Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ladderphane copolymers for high-temperature capacitive energy storage

Abstract

For capacitive energy storage at elevated temperatures1,2,3,4, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm−3 with a charge–discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π–π stacking interactions5,6, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m−1 K−1. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structure and self-assembled morphology.
Fig. 2: Electrical conduction and dielectric breakdown.
Fig. 3: Capacitive energy storage performance.
Fig. 4: Internal temperature, cyclic stability and self-healing.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on request.

References

  1. Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Tan, D., Zhang, L., Chen, Q. & Irwin, P. High-temperature capacitor polymer films. J. Electron. Mater. 43, 4569–4575 (2014).

    Article  CAS  ADS  Google Scholar 

  3. Li, H. et al. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369–6400 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, C. et al. Flexible temperature-invariant polymer dielectrics with large bandgap. Adv. Mater. 32, 2000499 (2020).

    Article  CAS  Google Scholar 

  5. Chou, C. M. et al. Polymeric ladderphanes. J. Am. Chem. Soc. 131, 12579–12585 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Luh, T. Y. Ladderphanes: a new type of duplex polymers. Acc. Chem. Res. 46, 378–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Sarjeant, W. J., Clelland, I. W. & Price, R. A. Capacitive components for power electronics. Proc. IEEE 89, 846–855 (2001).

    Article  CAS  Google Scholar 

  8. Ho, J. S. & Greenbaum, S. G. Polymer capacitor dielectrics for high temperature applications. ACS Appl. Mater. Interfaces 10, 29189–29218 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Chu, B. et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Wang, G. et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121, 6124–6172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, T. et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 6, eaax6622 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Zhang, Z., Wang, D. H., Litt, M. H., Tan, L. S. & Zhu, L. High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angew. Chem. Int. Edn 57, 1528–1531 (2018).

    Article  CAS  Google Scholar 

  13. Rabuffi, M. & Picci, G. Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 30, 1939–1942 (2002).

    Article  CAS  ADS  Google Scholar 

  14. Ho, J. & Jow, T. R. High field conduction in biaxially oriented polypropylene at elevated temperature. IEEE Trans. Dielectr. Electr. Insul. 19, 990–995 (2012).

    Article  CAS  Google Scholar 

  15. Li, Q. et al. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018).

    Article  CAS  Google Scholar 

  16. Yuan, C. et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Henry, A. Thermal transport in polymers. Annu. Rev. Heat Transf. 17, 485–520 (2014).

    Article  Google Scholar 

  19. Li, Z. et al. Solution-shearing of dielectric polymer with high thermal conductivity and electric insulation. Sci. Adv. 7, eabi7410 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Chen, J., Huang, X., Sun, B. & Jiang, P. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13, 337–345 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Evans, A. M. et al. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat. Mater. 20, 1142–1148 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Tomko, J. A. et al. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat. Nanotechnol. 13, 959–964 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J. et al. Rational design and modification of high-k bis(double-stranded) block copolymer for high electrical energy storage capability. Chem. Mater. 30, 1102–1112 (2018).

    Article  CAS  Google Scholar 

  24. Chen, C. H., Lai, G. Q. & Luh, T. Y. Aggregation-enhanced excimer emission of tetraarylethene linkers in ladderphanes. Macromolecules 54, 2134–2142 (2021).

    Article  CAS  ADS  Google Scholar 

  25. McKenna, K. P. & Shluger, A. L. Electron-trapping polycrystalline materials with negative electron affinity. Nat. Mater. 7, 859–862 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Meunier, M., Quirke, N. & Aslanides, A. Molecular modeling of electron traps in polymer insulators: chemical defects and impurities. J. Chem. Phys. 115, 2876–2881 (2001).

    Article  CAS  ADS  Google Scholar 

  27. Luo, S. et al. Elaborately fabricated polytetrafluoroethylene film exhibiting superior high-temperature energy storage performance. Appl. Mater. Today 21, 100882 (2020).

    Article  Google Scholar 

  28. Cheng, S. et al. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 42, 445–453 (2021).

    Article  Google Scholar 

  29. Kim, G. H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Heywang, H. Physical and chemical processes in self-healing plastic capacitors. Colloid. Polym. Sci. 254, 139–147 (1976).

