Finally, we used the sklearn (v.0.0)105 
framework to perform additional variable selection before training 
using a LinearSVC model (penalty = “l1”), keeping those features with 
importance ≥0.015. This threshold removed 15 out of 60 features. Fol-
lowing this initial pre-processing, we generated different subsets of the 
dataset depending on the source of the input features, thus downstream 
processes within the pipeline operated on three datasets: (1) genomic 
only features, (2) transcriptomic only features, and (3) all features.
Model training. For each model type, to tune model hyperparameters, 
we performed a randomized grid search with RandomizedSearchCV 
(sklearn.model_selection, v.0.0)104 and StratifiedKFold cross-validation 
(n_splits = 10, n_iter = 500).

We implemented a sequential model from tensorflow.keras (v.2.6.0)104 
with dropout layers (dropout = 0.2) to reduce overfitting and used a 
categorical hinge loss function with an l2 kernel regularizer and sig-
moid activation function in the final layer. This approach effectively 
constitutes a support vector machine in the final layer of the sequential 
model. We used the Adam optimizer from tensorflow.keras.optimizers 
(v.2.6.0)104. Specifically, we defined a search grid to tune the following 
parameters: learning rate, batch size, epochs, number of hidden layers 
and sizes of hidden layers. Following the cross-validated training across 
the randomized search grid, we selected the best performing model 
according to the greatest balanced accuracy. We then extracted feature 
weights from this selected model using PermutationImportance from 
eli5.sklearn (v.0.11.0). Finally, to assess the performance of the selected 
model on the held-out test dataset, we used the model to predict whether 
a test region was seeding or not and compared this to the true labels. 
The machine-learning pipeline was developed using Python (v.3.5.5), 
and plots of results were generated in R (v.4.0.3) using ggplot2 (v.3.3.5).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The RNA-seq, whole-exome sequencing and RRBS data (in each 
case from the TRACERx study) used during this study have been 

deposited at the European Genome–phenome Archive, which is 
hosted by the European Bioinformatics Institute and the Centre for 
Genomic Regulation, under the accession codes EGAS00001006517 
(RNA-seq), EGAS00001006494 (whole-exome sequencing) and 
EGAS00001006523 (RRBS). Access is controlled by the TRACERx data 
access committee. Details on how to apply for access are available at 
the linked page.

Code availability
Code used to process data and generate figures is available at the  
following link: https://doi.org/10.5281/zenodo.7603386.
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Extended Data Fig. 1 | Patterns of expression diversity in the TRACERx 
cohort. a. Uniform manifold approximation and projection (UMAP) showing 
the distribution of each primary tumour region in the cohort based on gene 
expression. n = 914 tumour regions collected at surgical resection from 352 
primary tumours, n = 33 recurrence/relapse samples from 24 tumours and 
n = 96 paired normal samples from 96 tumours. LUAD: Lung adenocarcinoma; 
LUSC: Lung squamous cell carcinoma; LCNEC: Large cell neuroendocrine 
carcinoma. b. Percentage of tumours with and without ‘LUAD drivers’ (driver 
mutations enriched in LUADs) in LUAD, non-LUADs clustering with LUADs in 
the UMAP and non-LUADs clustering apart from LUADs. Number of tumours 
within each category is annotated. c. Mean number of variables significantly 
associated with each principal component (PC) of gene expression after 
randomly sub-sampling the number of LUAD regions to match that of LUSC 
regions (n = 303) for 50 iterations. LUAD subtypes were not included in this 
comparison to ensure an equal number of variables between LUAD and LUSC. 
d. PC associations with each of the different RAS activation groups (RAG) 
developed by East and colleagues11. PC activity different significantly between 
RAGs. Analysis based on 480 tumour regions collected at surgical resection 
from 190 LUAD tumours where RAG could be estimated. e. Proportion of LUAD 
tumours in smokers (comprising current and ex-smokers) and never smokers, 
split by LUAD subtype, with either G12C KRAS driver mutations, non-G12C 
KRAS driver mutations or driver mutations in other genes. Numbers annotated 
indicate the number of tumours per category. f. Pearson’s r between each 
PC and functional groups comprising the fifty MSigDb Hallmark gene sets14. 
Pearson’s r values were averaged within the functional group to which each 
hallmark was assigned14 across LUAD, n = 480 tumour regions from 190 
tumours; and LUSC, n = 303 tumour regions from 119 tumours. The colour of 

the border around each square indicates the direction of the association 
between each covariate and PC for significant (FDR<0.05) associations. 
Significance was determined through a mixed effects linear model using purity 
as a fixed covariate and tumour as a random variable; P values were calculated 
by hallmark and combined within MSigDB functional group using the harmonic 
mean. g. Immuno-histochemical staining for Ki67 proliferation marker in LUAD 
tumours with and without EGFR driver mutations. Only the 196 LUAD tumours 
within which Ki67 was measured are displayed. Significance was calculated 
through a two-sided unpaired Wilcoxon test. WT: Wild type. h. Percentage of 
variance in Intra-Tumour Expression Distance (I-TED) that was explained by 
intra-tumour variance in tumour transcript fraction and intra-tumour variance 
in tumour purity, in a linear regression. Analysis based on 258 tumours with at 
least two primary tumour regions, and purity and tumour transcript fraction 
estimates. ***:P value = 5.03 × 10−8; **:P value = 0.007. i. dN/dS in non-cancer and 
cancer genes for different quantiles of ITH or expression amplitude. Asterisks 
indicate significance whereby the 95% confidence interval of the dN/dS 
estimate did not overlap 1 signalling either negative (blue square) or positive 
(red square) selection. Broadly, lower quantiles of ITH tended towards negative 
selection in non-cancer genes, whereas the opposite was true for cancer genes. 
Results based on bootstrapping from the total number of tumour samples 
resected at surgery of the primary tumour from tumours with more than one 
sample at that time point, 845 regions from 285 tumours. j. Percentage of all 
essential genes from the Project Achilles list18 (n = 604) in lung cancer for 
tertiles of expression ITH or amplitude. All box plots in this figure represent 
lower quartile, median and upper quartile, whiskers represent lower/higher 
bound +/− 1.5 x interquartile range.



Extended Data Fig. 2 | Genomic and transcriptomic links with allele- 
specific expression. a. Points indicate odds ratio estimates for copy-number 
dependent allele-specific expression (CN-dependent ASE) when somatic point 
mutations, or allele-specific methylation (where both RRBS and RNA-Seq were 
available) were concomitantly detected in the same gene, by type of alteration. 
Bars indicate 95% confidence intervals. Odds ratio for the links between 
CN-dependent ASE and mutations; and CN-dependent ASE and ASM are based 
on 876 primary tumour regions from 332 tumours, and 96 tumour regions  
from 31 tumours, respectively. b. Relationship between the proportion of 
CN-independent ASE in a tumour that is subclonal, being found in a subset of 
regions within a given tumour, and intra-tumour expression diversity. The 
Pearson correlation coefficient is shown (r = 0.25, P = 4 × 10−5). c. Percentage of 
variation in I-TED that was explained by single nucleotide variant (SNV), SCNA 
and CN-independent ASE ITH, as well as the number of subclonal whole genome 
duplication events (GDs) per tumour. The linear regression was based on 269 
tumours where all variables could be calculated. ***:P = 2.4 × 10−10; **:P = 0.004. 
d. PCA of CN-independent ASE patterns in TRACERx421 tumours (n = 877 
tumour regions) and normal tissue (n = 95) samples where CN-independent 
ASE could be estimated. Samples are coloured by tissue type. Values within 
parentheses on the axes indicate the proportion of variance explained by each 

principal component. e. Genes with CN-independent ASE in either tumour or 
normal tissue samples. Genes with an enrichment of CN-independent ASE in 
tumours are marked in blue, lung cancer genes are represented by triangles and 
imprinted genes have a black outline. Enrichment was defined as FDR < 0.05 
from a Fisher’s exact test per gene. The number of regions used to calculate 
enrichment varied per gene between 5 and 850 (median = 164) for tumours and 
between 5 and 95 (median = 35) for normal tissue. f. Relationship in LUSC 
between the proportion of evaluable genes with CN-independent ASE and the 
ratio of differentially hypo-methylated clusters of neighbouring CpGs 
compared to all differentially methylated genomic positions. The Pearson 
correlation coefficient is shown; P value was calculated using a linear 
mixed-effects model with tumour as random variable (r = −0.18, P = 0.35).  
g. Percentage of evaluable genes affected by CN-independent ASE in wild type 
(WT) and SETD2 deficient isogenic cell lines. Expression data was obtained 
from publicly available datasets from three separate studies in three different 
cell lines23–25: in total, data from 10 cell lines across 3 experiments (n = 6, 2 and 2). 
Boxes represent lower quartile, median and upper quartile. P values were 
calculated using a linear mixed effects model, using the study of origin of each 
sample as a random effect. SETD2-/-: inactivation of the SETD2 gene.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Patterns of RNA variant diversity in TRACERx.  
a. Overview of RNA substitutions in the primary tumour lung TRACERx cohort, 
from top to bottom: Number and type of RNA variants per megabase per 
tumour, tumours are sorted from left to right by histological subtype and by 
number of variants; Proportion of each variant type per tumour; Proportion of 
variants present in any of the normal samples; Proportion of tumour-specific 
RNA variant sites shared across at least two tumours. NSCLC histological 
subtype per patient. LUAD, lung adenocarcinomas, n = 190; LUSC, lung 
squamous cell carcinomas, n = 119; Other, other subtypes, n = 43; tumour-
adjacent normal lung tissue, n = 96. b. Volcano plots showing Pearson 
correlations between the number of RNA variant signature substitutions and 
gene expression for all genes in the transcriptome, split by RNA single-base 
substitution (SBS) signature. P values were calculated using a linear mixed 
effects model, using tumour of origin of each region as random effect. The 
genes with the 5 most significant correlations with each signature are labelled. 
P values were adjusted for repeated measures. Correlations were based on 765 
primary tumour regions with at least 20 RNA variants from 329 tumours. 
Colour indicates dot density, with light coloured points belonging to areas of 
high density in the plot. c. Proportion of RNA variants relative to variant type 
(A>G or C>T) in 4nt RNA loops. C>T substitutions were more prevalent in the 
4th nucleotide of 4nt RNA hairpin loops, consistent with APOBEC RNA editing 
activity. d. Proportion of substitutions assigned to RNA-SBS2 activity 
compared to the proportion of RNA variants at CAT[C>T] motif sites per 

tumour region (CAUC ratio). Blue dots represent regions where RNA editing at 
these motifs was enriched (Fisher’s test P<0.05 for C>T substitutions at each 
site compared to C sites in a 40nt genomic region). P values were computed 
based on a two-sided t test testing the null hypothesis that the Pearson 
correlation coefficient (r) = 0, within 892 tumour regions and 77 tumour-
adjacent normal tissue samples with at least 10 C>T variants. e. Pearson 
correlation between the exposure of RNA-SBS signatures within metastatic 
tumour regions and their respective seeding regions in the primary tumour 
(left); and tumour-adjacent normal lung tissue and their respective primary 
tumour regions (right). Primary tumour exposure was calculated as the median 
exposure across all primary regions for the comparison with normal tumour-
adjacent tissue, and of all seeding regions for the comparison with metastases. 
Only primary-metastasis pairs where more than 20 RNA substitutions were 
detected in the metastasis and primary region were used (n = 50 pairs for 
normals, n = 31 for metastases). P values were computed based on a two-sided t 
test testing the null hypothesis that the Pearson correlation coefficient = 0.  
f. Pearson correlation between the activity of RNA-SBS1 and the global levels of 
methylation in a tumour region (measured as the percentage of all differentially 
methylated positions that are differentially hypomethylated clusters of 
neighbouring CpGs). Methylation data and sufficient RNA substitutions for 
signature deconvolution were available for 80 regions from 31 tumours.  
P values were calculated using a linear mixed effects model, using tumour of 
origin of each region as a random effect.
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Extended Data Fig. 4 | Transcriptional features of metastasis. a. Expression 
distance between paired primary tumour regions; compared to distance 
between paired primary and non-LN intrathoracic metastatic tumour regions. 
Only patients with two or more primary regions and at least one metastatic 
region sampled are shown (12 primary-metastasis pairs from 8 tumours). Boxes 
represent lower quartile, median and upper quartile, whiskers represent lower/
higher bound +/− 1.5 x interquartile range. Significance was tested using a 
paired Wilcoxon test (P = 0.00098). b. Gene set enrichment analysis (GSEA) of 
functional groups from hallmark gene sets14 between metastasis seeding and 
non-seeding regions. Only tumours where both seeding and non-seeding 
regions had RNA-seq were included (n = 37, 122 regions). Dots coloured by a 
significant enrichment after FDR correction. Mean normalised enrichment 
score (NES) is displayed on the x-axis and indicates the enrichment for a given 
gene set, and the negative log of the adjusted P value is displayed on the y-axis. 
c. Overview schematic of the machine learning framework used to predict 
whether a region contains a metastasis-seeding clone(s). MLP-SVM: multilayer- 

perceptron with support vector machine terminal layer. d. Individual Shapley 
Additive Explanations (SHAP) values for the most important features across 
the combined ensemble. Positive SHAP values indicate weighting towards a 
prediction of metastasis seeding whereas negative SHAP values indicate a 
weighting towards prediction of metastasis non-seeding. Colour scale 
represents the value of the feature across the test dataset (red=high values, 
blue=low values). For instance, high values of the ORACLE expression marker 
(red dots) were associated with a higher likelihood of a region being seeding 
(positive SHAP values) in the combined ensemble. The predictions were based 
on 516 primary tumour regions from 206 tumours where seeding status could 
be established and where all metrics tested could be measured (307 non-seeding 
regions, 209 seeding), with a 75%-25% training-test dataset split. TMB: tumour 
mutational burden; CN-ind ASE: Copy number-independent allele specific 
expression; HPCS: High Plasticity Cell State5; GD: genome doubling; CCF: cancer 
cell fraction; Clone dominance CCF: maximum CCF at terminal nodes of a 
phylogenetic tree; SCNA: somatic copy number alteration.



Extended Data Table 1 | Central pathological review of non-LUAD tumours clustering with LUADs based on expression 
patterns

Histological subtype was determined by centralized pathological slide review, as was the presence of adenocarcinomatous morphology within these tumours. Additionally,  
immunohistochemical staining profiles were summarized according to the pathology reports. LCC, large cell carcinoma; LCNEC, large cell neuroendocrine carcinoma.



Article
Extended Data Table 2 | Sanger sequencing-validated RNA variant sites

RNA variant sites detected through our bioinformatics pipeline, and validated using Sanger sequencing. The variant was detected in the RNA but not the DNA of the same tumour region.



Extended Data Table 3 | Hallmark gene set functional groups

MSigDB hallmark gene set and their functional group as assigned by the authors14.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection 

Data analysis RNA-seq alignment and QC 
Illumina adapters were trimmed from raw sequencing reads using Cutadapt (v2.10)  
The quality of the trimmed reads estimated per flow cell lane using FASTQC (v.0.11.9) 
Fastq read files were aligned to the Hg19 human reference genome using STAR (v2.5.2a) 
Duplicated reads in each BAM file were marked with the MarkDuplicates function from GATK (v4.1.7.0) 
Aligned reads were quality checked using QoRTs (v1.3.6) to assess RNA integrity 
Somalier (v0.2.7) was used to detect potential instances of sample mislabelling. 
FASTQC, QoRTs and Somalier outputs were visualised using MultiQC (v1.9) 
RSEM (v1.3.3) was used with default parameters to quantify gene expression based on the BAM files aligned to the transcriptome 
RNA coverage was calculated for single nucleotide variants (SNVs) detected in matched whole exome sequencing data per tumour region 
using SAMtools (v1.9) mpileup 
All steps described were implemented through the Nextflow (v20.07.1) pipeline manager 
 
Reduced-representation Bisulfite Sequencing (RRBS) 
FastQC v0.11.2 was used for quality control 
Trim Galore! (Babraham Institute, https://www.babraham.ac.uk/) a wrapper around Cutadapt (v2.10), was used to trim reads 
The bisulfite converted DNA sequence aligner Bismark (v0.14.4) was used to align reads to the UCSC reference genome Hg19 
PCR deduplication was carried out using NuDup (v2.3), leveraging NuGEN’s molecular tagging technology (https://github.com/
nugentechnologies/nudup) 
 
Most analyses were run using the R coding environment (v3.6.3) 
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RNA clustering 
RSEM raw read counts were normalised using the median of ratios method implemented in DESeq2 (v1.24.0) 
 uniform manifold approximation and projection was performed using the R package umap (v2.7.7.0) 
ASCAT (v2.3) and SAMTools mpileup (v1.9) were used to obtain RNA-derived estimates of tumour fraction 
 
Gene expression differences 
The R package edgeR (v3.26.5) was used to obtain gene expression differences 
The R package fgsea (v1.10.1) was used to perform a gene set enrichment analysis on the gene expression differences results 
 
Allele-specific expression 
RNA read counts were compared to DNA copy number estimates through beta-binomial tests using the R package VGAM (v1.1-2) 
CAMDAC (https://doi.org/10.1101/2020.11.03.366252) was used for allele-specific methylation calls 
 
 
RNA variant calling 
RNA-specific variants were called using the somatic variant caller Mutect2 and FilterMutectCalls from GATK (v4.1.7.0) 
Mutect2 processes were run in parallel using GNU parallel (v20210422) 
BCFtools (v1.10.2) was run to keep only biallelic PASS variants 
bam-readcount (v0.8) was used to extract RNA reads at variant locations called by Mutect2 for further filtering, based on read depth and on 
the location of variants in the genome to prevent false positives arising from sequencing and mapping errors 
RNA editing signatures were extracted using the R package hdp (v0.1.5) 
Signatures were assigned to each tumour region using the R package deconstructSigs (v1.9.0) 
 
All linear mixed effects models were performed using the R package lmerTest (v3.1-3) 
 
The packages GenomicRanges (v1.36.0), stringr (v1.4.0) and TxDb.Hsapiens.UCSC.hg.knownGene (v3.2.2) were used to handle sequence data 
in R 
 
dNdS analyses for detecting selection were performed usning the R package dndscv (v0.1.0.0) 
 
The metastatic potential classifier was performed in Python (v3.3.5) using the packages pandas(v1.3.3), sklearn(v0.0) and tensorflow(v2.6.0) 
 
 
The packages dplyr (v1.0.3), tidyr(v1.1.0) and reshape2 (v1.4.2) were used for data handling in R 
 
Visualisation 
Data was visualised using the R packages ggplot2 (v3.2.1),  ggpubr (v0.4.0), cowplot (v1.0.0),  gridExtra(v2.3), scales (v1.0.0) and ggrepel 
(v0.8.1)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The RNA sequencing (RNA-seq), Whole exome sequencing (WES) and Reduced representation bisulfite sequencing (RRBS) data data (in each case from the TRACERx 
study) used during this study have been deposited at the European Genome–phenome Archive (EGA), which is hosted by The European Bioinformatics Institute 
(EBI) and the Centre for Genomic Regulation (CRG) under the accession codes EGAS00001006517 (RNAseq), EGAS00001006494 (WES) and EGAS00001006523 
(RRBS); access is controlled by the TRACERx data access committee. Details on how to apply for access are available at the linked page.
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Sample size The sample size (421 patients) represents the half-way point of the TRACERx longitudinal study. In total, we analysed paired whole exome 
sequencing and RNA-seq paired data from 347 patients that passed quality check filters for RNA.  
 
TRACERx is a programme of work of multiple projects built around a single observational cohort study. It is not possible to perform a sample 
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size calculation for each project, especially post hoc. The study size of the cohort was done in relation to tumour heterogeneity and disease 
free survival: 
 
The sample size is based on demonstrating a relationship between tumours with divergent intratumour heterogeneity index values and 
clinical outcome. Patients will be split evenly into those with a low and high intratumour heterogeneity index value (and other splits will be 
considered). Assuming a median Disease Free Survival (DFS) of 30 months and a hazard ratio (HR) of 0.77, with a 2-sided 5% significance level, 
90% power, accrual period of 3 years and 5 years follow-up after the end of accrual, the sample size required is almost 400 per group (total of 
800 patients). Assuming a 5% dropout rate, a total of 842 patients (421 per group) are required. At 85% power, 705 patients would be 
required in total, which could be the minimum target. However, we will instead aim for 750 patients and recruitment will continue for the 
length of time which is funded for accrual in order to get as close as possible to the ideal target of 842 patients. A study size of 842 is also 
large enough to detect a 10% improvement in a 5 year OS rate from 46% in the high Intratumour Heterogeneity Index (ITB) to 56% in the low 
Intratumour Heterogeneity Index group (HR=0.75), with 80% power and a 2 sided type I error set at 5% (logrank test). A high/low ITB value 
will be defined as values above/below the 50th percentile (median ITB). We have a target DFS effect of a 23% reduction in risk (hazard ratio 
0.77), which means that our study is powered for an effect at least this large, including a 30% difference (which has been the target for 
progression-free survival in trials of advanced NSCLC, in relation to expected effects on OS).

Data exclusions Data was excluded only on the basis of: 
- Non-elegibility for the TRACERx clinical trial due to failure of the patient's data to comply with the study protocol (see below) 
- The sequenced data did not pass our quality check filters

Replication TRACERx is a prospective longitudinal study. As such, the results shown here are not the result of an experimental setup. This is the half-way  
point of the TRACERx 421 and reflects hypothesis generating analysis. 

Randomization Given the observational nature of the TRACERx longitudinal study, no experimental groups were allocated beforehand. Factors that could 
affect the interpretation of our results such as the background genetic makeup of each patient or the histological subtype of tumours were 
taken into account in all our statistical analyses. These were accounted for by including them as covariates in hypothesis testing. For instance, 
we used tumour ID as a random effect factor in linear mixed effects models for many of our analyses.

Blinding Blinding is not relevant as this is an observational study. Patients were not allocated to any intervention and they were followed up and 
assessed as per routine practice. No biomarker results (tissue and bloods) are reported back to patients, so there is no likelihood of people 
changing their behaviours based on these findings. The laboratory analyses were all performed without knowing the outcome (DFS or 
survival) status of the patients, which represents a form of blinding.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Human research participants
Policy information about studies involving human research participants

Population characteristics 421 patients are included in this TRACERx cohort. 44.6% are females, 55.4% males; 93% are smokers or have a smoking 
history, 7% are never smokers; 25% of patients were diagnosed at stage IA, 25% at IB, 17.8% at IIA, 13.5% at IIB, 18.5% at IIIA 
and 0.2% and IIIB; 52% of diagnosed tumours were adenocarcinomas, 28.8% squamous cell carcinomas and 19.2, other 
histological subtypes; 93% of the cohort is from a white ethnic background and the mean age of the patients is 69, ranging 
between 34 and 92. 
 
Please note that the study started recruiting patients in 2016, when TNM version 7 was standard of care. The up-to-date 
inclusion/exclusion criteria now utilizes TNM version 8. 
 
TRACERx inclusion and exclusion criteria 
 
Inclusion Criteria: 
_Written Informed consent 
_Patients ≥18 years of age, with early stage I-IIIB disease (according to TNM 8th edition) who are eligible for primary surgery. 
_Histopathologically confirmed NSCLC, or a strong suspicion of cancer on lung imaging necessitating surgery (e.g. diagnosis 
determined from frozen section in theatre) 
_Primary surgery in keeping with NICE guidelines planned 
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_Agreement to be followed up at a TRACERx site 
_Performance status 0 or 1 
_Minimum tumor diameter at least 15mm to allow for sampling of at least two tumour regions (if 15mm, a high likelihood of 
nodal involvement on pre-operative imaging required to meet eligibility according to stage, i.e. T1N1-3) 
Exclusion Criteria: 
_Any other* malignancy diagnosed or relapsed at any time, which is currently being treated (including by hormonal therapy). 
_Any other* current malignancy or malignancy diagnosed or relapsed within the past 3 years**. 
*Exceptions are: non-melanomatous skin cancer, stage 0 melanoma in situ, and in situ cervical cancer 
**An exception will be made for malignancies diagnosed or relapsed more than 2, but less than 3, years ago only if a pre-
operative biopsy of the lung lesion has confirmed a diagnosis of NSCLC. 
_Psychological condition that would preclude informed consent 
_Treatment with neo-adjuvant therapy for current lung malignancy deemed necessary 
_Post-surgery stage IV 
_Known Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV) or syphilis infection. 
_Sufficient tissue, i.e. a minimum of two tumor regions, is unlikely to be obtained for the study based on pre-operative 
imaging 
 
Patient ineligibility following registration  
_There is insufficient tissue  
_The patient is unable to comply with protocol requirements  
_There is a change in histology from NSCLC following surgery, or NSCLC is not confirmed during or after surgery.  
_Change in staging to IIIC or IV following surgery  
_The operative criteria are not met (e.g. incomplete resection with macroscopic residual tumors (R2)). Patients with 
microscopic residual tumors (R1) are eligible and should remain in the study  
_Adjuvant therapy other than platinum-based chemotherapy and/or radiotherapy is administered. 

Recruitment When patients are initially diagnosed with stage I-III lung cancer and then referred for surgical resection, a research nurse 
identifies them on a clinic/operating list. The patient has an initial eligibility assessment and then provided with written 
information about the TRACERx study and he/she can ask the research nurse any questions. 
 
Patients have to agree to provide serial blood samples whenever they attend clinic for routine blood sampling, so this 
represents the only main potential self-selecting bias (i.e. only patients willing to do this would participate). However, it is 
unclear how this would affect the biomarker analyses. Also, the gender and ethnicity characteristics are in line with patients 
seen in routine practice. 
 
Inclusion and exclusion criteria are summarised above. 
Informed consent for entry into the TRACERx study was mandatory and obtained from every patient.

Ethics oversight The study was approved by the NRES Committee London with the following details: 
Study title: TRAcking non small cell lung Cancer Evolution through therapy (Rx) 
REC reference: 13/LO/1546 
Protocol number: UCL/12/0279 
IRAS project ID: 138871

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration TRACERx Lung https://clinicaltrials.gov/ct2/show/NCT01888601, approved by an independent Research Ethics Committee, 13/
LO/1546

Study protocol https://clinicaltrials.gov/ct2/show/NCT01888601

Data collection Clinical and pathological data is collected from patients during study follow up - this period is a minimum of five years. Data collection 
is overseen by the sponsor of the study (Cancer Research UK & UCL Cancer Trials Centre) and takes place in hospitals across the 
United Kingdom. A centralised database called MACRO is used for this purpose. Recruitment started in 2014 across 6 sites (London, 
Leicester, Manchester, Aberdeen, Birmingham, and Cardiff) in the United Kingdom. 

Outcomes The main clinical outcomes are: 
Disease-free survival (DFS) – measured from the time of study registration to date of first lung recurrence or death from any cause. 
Patients who do not have these events are censored at the date last known to be alive (including patients who developed a new 
primary tumour that has been shown biologically to not be linked to the initial primary lung tumour). 
Overall survival - measured from the time of study registration to date of death from any cause.
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