    Article  CAS  Google Scholar 

  31. Zhu, L. et al. Cis, isotactic selective ROMP of norbornenes fused with N-arylpyrrolidines. Double stranded polynorbornene-based ladderphanes with Z-double bonds. Macromolecules 45, 8166–8171 (2012).

    Article  CAS  ADS  Google Scholar 

  32. Chen, J. et al. Blocking-cyclization technique for precise synthesis of cyclic polymers with regulated topology. Nat. Commun. 9, 5310 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Frisch, M. J. et al. Gaussian 09 (Gaussian, Inc., 2013).

  34. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  ADS  Google Scholar 

  35. Becke, A. D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992).

    Article  CAS  ADS  Google Scholar 

  36. Gross, E. K. U. & Kohn, W. Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett. 55, 2850–2852 (1985).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    Article  CAS  ADS  Google Scholar 

  38. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  39. Zhang, M. et al. Polymer dielectrics with simultaneous ultrahigh energy density and low loss. Adv. Mater. 33, 2008198 (2021).

    Article  CAS  Google Scholar 

  40. Ieda, M. Dielectric breakdown process of polymers. IEEE Trans. Electr. Insul. EI-15, 206–224 (1980).

    Article  CAS  Google Scholar 

  41. Deshmukh, A. A. et al. Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification. Energy Environ. Sci. 15, 1307–1314 (2022).

    Article  CAS  Google Scholar 

  42. Li, H. et al. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge–discharge efficiency. Energy Environ. Sci. 13, 1279–1286 (2020).

    Article  CAS  Google Scholar 

  43. Zhang, Z. et al. High-κ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics. Mater. Horiz. 7, 592–597 (2020).

    Article  CAS  Google Scholar 

  44. Alamri, A. et al. Improving the rotational freedom of polyetherimide: enhancement of the dielectric properties of a commodity high-temperature polymer using a structural defect. Chem. Mater. 34, 6553–6558 (2022).

    Article  CAS  Google Scholar 

  45. Zhang, Q. et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 4, 2448–2459 (2021).

    Article  CAS  Google Scholar 

  46. Dong, J. et al. A facile in situ surface‐functionalization approach to scalable laminated high‐temperature polymer dielectrics with ultrahigh capacitive performance. Adv. Funct. Mater. 31, 2102644 (2021).

    Article  CAS  Google Scholar 

  47. Li, Q. et al. Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures. Proc. Natl Acad. Sci. USA 113, 9995–10000 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Azizi, A. et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high‐temperature dielectric materials. Adv. Mater. 29, 1701864 (2017).

    Article  Google Scholar 

  49. Wang, P. et al. Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv. Mater. 33, 2103338 (2021).

    Article  CAS  Google Scholar 

  50. Xu, W. et al. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 15, e1901582 (2019).

    Article  PubMed  Google Scholar 

  51. Dai, Z. et al. Scalable polyimide-poly(amic acid) copolymer based nanocomposites for high-temperature capacitive energy storage. Adv. Mater. 34, 2101976 (2022).

    Article  CAS  Google Scholar 

  52. Ai, D. et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high‐temperature capacitive energy storage. Adv. Energy Mater. 10, 1903881 (2020).

    Article  CAS  Google Scholar 

  53. Kammermaier, J. Chemical processes during electrical breakdown in an organic dielectric with evaporated thin electrodes. IEEE Trans. Electr. Insul. EI-22, 145–149 (1987).

    Article  CAS  Google Scholar 

  54. Tan, D. Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 30, 201808567 (2019).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51877132, 52003153, U19A20105, 51522703, 52103303), the Program of Shanghai Academic Research Leader (21XD1401600) and the State Key Laboratory of Electrical Insulation and Power Equipment (EIPE20203, EIPE21206). X.Q. thanks the support by the National Key R&D Program of China (2020YFA0711500), the Natural Science Foundation of Shanghai (22JC1401800) and the State Key Laboratory of Mechanical System and Vibration (MSVZD202211). J.C. thanks B. Zhu and R. Wang for their technical assistance with the Raman spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

X.H. and J.C. conceived the idea and designed the research. J.C. carried out the material synthesis and characterization. J.C. and Y.Zhou performed the analysis of the dielectric and capacitive energy storage properties. J.C., D.H. and X.Q. conducted the cyclic charge–discharge measurements. J.C., Y.Zhou, Y.Zhu, Q.K. and P.L. carried out the TEM measurements. C.Y. conducted the DFT calculations. A.W. and H.B. performed the steady-state temperature distribution simulation. J.C., Y.Zhou, K.S., P.J., S.L., G.W., X.H., X.Z. and Q.W. analysed the data. J.C., Y.Zhou, X.H. and Q.W. prepared the manuscript, with input from all authors.

Corresponding authors

Correspondence to Xingyi Huang or Qing Wang.

Ethics declarations

Competing interests

X.H. and J.C. are inventors on a provisional patent application related to the described work. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Qiang Fang, Meiran Xie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Synthesis of the monomers, homopolymers and copolymers.

a, SNI, SBNP and TNI monomers. b, PSNI, PTNI and PSBNP homopolymers. c, PSBNP-co-PTNI copolymers.

Extended Data Fig. 2 Schematic of the polymerization and self-assembly process of PSBNP-co-PTNI copolymer.

The interchain π–π stacking interaction induces the formation of the highly ordered array.

Extended Data Fig. 3 XRD of PSBNP-co-PTNI0.02, PSBNP and PSNI.

a, XRD pattern as a function of diffraction angle. b, XRD pattern as a function of d-spacing.

Extended Data Fig. 4 DFT simulations of the electron transition energy under applied electric fields.

a, SBNP-SBNP-SBNP unit. b, SBNP-TNI-SBNP unit.

Extended Data Fig. 5 Schematic of the electron trap energy level in PSBNP-co-PTNI copolymer at applied electric fields.

Owing to the lower transition energy of SBNP-TNI-SBNP compared with SBNP-SBNP-SBNP, electrons are trapped in SBNP-TNI-SBNP units, thereby inhibiting the leakage current. Furthermore, as the applied electric field increases, the transition energy difference between SBNP-TNI-SBNP and SBNP-SBNP-SBNP increases, suggestive of a further increase in the electron trap energy level.

Extended Data Fig. 6 Dielectric properties of PSBNP-co-PTNI0.02 and other capacitor-grade polymer films.

a, Temperature-dependent dielectric constant. b, Temperature-dependent dissipation factor.

Extended Data Fig. 7 Comparison of the discharged energy density at ≥90% charge–discharge efficiency of PSBNP-co-PTNI0.02 and other high-temperature dielectric polymers and composites.

a, At 150 °C. b, At 200 °C. References41,42,43,44,45,46,47,48,49,50,51,52.

Extended Data Fig. 8 Thermal conductivity and structure of PSBNP and PSBNP-co-PTNI copolymers.

a, Thermal conductivity of PSBNP and PSBNP-co-PTNI copolymers with different PTNI contents measured at 30 °C. b, Thermal conductivity of PSBNP-co-PTNI0.02 measured at different temperatures. c, TEM image of PSBNP-co-PTNI0.04. d, TEM image of PSBNP-co-PTNI0.06. e, Fluorescence excitation spectra of PSBNP and PSBNP-co-PTNI. f, Fluorescence emission spectra of PSBNP and PSBNP-co-PTNI.

Extended Data Fig. 9 Schematic of the self-healing process in metallized polymer dielectric films.

The surge current induced by electrical breakdown can damage the polymer film by the intensive Joule heat, which can evaporate and oxidize the metal electrodes on the surface of films. When the freshly exposed area between the upper and lower electrodes is large enough to insulate the carbonized perforations around the breakdown site53, the capacitor is still able to operate continuously at a full-rated voltage, merely at the expense of a small reduction in capacitance. This smart function of metallized films to clear a breakdown site with the energy released in the dielectric breakdown process is the so-called self-healing, which largely determines the service reliability of metallized dielectric polymer film capacitors54.

Extended Data Fig. 10 Electrical breakdown of PEI film.

a, Schematic and SEM image of PEI after electrical breakdown. b, EDS analysis of the distribution of Al and C elements on the surface of PEI film after electrical breakdown.

Supplementary information

Supplementary Information

This file contains Supplementary sections 1–9, including Supplementary Figs. S1–S63, Supplementary Tables S1 and S2 and Supplementary References. See contents page for details.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhou, Y., Huang, X. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62–66 (2023). https://doi.org/10.1038/s41586-022-05671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05671-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing