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Influenza vaccination reveals sex dimorphic 
imprints of prior mild COVID-19

  
Rachel Sparks1,14, William W. Lau1,14, Can Liu1,2,14, Kyu Lee Han3, Kiera L. Vrindten1, 
Guangping Sun1,4, Milann Cox1, Sarah F. Andrews5, Neha Bansal1, Laura E. Failla1, 
Jody Manischewitz6, Gabrielle Grubbs6, Lisa R. King6, Galina Koroleva3, 
Stephanie Leimenstoll7, LaQuita Snow7,11, OP11 Clinical Staff*, Jinguo Chen3, Juanjie Tang6, 
Amrita Mukherjee3, Brian A. Sellers3, Richard Apps3, Adrian B. McDermott5, 
Andrew J. Martins1, Evan M. Bloch8, Hana Golding6, Surender Khurana6 & John S. Tsang1,3,12,13 ✉

Acute viral infections can have durable functional impacts on the immune system 
long after recovery, but how they affect homeostatic immune states and responses to 
future perturbations remain poorly understood1–4. Here we use systems immunology 
approaches, including longitudinal multimodal single-cell analysis (surface proteins, 
transcriptome and V(D)J sequences) to comparatively assess baseline immune 
statuses and responses to influenza vaccination in 33 healthy individuals after 
recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 
40 age- and sex-matched control individuals who had never had COVID-19. At the 
baseline and independent of time after COVID-19, recoverees had elevated T cell 
activation signatures and lower expression of innate immune genes including Toll-like 
receptors in monocytes. Male individuals who had recovered from COVID-19 had 
coordinately higher innate, influenza-specific plasmablast, and antibody responses 
after vaccination compared with healthy male individuals and female individuals who 
had recovered from COVID-19, in part because male recoverees had monocytes with 
higher IL-15 responses early after vaccination coupled with elevated prevaccination 
frequencies of ‘virtual memory’-like CD8+ T cells poised to produce more IFNγ after  
IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in 
monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore 
moving towards the prevaccination baseline of the healthy control individuals.  
By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in 
the control individuals. Our study reveals sex-dimorphic effects of previous mild 
COVID-19 and suggests that viral infections in humans can establish new immunological 
set-points that affect future immune responses in an antigen-agnostic manner.

Examples of long-term immunological effects of both chronic and 
resolved viral infections have been described; for example, after recov-
ery from natural acute measles infection, there is marked reduction in 
humoral immunity and increased susceptibility to non-measles infec-
tions for months to years1. Live vaccines such as Bacillus Calmette– 
Guérin (BCG) and measles can impart ‘training’ effects on innate 
immune cells such as monocytes and their long-lived progenitors, which 
could underlie the pathogen non-specific effects of BCG in reducing 
all-cause mortality in infants5,6. COVID-19 can result in persistent clini-
cal sequelae for months after infection, both in hospitalized and mild 
cases7. Although the spectrum of clinical manifestations of post-acute 
COVID-19 syndrome (also known as long COVID) is expanding, our 

understanding of the molecular and cellular immunological changes 
after recovery from SARS-CoV-2 infection is lacking. A better under-
standing of the functional immune imprints of mild COVID-19 might 
have particularly important public health implications given that this 
population constitutes most COVID-19 recoverees. More broadly, the 
fundamental issues of whether and how homeostatic baseline immune 
states may have been altered by viral infections, and whether any such 
alterations may affect responses to future challenges (such as infec-
tion or vaccination, with shared or distinct antigens) remain poorly 
understood.

Here we took advantage of a unique opportunity and epidemiological 
environment during the early fall of 2020, months after the first wave 
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of COVID-19, when those with mild COVID-19 had recovered clinically, 
but before they could be reinfected by SARS-CoV-2 or receive COVID-19  
vaccination (which was not available until late 2020); moreover, the 
prevalence of other respiratory infections was extremely low during 
this time8. We enrolled and comparatively assessed healthy individuals 
who (1) recovered from non-hospitalized, mild cases of COVID-19 and 
(2) age- and sex-matched controls who never had COVID-19, all from the 
same geographical region. In addition to assessing the post-COVID-19 
immunological statuses, we used influenza vaccination to evaluate 
the immune responses of these two populations at the serological, 
transcriptional, proteomic and cellular levels. These analyses reveal 
basic principles regarding what happens to the immune system after 
two well-defined immunological encounters in humans: mild COVID-19  
as a natural infectious perturbation and influenza vaccination as a 
controlled and timed intervention with non-SARS-CoV-2 antigens.

Individuals with previous symptomatic SARS-CoV-2 infection (n = 31; 
diagnosed by nasal PCR test) or asymptomatic infection (n = 2; diag-
nosed by antibody test; Methods), and age- and sex-matched healthy 
control individuals (n = 40) with no history of COVID-19 (and negative 
by antibody test) were recruited from the community during the fall of 
2020 and followed longitudinally (Fig. 1a and Methods). The average 
time after COVID-19 diagnosis was 151 days for recoverees (Extended 
Data Fig. 1a and Extended Data Table 1) who had clinically mild illness 
during acute disease that did not require hospitalization (self-reported 
average length of illness, 16.5 days) and no major medical comorbidi-
ties, including infection at the time of enrolment, obesity (body mass 
index > 30) or autoimmune disease (Fig. 1b). None of the participants 
was enrolled in COVID-19 vaccine trials, nor did they receive recent 
vaccination of any kind before administration of the seasonal influ-
enza vaccine in this study. A small number of individuals continued to 
have mild self-reported sequelae from their illness at study enrolment  
(3 males and 8 females), the most common being loss of taste and/or 
smell (Extended Data Table 1). Female participants were more likely to 
have sequelae (Fisher’s exact test, P = 0.09 for all participants, P = 0.03 
for those aged <65 years), at a rate similar to that reported in other 
large studies9.

Baseline of mild COVID-19 recoverees
Longitudinal multi-omics profiling was performed using whole-blood 
transcriptomics (WBT) analysis, single-cell analysis of 138 surface 
proteins, transcriptome and V(D)J sequence analysis using cellular 
indexing of transcriptomes and epitopes by sequencing (CITE-seq)10, 
serum protein profiling, antibody characterization, peripheral blood 
immune cell frequencies with haematological parameters from a com-
plete blood count (CBC), as well as clinical and research flow cytom-
etry covering major immune cell lineages and subsets (Fig. 1b and 
Supplementary Fig. 1). We first assessed the baseline prevaccination 
differences between the recoverees and the age- and sex-matched 
healthy control individuals. As sex-dependent immune responses to 
COVID-19 have been reported11, our analyses explicitly searched for 
sex-dependent signatures. Immunological resolution after infection 
may unfold over time even after symptoms subside, and there were 
indeed parameters that showed evidence of continued change in our 
cohort—defined as those that were correlated with time since COVID-19  
diagnosis (TSD; Methods and Supplementary Table 1), including, as 
expected, SARS-CoV-2-neutralizing antibody titres12 (Extended Data 
Fig. 1b). However, we were primarily interested in uncovering persistent, 
TSD-independent post-COVID-19 immune imprints, and we therefore 
focused on temporally stable immune states associated with previous 
mild COVID-19 but not correlated with TSD. Thus, we evaluated the 
differences between (1) female participants who had recovered from 
COVID-19 (COVR-F) versus healthy control female participants (HC-F); 
(2) male participants who had recovered from COVID-19 (COVR-M)  
versus healthy control male participants (HC-M); and (3) COVR-M versus 

COVR-F after accounting for male–female differences in healthy control 
individuals (hereafter, sex differences; Supplementary Table 2). The 
frequencies of myeloid cells such as monocytes and conventional/
myeloid dendritic cells (cDCs) tended to be higher in the COVR-M group 
compared with the HC-M and/or COVR-F groups (Fig. 1c,d and Extended 
Data Fig. 1c,d), consistent with reports of myeloid cell disruption in 
COVID-19, particularly in severe, acute disease13. Here, a male-specific 
elevation in monocyte frequencies was detected even months after 
recovery from mild disease.

WBT data also revealed sex-dependent signatures associated with 
previous mild COVID-19 (Extended Data Fig. 1e; for example, the 
monocyte-related M11.0 and M4.0 from the blood transcriptional 
module (BTM) collection), including metabolic signatures such as 
oxidative phosphorylation (Supplementary Table 3). WBT differences 
can be driven by both cell composition and cell-intrinsic transcriptional 
changes. Indeed, the innate immune, metabolic and T cell-related sig-
natures are driven, at least in part, by the increased circulating mono-
cyte frequencies and correspondingly lower T cell frequencies in the 
COVR-M group (Fig. 1d and Extended Data Fig. 1f) because these tran-
scriptional enrichment signals became statistically insignificant when 
monocyte frequencies were taken into account (data not shown).

To assess transcriptional alterations independent of cell frequen-
cies, we used CITE-seq to examine the cell-type-specific contributions 
underlying the WBT signatures seen above. We clustered single cells 
and annotated the resulting clusters using surface protein expres-
sion profiles (Fig. 1e and  Methods). Cell-type-specific transcriptional 
analysis pointed to both sex-dependent and -independent differences 
between participants who had recovered from COVID-19 and healthy 
control individuals (Supplementary Table 4). Among the enriched gene 
sets from the WBT analysis above (Extended Data Fig. 1e), but now free 
of cell-frequency confounding, the BTM M11.0/4.0 gene sets exhibit 
depressed expression in both classical and non-classical monocytes 
in participants who had recovered from COVID-19 relative to healthy 
control individuals in both sexes, whereas the converse is true for 
genes in the T cell activation signature (BTM M7.3) in both CD8+ cen-
tral memory and effector memory (EM) T cells (Fig. 1f–i, Extended Data 
Fig. 1g and Supplementary Table 5). The T cell activation signature in 
CD8+ EMs was particularly pronounced in the COVR-M group (Fig. 1i). 
The genes driving the monocyte repression enrichment (that is, the 
leading-edge genes (LEGs)) include numerous surface receptors, such 
as those encoding pattern recognition receptors (TLR2, TLR4 and TLR8), 
the peptidoglycan-recognizing receptor (NOD2), the high-affinity IgE 
FC receptor (FCER1G) and C-type lectin receptor (CLEC4E) (Fig. 1f,g). 
This innate immune receptor (IIR) signature in the monocytes, as well 
as the T cell activation signature, are predominantly not associated 
with TSD in both male and female individuals (Extended Data Fig. 1h).

The T cell activation signature probably emerged during and per-
sisted after acute COVID-19 (ref. 14), but this was less clear for the IIR 
signature. We therefore examined whether this signature could be 
linked to gene expression changes seen in acute COVID-19. Using a 
previously published CITE-seq dataset that we generated from an older, 
male-biased cohort of individuals from Italy with severe COVID-19 who 
were hospitalized15, we noted that, within the classical monocytes, the 
average expression of the IIR LEGs from above was significantly lower 
in patients with acute COVID-19 than in healthy control individuals, 
and was negatively associated with disease severity (Extended Data 
Fig. 1i). Thus, this depressed IIR signature could have originated from 
and stably persisted since the acute response to the infection. Previ-
ous studies have reported several (potentially overlapping) types of 
altered monocytes in acute COVID-19, including those with lower anti-
gen presentation, depressed NF-κB/inflammation or myeloid-derived 
suppressor-cell-like phenotypes13,16,17. However, none of these monocyte 
phenotypes was significantly different in the monocytes of participants 
who had recovered from COVID-19 compared with healthy control 
individuals in our cohort at the baseline before influenza vaccination 
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Fig. 1 | Study overview and baseline differences. a, Schematic of the study 
concept and design. b, Data generated in the study. Both participants who had 
recovered from COVID-19 and healthy control individuals were enrolled at seven 
days before vaccination (D−7) and were sampled at the indicated timepoints 
relative to the day of influenza vaccination. The number of participants 
assayed for each data type is indicated. CBC with diff, complete blood count 
with differential; SPR, surface plasmon resonance; TBNK, T and B lymphocyte 
and natural killer cell phenotyping. Where indicated by an asterisk (*), two 
asymptomatic individuals (based on antibodies) were included. c, Comparison 
of the proportion of CD11c+ DCs (as the fraction of live cells from flow cytometry) 
between the COVR-F (n = 15), HC-F (n = 16), COVR-M (n = 12) and HC-M (n = 11) 
groups at D0. The error bars indicate the s.e.m. of each group. d, Similar to c, 
but for monocytes (from CBC; y axis) between the COVR-F (n = 17), COVR-M 
(n = 16), HC-F (n = 21) and HC-M (n = 19) groups at the baseline (average of D−7 
and D0). e, Uniform manifold approximation and projection (UMAP) analysis  
of the CITE-seq single-cell data showing clustering of cells on the basis of the 
expression of cell-surface protein markers (632,100 single cells from all 
timepoints with CITE-seq data: days 0, 1, 28). The coloured and boxed cell 
clusters are further examined in f–i. CD4-platelet-bind: CD4+ T cells with platelet 
markers; CM, central memory; ILC, innate lymphoid cells; Mono-T-dblt, 
monocytes and T cell doublets; TFH, T follicular helper cells; Treg, regulatory 

T cells; TRM, tissue resident memory T cells; HSPC, haematopoietic stem and 
progenitor cell; Neut, neutrophils; pDC, plasmacytoid dendritic cells; cDC, 
conventional dendritic cells; MAIT: mucosal-associated invariant T cells.  
f, Comparison of the innate immune receptor (IIR) signature scores (Methods) 
between the HC-F (n = 8) and COVR-F (n = 12) (left box) and HC-M (n = 8) and 
COVR-M (n = 12) (right box) groups using the CITE-seq classical monocyte 
pseudobulk expression data at D0 (left). Each point represents a participant. 
Right, the average gene expression of selected genes, including those in the 
Gene Ontology (GO) pattern recognition receptor activity and immune 
receptor activity gene sets. g, Similar to f, but showing the non-classical 
monocyte population at D0. h, Similar to f, but showing the T cell activation 
(BTM-M7.3) module scores of CD8+ CM T cells at D0. The average gene expression 
of the selected leading-edge genes shared by male and female from the gene  
set enrichment analysis (GSEA) is shown (Methods). i, Similar to h, but showing 
the CD8+ EM T cell population at D0. All of the box plots show the median 
(centre line), first and third quantiles (box limits), and max 1.5 × interquartile 
range (IQR) from box limits in each direction (upper and lower whiskers). Unless 
otherwise noted, statistical significance of difference between groups was 
determined using two-tailed Wilcoxon rank-sum tests. Significant (P < 0.05) 
differences are highlighted with a red asterisk (*). The diagrams in a and b were 
created using BioRender.
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(Supplementary Fig. 2), suggesting that our depressed monocyte gene 
signature involving pattern recognition and IIR genes is distinct from 
those identified earlier in acute disease. Together, our findings suggest 
that, even mild, non-hospitalized SARS-CoV-2 infections may estab-
lish new, temporally stable, sex-dependent immunological imprints  
detectable months after clinical recovery.

To assess whether other natural respiratory viral infections may 
leave similar unresolved sex-specific immune states, we used a pub-
lished WBT dataset assessing two independent cohorts of patients with 
confirmed community influenza A (predominantly pandemic H1N1) 
infection during two different seasons18 (2009–2010 and 2010–2011; 
Extended Data Fig. 2a). By comparing the WBT profiles before and after 
each season (that is, before infection and after recovery), we found  
robust post-infection changes consistent between these two independ-
ent cohorts in male individuals only (the changes in female individuals 
were not consistent between these two cohorts/seasons; Extended 
Data Fig. 2b and Supplementary Table 6). The genes with increased 
expression after recovery in male individuals were also enriched for 
genes that were more highly expressed in the COVR-M group com-
pared with the COVR-F group in our cohort (after accounting for the 
expected sex differences present in healthy participants; Extended 
Data Fig. 2c). Moreover, the genes with lower expression after recovery 
from influenza infection in males were enriched for the depressed IIR 
signature above, including TLR5 and VCAN (Fig. 1f,g and Supplemen-
tary Table 6). These observations provide independent support that 
exposure to a respiratory viral pathogen can lead to persistent immu-
nological imprints that are detectable in the blood, even in healthy 
individuals with mild disease. However, different viral infections, for 
example, those with distinct tropisms and inflammatory presentations, 
are also likely to leave pathogen-dependent imprints with distinct 
genes and processes; for example, the overlapping signals between 
post-influenza and post-mild COVID-19 are only a small subset of the 
sex-specific post-COVID-19 changes that we detected.

Contrasting influenza vaccination responses
We next examined whether previous COVID-19 may impact an individu-
al’s response to non-SARS-CoV-2 immunological challenges. The study 
participants received the seasonal influenza quadrivalent vaccine and 
were followed longitudinally for up to 100 days, including day 1 (D1), 
D7 and D28, to assess the vaccine response at the serological, molecu-
lar and cellular levels (Figs. 1a,b and 2a). This vaccine was selected in 
part due to its public health importance—the 2020–2021 influenza 
season was approaching at the start of our study and it was not clear 
whether previous COVID-19 infection would affect influenza vaccine 
responses. Moreover, the responses to seasonal influenza vaccination 
have been well characterized in healthy adults, including early innate/
inflammatory and interferon (IFN) responses on D1 after vaccination 
and a strong but transient plasmablast peak around D7 culminating 
in the generation of influenza-specific antibodies19,20. Thus, influenza 
vaccination provides an excellent perturbation to probe the functional 
impacts of previous mild SARS-CoV-2 infection.

WBT, peripheral immune cell frequency, CITE-seq, influenza-specific 
B cell and antibody titre analyses (assessing responses on D1, D7 and 
D28 relative to D0) together pointed to coordinated, sex-specific innate 
and adaptive response differences to the vaccine, with the COVR-M 
group generally mounting a more potent response compared with 
their healthy counterparts and the COVR-F group (Fig. 2b–i, Extended 
Data Fig. 3a,c,d,g and Supplementary Tables 7 and 8). These include 
stronger innate/inflammatory and particularly IFN-related transcrip-
tional responses (Fig. 2b and Extended Data Fig. 3a), with correspond-
ing greater increases in circulating IFNγ protein levels in the serum 
by D1 in the COVR-M group (Fig. 2c). This systemic increase in IFNγ 
affects diverse cell types expressing the IFNγ signalling components 
as revealed by single-cell CITE-seq analysis—most peripheral immune 

cells had higher IFN response signatures on D1 in the COVR-M group 
compared with the other groups (based on comparing D1 versus D0; 
Fig. 2d; Fig. 2e shows CD4+ T cells, B cells, monocytes and cDCs as 
examples). Baseline, prevaccination IFN-related transcriptional activ-
ity was largely indistinguishable between the participants who had 
recovered from COVID-19 and healthy control individuals (Extended 
Data Fig. 3b). Furthermore, a more robust response was observed for 
antigen-presentation genes, including both MHC class I and II genes in 
classical monocytes of the COVR-M group (Fig. 2f). Thus, individuals in 
the COVR-M group mount a stronger circulating IFNγ and correspond-
ing transcriptional response in both innate and adaptive immune cells 
by D1 after influenza vaccination.

On the basis of previous studies of influenza vaccination in healthy 
adults and because heightened innate immune responses elicited by 
adjuvants are known to enhance adaptive responses21, we hypothe-
sized that the stronger early inflammatory responses in the COVR-M 
group would lead to a more robust humoral response. Indeed, we saw 
increased D7 B cell-related and plasma-cell-related transcriptional 
signatures in the COVR-M group (Extended Data Fig. 3a,c). Further-
more, the COVR-M group had a greater increase in influenza-specific 
plasmablasts compared with the HC-M group at D7 (Fig. 2g and Sup-
plementary Fig. 3). Consistent with previous observations in healthy 
adults22 and the hypothesis that the stronger early IFN response in the 
COVR-M group could help to induce a more robust B cell response, 
we detected a positive correlation between those two parameters, 
including the extent of influenza-specific plasmablast increases 
(Extended Data Fig. 3d). Consistently, the COVR-M group also had 
higher influenza-specific antibody responses compared with the HC-M 
group across all but one of the vaccine strains at D28 relative to the 
baseline (Fig. 2h,i, Methods, Extended Data Fig. 3e–g and Supplemen-
tary Table 8). Although influenza infection and vaccination history 
can influence influenza vaccine responses23, they alone are unlikely 
to explain the above findings because the COVID-19-recovered and 
healthy control groups had similar baseline antibody titres (Extended 
Data Fig. 3e,f), were age/sex-matched and were drawn from the same 
geographical region with very low influenza infection/transmission 
during the 2020–2021 season8. Moreover, the statistical model used 
to assess titre response differences incorporated prevaccination influ-
enza titres as a covariate (Methods). The extent of time-dependent 
immune resolution after COVID-19 was probably not a factor because 
TSD and D28 titre responses are not correlated in either sex (data not 
shown). Together, these observations demonstrate that previous mild 
infection by SARS-CoV-2 can result in sex-dependent, coordinated 
changes in both innate and adaptive responses to immunization with 
non-SARS-CoV-2 antigens months after acute disease.

Linking the baseline to innate response
Having established that previous mild COVID-19 is associated with 
new baseline immune states before influenza vaccination (Fig. 1 and 
Extended Data Fig. 1) and COVR-M-group-specific responses after vac-
cination (Fig. 2 and Extended Data Fig. 3), we next attempted to link 
the two and examined what baseline variables and cellular circuits may 
contribute to the heightened IFN-related responses in the COVR-M 
group that could subsequently contribute to their more robust humoral 
responses (Fig. 3a). Using flow cytometry (Supplementary Fig. 1) and 
CITE-seq data, we first used a multivariate linear model to identify 
baseline/prevaccination immune cells of which the frequency predicted 
the D1 IFN-related responses (D1 versus D0 in serum IFNγ protein levels 
and IFN transcriptional signature score). A subset of CD8+ T cells with 
an EM phenotype (CD45RA−CCR7−CD28+CD27−; early effector-like) 
was a top candidate in the COVR-M group and could therefore be a 
cellular source of IFNγ after vaccination (Extended Data Fig. 4a,b and 
Supplementary Fig. 4); the same relationship was not observed in the 
healthy control individuals (Supplementary Fig. 5a,b).
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Fig. 2 | Sex-specific response differences to influenza vaccination in 
individuals who had recovered from COVID-19 and matched control 
participants. a, Schematic of the sex-specific comparisons of vaccine-induced 
changes from the baseline at timepoints after vaccination (D1, D7 and D28) 
between participants who had recovered from COVID-19 and healthy control 
participants. Analyses were applied to participants aged under 65 years 
(because older subjects received a higher dose vaccine; Methods). b, The D1 
whole-blood IFNγ response transcriptional score (D1 − D0, computed using 
genes from the Hallmark IFNγ response gene set) for the COVR-F (n = 15), COVR-M 
(n = 14), HC-F (n = 16) and HC-M (n = 14) groups. c, The D1 response (D1 − D0) of 
serum IFNγ protein levels for the participants shown in b. d, Surface-protein- 
expression-based UMAP analysis (as in Fig. 1e) with cells coloured according to 
the D1 IFNγ response transcriptional score (D1 – D0; see b for the gene set used) 
within each cell subset for the HC-F (n = 8), COVR-F (n = 12) and HC-M (n = 8) and 
COVR-M (n = 12) groups. Darker colour indicates a greater difference between 
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e, Similar to b, but for the indicated cell subsets (computed using the CITE-seq 
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CD20lowCD21low cells;  Methods and Supplementary Fig. 3) frequencies at D0 
and D7, plotted separately for the COVR-F (n = 14), HC-F (n = 15), COVR-M (n = 11) 
and HC-M (n = 9) groups. The lines connect data points from the same participant 
at D0 and D7. h, Analysis of the D28/D0 microneutralization titre fold change 
(FC) for each of the four strains in the seasonal influenza vaccine (columns) in 
the COVR-F and HC-F groups. Each dot represents one individual. The orange 
and grey lines indicate the average fold change for the HC-F and COVR-F groups, 
respectively. Unadjusted P values were derived from generalized linear models 
accounting for age, race, influenza vaccination history and baseline influenza 
titres (Methods). i, Similar to h, but for the COVR-M and HC-M groups. All of the 
box plots show the median (centre line), first and third quantiles (box limits), 
and max 1.5 × IQR from box limits in each direction (upper and lower whiskers). 
Unadjusted P values are shown. Unless otherwise noted, the statistical 
significance of the difference between groups was determined using two-tailed 
Wilcoxon rank-sum tests. Significant (P < 0.05) differences are highlighted with 
a red asterisk (*). The diagram in a was created using BioRender.
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Fig. 3 | Contributors to increased day 1 IFNγ responses in male participants 
who had recovered from COVID-19. a, Schematic of the approach to assess 
why the COVR-M group had elevated early IFNγ responses. b, Comparison of 
the sample means of GPR56 surface expression in CD8+ EM T cells at D0 for the 
COVR-F (n = 12), HC-F (n = 8), COVR-M (n = 12) and HC-M (n = 8) groups. c, UMAP 
analysis of the D0 surface GPR56 protein expression on CD8+ EM cells from all 
40 participants with CITE-seq data. The UMAP was derived using the top 60 
variable surface proteins within the CD8+ EM cells (Methods). d, UMAP analysis 
as described in c, but showing the D0 gene-expression signature score computed 
using genes associated with CD29highCD8+ T cells identified earlier in an 
independent study25 (Methods) (top). Density plot showing the distribution of 
the signature score above in the GPR56+CD8+ and GPR56−CD8+ EM cells (bottom). 
The dashed line indicates the median of the distribution. The statistical 
significance of the signature-score difference between the two cell subsets was 
determined at the single-cell level. e, Comparison of the proportion of GRP56+ 
cells (as fractions of CD8+ EM cells in the CITE-seq data) between the same 
participants as in b at D0. The error bars indicate the s.e.m. of each group.  
f, Similar to d, but showing the bystander T cell signature score at the baseline 
(D0) (signature genes originated from refs. 26,27; Methods). g, Comparison of 

the average expression of the indicated memory cell-surface protein markers 
for the GPR56+CD8+ versus GPR56−CD8+ EM cells at D0 for the same participants 
as in b. Each point represents a participant. h, Representative flow cytometry 
contour plots of IFNγ+ and TNF+ gates within GPR56+CD45RA+CD8+ T cells after 
IL-15 stimulation in vitro in the indicated groups. The number shown for each 
gate denotes the percentage of parent cells (that is, GPR56+CD45RA+CD8+ T cells). 
i, The frequencies of IFNγ+GPR56+CD45RA+ VM-like CD8+ T cells (left; as fractions 
of CD8+ T cells) and IFNγ+KIR/NKG2A+CD45RA+CD8+ T cells (right; as fractions 
of CD8+ T cells) in the same participants as in b after IL-15 stimulation in vitro.  
j, Comparison of D0 and D1 pseudobulk IL15 mRNA expression (y axis) in classical 
monocytes for the same participants as in b. Significance was determined 
using a linear model accounting for age, race and influenza vaccination history 
(Methods). All of the box plots show the median (centre line), first and third 
quantiles (box limits), and max 1.5 × IQR from box limits in each direction 
(upper and lower whiskers). Unless otherwise noted, the statistical 
significance of difference between groups was determined using two-tailed 
Wilcoxon rank-sum tests. Significant (P < 0.05) differences are highlighted 
with a red asterisk (*). The diagram in a was created using BioRender.



758 | Nature | Vol 614 | 23 February 2023

Article
We next focused on all of the CD8+ T cells from clusters with an EM 

phenotype (CD8+ EM cells) in the CITE-seq data based on both surface 
protein markers and mRNA expression (Methods; the top cluster pro-
tein markers are shown in Supplementary Table 10). We searched for 
differences in average surface marker expression of cells in these CD8+ 
EM clusters across the four participant groups and found that GPR56 
was the top differentially expressed marker with increased expression 
in the COVR-M group relative to the HC-M and COVR-F groups (Fig. 3b,c 
and Supplementary Table 10). This was intriguing because CD4+ EM 
and TEMRA (terminally differentiated EM cells re-expressing CD45RA) 
T cells marked by surface GPR56 expression at the baseline (before 
stimulation) have been reported to produce increased amounts of IFNγ 
after stimulation with PMA and ionomycin (PMAI)24. Consistent with 
this, GPR56+CD8+ EM cells in our data are enriched for a transcriptional 
signature (derived in an independent study25) that marks CD8+ EM cells 
poised to secrete higher levels of IFNγ after PMAI stimulation (Fig. 3d). 
Thus, GPR56+CD8+ EM cells could be a source of elevated IFNγ pro-
duction in the COVR-M group after influenza vaccination. Indeed, the 
frequency of these cells was elevated in the COVR-M group relative to in 
the HC-M and COVR-F groups before vaccination (Fig. 3e), but was not 
correlated with the TSD and was therefore temporally stable (assessed 
by Spearman’s correlation: P = 0.18 (COVR-F) and P = 0.51 (COVR-M)). 
Moreover, IFNG transcripts increased significantly in these cells on 
D1 after influenza vaccination in the COVR-M group (Extended Data 
Fig. 4c,d). These data suggest that previous COVID-19 increases the 
frequency of GPR56+CD8+ EM cells in male individuals and these cells 
are poised to make more IFNγ early after influenza vaccination, which 
together contributed to the higher IFNγ production in the COVR-M 
group; consistent with this hypothesis, this was not observed in GPR56− 
cells (Extended Data Fig. 4d and Supplementary Fig. 5c).

Mild, non-hospitalized COVID-19 has been reported to induce 
bystander activation (non-SARS-CoV-2 specific) of CD8+ T cells26. Nota-
bly, the GPR56+ cells are also enriched for a transcriptional signature 
associated with bystander T cell activation26,27 (Fig. 3f). Moreover, 
GPR56+CD8+ EM cell frequency is positively correlated with the T cell 
activation signature score, which was elevated at the baseline in the 
COVR-M group as shown above (Fig. 1i and Extended Data Fig. 4e). This 
suggests that some of these cells may have expanded in a bystander 
manner during the acute phase of the infection. This prompted us to 
consider whether these GPR56+ cells are similar to bystander-activated 
virtual memory (VM) CD8+ T cells, a feature of which is their ability to 
be activated rapidly by inflammatory cytokines alone (for example, 
IL-12, IL-18 and IL-15) to produce IFNγ without T cell receptor (TCR) 
stimulation28,29. VM CD8+ T cells expand through cytokine stimula-
tion, including IL-15 induced by viral infection (IL-15 concentrations 
are known to be elevated in patients with acute COVID-19 and are 
correlated with disease severity30), and are characterized by a differ-
entiated EM phenotype expressing CD45RA28. We assessed several 
reported surface markers of these cells28 in GPR56+ versus GPR56− cells  
and found that the GPR56+ cells were indeed phenotypically similar to 
VM cells (Fig. 3g). For example, GPR56+ cells have higher CD122 but lower 
CD5 surface expression compared with their GPR56− counterparts; 
CD5 surface expression has been linked to the extent of previous IL-15  
(or potentially other inflammatory cytokine) encounters28,31. Notably, 
on the basis of the surface levels of CD45RA and CD45RO, the GPR56+ 
cells appear to situate phenotypically between GPR56− and TEMRA 
cells (Extended Data Fig. 4f).

To further test our hypothesis, we performed in vitro stimulation 
experiments to assess whether GPR56+CD8+ T cells can produce IFNγ in 
response to several cytokines that are known to be induced by vaccina-
tion or infection (Supplementary Fig. 6a). Stimulation with IL-15 showed 
that GPR56+CD45RA+CD8+ T cells from the COVR-M group produced 
more IFNγ compared with those from the COVR-F group (Fig. 3h,i). CD8+ 
VM-like T cells were identified using the surface markers CD45RA+, KIR+ 
and/or NKG2A+32,33 and the COVR-M group produced higher levels of 

IFNγ in these cells (Fig. 3i). Stimulation with IL-12, IL-15 and IL-18 together 
showed similar trends (Supplementary Fig. 6b). Stimulation with IL-18 
alone or IL-12 and IL-18 together also showed similar trends, but these 
conditions induced less robust IFNγ than IL-15 stimulation (data not 
shown). We next assessed the cellular source of IL-15 post-influenza 
vaccination using CITE-seq data and found that classical monocytes 
from the COVR-M group showed the most significant increases in IL15 
mRNA levels on day 1 after influenza vaccination (Fig. 3j). Together, this 
suggests that the increased IFNγ response in the COVR-M group after 
vaccination could be attributed to increased baseline (prevaccina-
tion) frequencies of cells that are also intrinsically more responsive to 
inflammatory stimulation, including classical monocytes that produce 
elevated IL-15 and CD8+ VM-like T cells that mount a more robust IFNγ 
response to cytokine stimulation alone.

As VM T cells can be rapidly activated to produce cytokines without 
clonal, antigen-specific expansion28, we assessed the clonality of the 
GPR56+CD8+ EM cells at different timepoints after influenza vaccina-
tion using V(D)J/TCR data from CITE-seq. The clonality of both the 
GPR56+CD8+ EM and TEMRA cells remained stable across D0 (before 
vaccination), D1 and D28 after influenza vaccination (Extended Data 
Fig. 4g,h). The frequencies of GPR56+CD8+ EM clones shared across 
timepoints within individuals were also similar (Extended Data Fig. 4i). 
Together, these data argue against the notion that the heightened 
activation of the GPR56+ cells early after influenza vaccination in the 
COVR-M group was due solely to TCR-dependent T cell activation 
and clonal expansion. As was shown previously28,29 and above in our 
in vitro stimulation data, a more plausible explanation is that these 
CD8+ VM-like cells were activated to produce IFNγ by the inflammatory 
cytokines elicited by the influenza vaccine in an antigen-independent 
manner. Despite their resemblance to VM cells, some of the GPR56+ 
cells could have developed from naive cells through conventional, 
non-bystander pathways (for example, some could be developed dur-
ing acute COVID-19 and are specific for SARS-CoV-2), although none of 
these cells had a CDR3 sequence that matches a public clone deemed to 
be specific for SARS-CoV-2 (data not shown). Bona fide, antigen-specific 
memory CD8+ T cells developed from naive cells through TCR stimula-
tion have also been shown to produce IFNγ in response to inflammatory 
cytokines alone in mice34,35.

Our data also revealed other cell types that could have contributed 
to the increased IFNγ production observed on D1 after vaccination 
in the COVR-M group (Supplementary Fig. 7a–c). IFNG transcripts 
increased more in the COVR-M group compared with in the HC-M and 
COVR-F groups on D1 in CD16low natural killer (NK) cells (Supplementary 
Fig. 7c and Supplementary Table 4). Moreover, the baseline frequency 
of CD16low NK cells was correlated with the extent of the D1 increase in 
both IFNG expression and serum protein levels (Supplementary Fig. 7b). 
However, the IFNγ response in total NK cells after IL-15 stimulation 
in vitro was not significantly higher in the COVR-M group (Extended 
Data Fig. 4j), probably because CD16low NK cells are a small subset of 
total NK cells. By contrast, IL-15 stimulation in vitro revealed a higher 
IFNγ response in MAIT cells in the COVR-M group compared with the 
COVR-F and HC-M groups (Extended Data Fig. 4j), but the increase in 
IFNG mRNA expression on D1 after influenza vaccination was not statis-
tically significant in the COVR-M group based on CITE-seq data (Supple-
mentary Fig. 7c). CD8+ T cells with a TEMRA (CD45RA+CD45RO−CCR7−) 
phenotype might also have a role as their IFNγ response after IL-15 
stimulation in vitro was higher in the COVR-M group compared with in 
the COVR-F and HC-M groups (Extended Data Fig. 4j), which is consist-
ent with the CITE-seq data (Supplementary Fig. 7c).

Taken together, we demonstrate a population of CD8+ EM T cells 
marked by GPR56 expression and VM-like markers with antigen-agnostic 
pro-inflammatory potential after heterologous vaccination. Impor-
tantly, these cells, and potentially CD16low NK, MAIT and CD8+ TEMRA 
cells (albeit with less support from our CITE-seq data), emerged in 
otherwise clinically healthy individuals and are especially elevated 
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and more poised to respond in male individuals who were months 
recovered from mild SARS-CoV-2 infection, providing additional evi-
dence for sex-specific, functionally relevant immune set points linked 
to previous mild COVID-19.

Vaccination shifts monocyte imprints
Given the potential for vaccine-induced training effects6,36,37, we 
next examined whether influenza vaccination can alter some of the 
post-COVID-19 transcriptional imprints that we detected earlier 
(Fig. 4a). We focused on the monocytes owing to the robustly depressed 
IIR signature reported above (in participants who had recovered from 
COVID-19 versus healthy control participants; Fig. 1f,g) and because 
vaccines can potentially induce long-lasting changes in these cells6,36. 
Using the healthy control baseline (D0) as a healthy reference, we 
used CITE-seq data to assess the average expression of the signature 
genes (identified above) before and after vaccination in participants 
who had recovered from COVID-19, separately for classical (Fig. 1f) 
and non-classical monocytes (Fig. 1g) in male and female individuals 
(Extended Data Fig. 5a,b). As was observed above, these genes had lower 
average expression in participants who had recovered from COVID-19 
compared with healthy control individuals in both sexes at D0 before 
vaccination. However, their average expression increased towards 
that of the healthy control individuals by D1 and persisted until D28 in 
the COVR-F and COVR-M groups, although the effect appeared to be 
stronger in the COVR-F group (Extended Data Fig. 5a,b).

Quantifying the average expression (module score) of these sex- and 
cell-type-dependent gene sets (Fig. 1f,g) within individual participants 
over time confirmed a similar and significant trend of shift towards the 
healthy control individuals (Fig. 4b,c). This analysis further revealed 
that the extent of this change in gene expression was more pronounced 
in the non-classical than in the classical monocytes (Fig. 4b,c). Nota-
bly, the behaviour of these genes was divergent in the healthy control 
individuals—the gene module score trended lower on D1 and reverted 
to prevaccination levels by day 28 in the healthy control individuals 
(Fig. 4b,c). Although the underlying mechanism of this divergence 
is unclear, the monocytes in healthy control individuals could have 
responded to the vaccine-induced inflammation by downregulating 
certain immune receptor genes and associated signalling genes in a 
negative feedforward mechanism to avoid over-responding, while 
the ‘depressed’ monocytes in participants who had recovered from  
COVID-19 instead responded by increasing the expression of these 
genes and therefore moving towards the normal (healthy baseline) 
level.

We next identified the individual genes within these gene sets that 
moved towards the healthy control baseline (Methods). In both clas-
sical and non-classical monocytes, the fraction of reverting genes 
was significantly higher in female compared with male participants 
(Fig. 4d,e and Extended Data Fig. 5c), although several TLRs (for exam-
ple, TLR2 and TLR4) and NOD2 were significant in both sexes in one 
or both monocyte subsets. These changes were probably not due to 
continued immune resolution after infection because the baseline 
(D0) expression of these genes did not correlate with TSD (Extended 
Data Fig. 1h), and they increased acutely by D1 after vaccination and 
persisted to D28. Notably, in contrast to this depressed IIR signature 
(Fig. 1f,g and Extended Data Fig. 1i), other monocyte-related transcrip-
tional signatures that are known to have lower expression during acute 
COVID-19—such as genes related to antigen presentation, inflamma-
tory and NF-κB activation and myeloid suppressor cells13,15–17,38,39—were 
similar between participants who had recovered from COVID-19 and 
healthy control individuals at D0/baseline; vaccination also did not 
consistently elicit longer-lasting changes in these signatures out to 
D28, although the COVR-M group tended to have elevated antigen 
presentation transcriptional responses in non-classical monocytes 
on D1 that remained mildly elevated by D28 (Extended Data Fig. 5d,e).

Together, CITE-seq analysis revealed that the early (D1) response to 
influenza vaccination elevates a set of previously (that is, before vac-
cination) depressed IIR genes in the monocytes of participants who 
had recovered from COVID-19 out to at least D28 after vaccination. 
Although the functional relevance of these changes remains to be deter-
mined, these results suggest that the early inflammatory responses 
to influenza vaccination can help to shift the post-COVID-19 immune 
state of monocytes towards that of healthy individuals, particularly 
in female recoverees.

Discussion
Although both acute and longer-term immune perturbations in hos-
pitalized patients with COVID-19 have been reported13,40–43, less is 
known regarding healthy recovered individuals with previous mild, 
non-hospitalized SARS-CoV-2 infection months after acute illness, 
without confounding comorbidities such as obesity, autoimmunity or 
immunodeficiency. Here we reveal that clinically healthy recoverees 
of previous non-hospitalized COVID-19 possess sex-specific immune 
imprints beyond SARS-CoV-2-specific immunity, some of which become 
apparent only after vaccination with antigens that are distinct from 
SARS-CoV-2. Our findings are consistent with the sex dimorphic nature 
of acute responses to SARS-CoV-2 and other immune challenges11. 
Healthy female individuals tend to mount heightened inflammatory 
responses to infections and vaccines44; it was therefore surprising to 
find the qualitative opposite here in which the COVR-M was found to 
have a more poised immune status at the baseline and stronger innate 
and adaptive responses to influenza vaccination. Although persistent 
immune state changes (over months) in patients with long COVID have 
been reported41, most of the individuals in our study reported no or 
minor post-COVID-19 sequelae. Future research could assess whether 
some of the sex-specific imprints, including differences in vaccination 
responses, are associated with long COVID7.

Our findings suggest that the poised baseline immune states in the 
COVR-M group helped to establish the more robust IFN, plasmablast and 
antibody responses on days 1, 7 and 28, respectively, after influenza vac-
cination. The early IFN responses may be attributed to monocytes with 
higher IL15 transcriptional responses early after vaccination coupled 
with elevated prevaccination frequencies of VM-like CD8+ T cells poised 
to produce more IFNγ after IL-15 stimulation. The monocyte imprint that 
we described involving poised IL15 mRNA production in male recoverees 
and the transcriptionally depressed innate receptor gene signature in 
both sexes are consistent with the notion of trained innate immunity6. 
Notably, although the latter signature could be detected in patients with 
acute COVID-19 with severe disease, it is distinct from the depressed 
antigen presentation or myeloid-suppressor-cell-like states found in 
previous studies of acute COVID-19 (refs. 13,15–17,38,39). As trained innate 
immunity can be mediated through myriad mechanisms, including 
chromatin and metabolic changes within cells, future studies could 
explore these potential mechanisms in monocytes, including the influ-
ences of sex/gender, acute disease severity and age among participants 
with a range of post-COVID-19 clinical sequelae. Given that the half-life 
of circulating monocytes is relatively short (and can be shorter than 28 
days)45, the partial reversal that we detected is possibly attributable to 
bone marrow myeloid progenitor cells, as haematopoietic stem and 
progenitor cells have been shown to exhibit chromatin accessibility 
changes after SARS-CoV-2 infection46.

Bystander T cell activation has been reported after natural viral 
infections47, including SARS-CoV-2 (ref. 26). More recently, bystander- 
activated CD8+ EM T cells have been identified to have an important 
role in controlling early infection, including VM cells that have no 
previous antigen exposure or TCR engagement28,29. As these cells can 
emerge after cytokine stimulation alone, it is possible that a stronger 
or more prolonged cytokine response to SARS-CoV-2 in male relative 
to female individuals during acute disease may have resulted in the 



760 | Nature | Vol 614 | 23 February 2023

Article

elevated frequencies of the GPR56+CD8+ VM-like cells in the COVR-M 
group. This hypothesis is consistent with reports that male individuals 
hospitalized with COVID-19 tend to experience greater innate immune 
activation (as measured by circulating cytokines) compared with female 
individuals48,49.

Some of the immune imprints that we observed could be shared 
among different types of viral infections, but some are probably unique 
to SARS-CoV-2, as suggested by our comparison with natural influenza 
infection. Our findings point to the possibility that any infection or 
immune challenge may change the immune status to establish new 
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baseline set points encoded by the states of not only a single cell line-
age, but also a network of interacting cell types such as VM T cells and 
monocytes. Moreover, although baseline immune statuses that are 
predictive of future responses are often different across and temporally 
stable within individuals over a timescale of months50,51, our results 
suggest that such baseline immune states could have been established 
by past infections and are stable up to the next perturbation. Thus, the 
baseline immune status of an individual, with the potential to impact 
future responses in both antigen-specific and antigen-agnostic ways, is 
shaped by a multitude of previous exposures2,3. In addition to revealing 
underlying principles regarding what happens after two well-defined 
natural immunological encounters—mild COVID-19 and influenza vac-
cination in humans—our observations provide a basis for studying more 
complex scenarios, such as what happens over longer timescales with 
additional inflammatory encounters. Our research brings forth the con-
cept that even mild viral infections could establish new immunological 
set-points impacting future immune responses in an antigen-agnostic 
manner and illustrates how heterologous vaccination could be used 
as a tool to reveal such functional imprints.
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Methods

Patient population and sample collection
Participants aged at least 18 years were recruited between August 
and December 2020 from the local area (Maryland, Virginia and the 
District of Columbia) and enrolled on National Institutes of Health 
(NIH) protocol 19-I-0126 (Systems analyses of the immune response 
to the seasonal influenza vaccine). The study was approved by the 
NIH Institutional Review Board (ClinicalTrials.gov: NCT04025580) 
and complied with all relevant ethical regulations. Informed consent 
was obtained from all of the participants. After informed consent was 
obtained, a baseline history and physical examination were performed. 
The participants were asked to characterize any present, persistent 
symptoms of past SARS-CoV-2 infection. Exclusion criteria included 
obesity (BMI ≥ 30); history of or suspicion of any autoimmune, autoin-
flammatory or immunodeficiency disease; history of any vaccine within 
the past 30 days (live attenuated) or 14 days (non-live attenuated); his-
tory of any experimental vaccine; history of a parasitic, amoebic, fungal 
or mycobacterial infection in the past year; or current infection. The 
COVID-19 vaccine was not available at the time of the study, and no study 
participants participated in any COVID-19 vaccine trials. All study visits 
occurred at the NIH Clinical Center (CC) in Bethesda, MD, USA. Blood 
samples were collected by phlebotomy staff at the NIH CC. The samples 
were collected between September 2020 and April 2021. No sample  
size calculations were done prior to enrolment, in part because there 
were no reliable effect size estimates related to the impact of prior 
COVID-19 infection on vaccine responses. The number of subjects in 
the study was the number that were able to be recruited during the 
recruitment period.No blinding or randomization was performed.

Samples were collected from participants from three groups:  
(1) those with a previous history of symptomatic SARS-CoV-2 infec-
tion (defined as a history of a positive nasal PCR test and positive Food 
and Drug Administration (FDA) Emergency Use Authorization (EUA) 
SARS-CoV-2 antibody test at the time of protocol screening); (2) those 
with a history of asymptomatic SARS-CoV-2 infection (defined as testing 
positive using the FDA EUA SARS-CoV-2 antibody test at the time of the 
protocol exam, but with no history of COVID-like symptoms; no time 
since COVID-19 infection or diagnosis was identifiable for this group 
and they were excluded from all TSD analyses); and (3) individuals 
with no history of SARS-CoV-2 infection (defined as testing negative 
with the FDA EUA SARS-CoV-2 antibody test at the time of the protocol 
screening).

Blood for peripheral blood mononuclear cells (PBMCs), serum, 
whole-blood RNA (Tempus Blood RNA Tube, Thermo Fisher Scientific), 
complete blood count with differential (CBC) and lymphocyte phe-
notyping was collected at each of the following timepoints relative to 
seasonal influenza vaccination (day 0): days −7, 0, 1, 7, 14, 28, 70 and 100. 
Optional stool samples were collected at days 0, 28 and 100. The partici-
pants were provided with Cardinal Health Stool Collection kits (Cardinal 
Health) and Styrofoam storage containers with ice packs to collect 
stool samples at home and return in person to the NIH. After day 100, 
the participants had the option to continue to provide monthly blood 
samples for PBMCs, serum, whole blood RNA, CBC with differential  
and lymphocyte phenotyping through August 2021.

At each timepoint after study enrolment, data were collected and 
managed using the REDCap (v.8.5.27) electronic data capture tools 
hosted at the NIH54,55. REDCap (Research Electronic Data Capture) 
is a secure, web-based software platform designed to support data 
capture for research studies, providing (1) an intuitive interface for 
validated data capture; (2) audit trails for tracking data manipulation 
and export procedures; (3) automated export procedures for seam-
less data downloads to common statistical packages; and (4) proce-
dures for data integration and interoperability with external sources. 
REDCap electronic questionnaires were used to collect information 
from the participants through two separate IRB-approved surveys.  

A survey to evaluate vaccine-related adverse events or symptoms was 
administered on study days 1 and 7 and a separate survey to evaluate 
for any health changes or new medications was administered at every 
visit starting on day 0. Surveys were sent by email to the participants 
and the responses were transferred from the REDCap system to the 
NIH Clinical Research Information Management System (CRIMSON) 
system by the study team.

Influenza vaccination
Participants aged between 18 and 64 years were administered the  
Flucelvax Quadrivalent seasonal influenza vaccine (2020–2021; 
Seqirus). Participants aged 65 years and older were administered the 
high-dose Fluzone Quadrivalent seasonal influenza vaccine (2020–2021; 
Sanofi Pasteur).

Influenza microneutralization titres
Virus‐neutralizing titres of pre‐ and post‐vaccination sera were deter-
mined in a microneutralization assay based on the methods of the 
pandemic influenza reference laboratories of the Centers for Disease 
Control and Prevention (CDC) using low-pathogenicity vaccine viruses 
and MDCK cells. The X‐179A virus is a 5:3 reassortant vaccine containing 
the HA, NA and PB1 genes from A/California/07/2009 (H1N1pdm09) and 
the five other genes from A/PR/8/34 were donated by the high-growth 
virus NYMC X‐157. Immune sera were also tested for neutralization 
titres of the seasonal vaccine strains H1N1 A/Brisbane/59/07, H3N2 A/
Uruguay/716/07 and B/Brisbane/60/2001. Internal controls in all of the 
assays were sheep sera generated against the corresponding strains at 
the Center for Biologics Evaluation and Research, FDA. All individual 
sera were serially diluted (twofold dilutions starting at 1:10) and were 
assayed against 100 median tissue culture infectious dose of each strain 
in duplicates in 96‐well plates (1:1 mixtures). The titres represent the 
highest dilution that completely suppressed virus replication.

SARS-CoV-2 pseudovirus production and neutralization assay
Human codon-optimized cDNA encoding SARS-CoV-2 S glycoprotein 
(GenBank: NC_045512) was cloned into eukaryotic cell expression vector 
pcDNA 3.1 between the BamHI and XhoI sites. Pseudovirions were pro-
duced by co-transfection of Lenti‐X 293T cells with psPAX2(gag/pol), 
pTrip-luc lentiviral vector and pcDNA 3.1 SARS-CoV-2-spike-deltaC19, 
using Lipofectamine 3000. The supernatants were collected at 48 h 
after transfection and filtered through 0.45 µm membranes and titrated 
using 293T-ACE2 cells (HEK293T cells that express ACE2 protein). 
The following reagent was obtained through BEI Resources, NIAID, 
NIH: human embryonic kidney cells (HEK293T) expressing human 
angiotensin-converting enzyme 2, HEK293T-hACE2 cell line, NR-52511.

For the neutralization assay, 50 µl of SARS-CoV-2 S pseudovirions 
were pre-incubated with an equal volume of varying dilutions of serum 
at room temperature for 1 h, then virus–antibody mixtures were added 
to 293T-ACE2 cells in a 96-well plate. After incubation for 3 h, the inocu-
lum was replaced with fresh medium. After 24 h, cells were lysed and 
luciferase activity was measured as previously described56–58. Controls 
included a cell-only control, virus without any antibody control and 
positive control sera. Lenti‐X 293T cells were obtained from Takara 
Bio (Cat. No. 632180). 293T-ACE2 cells were obtained from ATCC. The 
293T-ACE2 cells were checked for expression of ACE2 and validated by 
FACS analysis. Neither of the cell lines was authenticated by karyotyp-
ing or other genomic techniques. Both cell lines tested negative for 
Mycoplasma.

SPR-based antibody binding kinetics of human serum
Steady-state equilibrium binding of serum was monitored at 25 °C 
using the ProteOn Surface Plasmon Resonance (BioRad) system as 
previously described59–61. The purified recombinant SARS-CoV-2 or 
other proteins were captured to a Ni-NTA sensor chip (BioRad, 176-5031) 
with 200 resonance units (RU) in the test flow channels. The protein 
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density on the chip was optimized such as to measure monovalent 
interactions independent of the antibody isotype. Serial dilutions (10-, 
30- and 90-fold) of freshly prepared sample in BSA-PBST buffer (PBS 
pH 7.4 buffer with Tween-20 and BSA) were injected at a flow rate of 
50 µl min−1 (120 s contact duration) for association, and disassocia-
tion was performed over a 600 s interval. Responses from the protein 
surface were corrected for the response from a mock surface and for 
responses from a buffer-only injection. Total antibody binding was 
calculated using the BioRad ProteOn manager software (v.3.1). All SPR 
experiments were performed twice, and the researchers performing 
the assay were blinded to sample identity. Under these optimized SPR 
conditions, the variation for each sample in duplicate SPR runs was <5%. 
The maximum resonance units (max RU) data shown in the figures were 
the RU signal for the tenfold-diluted serum sample.

PBMC isolation
PBMC samples were isolated from blood collected in Vacutainer EDTA 
tubes (generic laboratory supplier) using SepMate-50 tubes (STEMCELL 
Technologies) with the following modifications to the manufacturer’s 
protocol: the blood samples were diluted 1:1 with room temperate PBS 
and mixed by pipetting. The diluted blood was layered on top of a 15 ml 
Cytiva Ficoll PAQUE-Plus (Cytiva Life Sciences) layer in the SepMate 
tube. The SepMate tubes were centrifuged at 1,200g for 10 min with 
brake set to 5 at room temperature. After centrifuging, the top plasma 
layer was removed as much as possible without disturbing the PBMC 
layer. If there were any cells stuck on the wall of the tube, they were gen-
tly scraped from the wall using a pipette so they could be resuspended 
with the rest of the cells. The cells were poured from the SepMate tube 
in to a 50 ml conical tube. The tubes containing cells were filled up to 
50 ml with cold wash buffer (PBS with 2% FBS) and mixed by inverting. 
The tubes were centrifuged at 300g for 10 min with brake set to 5 at 
room temperature. After centrifuging, the supernatant was removed 
without disturbing the cell pellet. After resuspending the pellet with 
cold wash buffer, the cells were counted using the Guava Muse Cell 
Analyzer (Luminex). The tubes were again centrifuged at 300g for 
10 min with brake set to 5 at room temperature. The supernatant was 
removed without disturbing the cell pellet.

On the basis of the cell count, 6–10 million PBMCs were frozen per vial 
for each sample. As the cells were counted before the last centrifuging, 
a 50% cell loss was assumed and accounted for in the calculations from 
cell count. The cell pellet was resuspended with n × 600 µl (where n is 
the number of PBMC vials to be frozen) freezing medium (RPMI with 
10% FBS) by gentle pipetting. After freezing the medium, n × 600 µl 
DMSO freeze (FBS with 15% DMSO) was added drop-by-drop while 
gently shaking the tube. In other words, for each vial of PBMC that was 
to be frozen, 600 µl of freezing medium and 600 µl of DMSO freeze was 
added, bringing the total volume for each vial to 1.2 ml. The solution 
was gently mixed by pipetting before transferring 1.2 ml cell solution 
to each 1.8 ml cryovial (general laboratory supplier). The cell vials were 
placed into CoolCell Containers (Thomas Scientific) and the container 
was placed into a −80 °C freezer. After at least 4 h, the PBMC vials were 
transferred to liquid nitrogen.

RNA isolation
Blood was drawn directly into the Tempus Blood RNA Tube (Thermo 
Fisher Scientific) according to the manufacturer’s protocol. Two Tempus  
tubes were collected at each study timepoint. The blood sample from 
each Tempus tube was aliquoted into two 4.5 ml cryovials (general 
laboratory supplier). These cryovials were directly stored at −80 °C.

The RNA samples were isolated in groups of 12–22 samples per batch 
based on careful batching before isolation to reduce confounding fac-
tors due to age, gender and patient group.

RNA was isolated from blood in the Tempus tube using the QIAsym-
phony RNA Kit (Qiagen) using the QIAsymphony SP instrument (Qiagen).  
Blood samples were thawed on ice before each sample was transferred 

to a 50 ml conical tube. The total volume of the sample was brought to 
12 ml by adding 1× PBS. The tubes were vortexed at full speed for 30 s, 
followed by centrifugation at 3,500g for 1 h at 4 °C. After centrifuga-
tion, the supernatant from the tubes was decanted and the tubes were 
placed upside-down on clean paper towels for 2 min to allow residual 
liquid to drain. To resuspend the pellet, 800 µl of RLT+ buffer was added 
to the bottom of each tube and vortexed for few seconds. All 800 µl of 
each sample was transferred to 2 ml screw cap tubes (Sarstedt). The 
tubes were placed into #3b adapters (Qiagen) to be loaded onto the 
QIAsymphony system.

On the QIAsymphony system, the RNA CT 800 protocol was selected 
and used for RNA isolation. The instrument was set up according to 
the manufacturer’s protocol and the elution volume for RNA samples 
was set to 100 µl. The final volume of the eluted RNA samples ranged 
from 65 µl to 95 µl.

RNA yields were determined using the Qubit RNA BR kit or Qubit 
RNA HS kit (Thermo Fisher Scientific) on the basis of the yield. RNA 
RIN numbers were measured using RNA ScreenTape (Agilent Technolo-
gies). The average RIN was 8.3 and the average yield was 81.3 ng µl−1 for 
the RNA samples.

RNA-seq
RNA-seq libraries were prepared manually using Universal Plus 
mRNA-Seq with NuQuant, Human Globin AnyDeplete (Tecan Genomics)  
according to the manufacturer’s protocol. For each sample, 500 ng 
of total RNA was used to isolate mRNA by poly(A) selection. Captured 
mRNA was washed, fragmented and primed with the mix of random 
and oligo(dT) primers. After cDNA synthesis, ends were repaired and 
ligated with unique dual index adaptor pairs. Unwanted abundant tran-
scripts from rRNA, mtRNA and globin were removed using AnyDeplete 
module. The remaining library was amplified by 14 cycles of PCR and 
purified with AMPure XP reagent (Beckman Coulter).

Library concentration was determined using the Quant-iT PicoGreen 
dsDNA Assay kit (Thermo Fisher Scientific) on the BioTek Synergy H1 
plate reader (BioTek Instruments) using 2 µl sample. Library size distri-
bution was determined using D1000 ScreenTape (Agilent Technologies) 
on the 4200 TapeStation System (Agilent Technologies). A total of 32 
samples were randomly selected from each plate to measure the library 
size distribution. To determine fragment size, the region on the electro-
pherogram was set from 200 bp to 700 bp. An average of the fragment 
sizes was used for the rest of libraries to calculate the molarity.

To create a balanced pool for sequencing, all of the libraries from one 
plate were diluted to the same molar concentration using the QIAgility  
liquid handling robot (Qiagen), and equal volumes of normalized sam-
ples were pooled. A total of 96 samples were pooled from each plate 
on plates 1–4 and 35 samples were pooled from plate 5. For an accurate 
quantification of the pooled libraries, quantitative PCR was performed 
using the KAPA Library Quantification Kit (Roche).

All of the libraries were sequenced on the NovaSeq 6000 instru-
ment (Illumina) at the Center for Cancer Research Sequencing Facility, 
National Cancer Institute. The libraries pooled from plates 1–4 were 
sequenced using one NovaSeq 6000 S4 Reagent Kit (200 cycles) and 
NovaSeq XP 4-Lane Kit (Illumina) with 100 bp paired-end reads as the 
sequencing parameter. The library pool from plate 5 was sequenced 
using the NovaSeq 6000 SP Reagent Kit (300 cycles; Illumina) with 
150 bp paired-end reads as the sequencing parameter.

Moreover, after quality control, 11 samples were resequenced 
as plate 6 on a NextSeq 500 instrument using a NovaSeq 6000 S4  
Reagent Kit (200 cycles) with 100 bp paired-end reads as the sequencing 
parameter. Technical replicates were placed on each plate to control 
for plate variability.

CITE-seq
Single-cell CITE-seq processing. Frozen PBMC samples were thawed, 
recovered and washed using RPMI medium with 10% FBS and 10 mg ml−1 
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DNase I (STEMCELL) and then processed as previously described15 for 
CITE-seq staining. In brief, samples from different donors were pooled 
and different timepoints from the same donor were pooled separately 
so that each pool contains only one timepoint from one donor. PBMC 
pools were Fc blocked (Human TruStain FcX, BioLegend) and stained 
with Totalseq-C human ‘hashtag’ antibodies (BioLegend), washed with 
CITE-seq staining buffer (2% BSA in PBS). Hashtagged PBMC pools were 
then combined, and cells were stained with a cocktail of TotalSeq-C  
human lyophilized panel (BioLegend) of 137 surface proteins (including 
7 isotype controls; Supplementary Table 11) and SARS-CoV-2 S1 protein 
probe. Cells were then washed, resuspended in PBS and counted before 
proceeding immediately to the single-cell partition step.

Single-cell CITE-seq library construction and sequencing. PBMC 
samples were partitioned into single-cell gel-bead in emulsion (GEM) 
mixed together with the reverse transcription mix using the 10x 5′ 
Chromium Single Cell Immune Profiling Next GEM v2 chemistry kit 
(10x Genomics), as previously described15. The reverse transcription 
step was conducted in the Veriti Thermal Cycler (Thermo Fisher Scien-
tific). Single-cell gene expression, cell surface protein, T cell receptor 
(TCR) and B cell receptor (BCR) libraries were prepared according 
to the 10x Genomics user guides (https://www.10xgenomics.com/
resources/user-guides/). All libraries were quality-controlled using 
the Bioanalyzer (Agilent) and quantified using Qubit fluorometric 
quantification (Thermo Fisher Scientific). 10x Genomics 5′ single-cell 
gene expression, cell surface protein tag, TCR and BCR libraries were 
pooled and sequenced on the Illumina NovaSeq platform (Illumina) 
using the following sequencing parameters: read1-100-cycle, i7-10-, 
i5-10, read2-100.

Serum isolation and protein characterization
Serum was collected directly in serum separator tubes and allowed to 
clot at room temperature for a minimum of 30 min. Within 2 h of blood 
collection, the tubes were centrifuged 1,800g for 10 min at room tem-
perature. The top (serum) layer was removed using a pipette and stored 
in individual vials at −80 °C. Serum proteins were analysed using the 
Olink Target 96 Immuno-Oncology and Olink Target 96 Inflammation 
panels (Olink Proteomics, Uppsla, Sweden), which comprised 92 pro-
teins each and uses the methodology based on the proximity extension 
assay. Data are reported as normalized protein expression (NPX) unit.

CBCs and lymphocyte phenotyping
For the participants, standard complete blood counts with differential 
(CBCs) were performed at the NIH CC in the Department of Laboratory 
Medicine. Lymphocyte (T cell, B cell, NK cell) flow cytometry quantifi-
cation was performed using the BD FACSCanto II flow cytometer (BD 
Biosciences).

PBMC in vitro stimulation
PBMCs were thawed and cultured in PRMI1640 containing 10% fetal 
bovine serum, 2 mM glutamine, 0.055 mM beta-mercaptoethanol, 
1% penicillin–streptomycin, 1 mM sodium pyruvate, 10 mM HEPES 
and 1% non-essential amino acids, and stimulated under the following 
conditions: (1) IL-15 (10 ng ml−1), IL-12 (20 ng ml−1), IL-18 (20 ng ml−1) 
for 48 h; (2) IL-15 (50 ng ml−1) for 48 h; (3) IL-18 (50 ng ml−1) for 48 h;  
(4) IL-12 (20 ng ml−1), IL-18 (20 ng ml−1) for 48 h; (5) anti-CD3 (1 µg ml−1), 
anti-CD28 (1 µg ml−1) for 24 h; (6) non-stimulated controls. Protein 
Transport Inhibitor (BD Biosciences, 554724) and Brefeldin A (BFA, 
Invitrogen, 00-4506-51) were added 4 h before collection. The follow-
ing cytokines were purchased from BioLegend: IL-15 (570304), IL-12 
(573004) and IL-18 ( 59 21 04).

Flow cytometry
B cell phenotyping panel including influenza HA probes. Thawed 
PBMCs were washed in RPMI culture medium containing 50 U ml−1 

benzonase nuclease and then washed with PBS. Cells were incubated  
with LIVE/DEAD Fixable Blue Dye (Life Technologies), which was 
used to exclude dead cells from analysis. Cells were incubated with 
fluorochrome-conjugated HAs for influenza B (B/Washington/02/2019 
and B/Phuket/3073/2013 combined on the same fluorochrome), and  
influenza A H1 (A/Hawaii/70/2019) and H3 (A/Hongkong/2671/2019) 
and fluorochrome-conjugated antibodies against IgM, IgA, CD21, 
CD85J, FCRL5, CD20, IgG, CD38, CD14, CD56, CD3, CD27, CD71, CD19 
and IgD for 30 min at 4 °C in the dark. The dyes and detailed information 
of antibodies in the panel (Sarah Andrews, Vaccine Research Center,  
National Institute of Allergy and Infectious Diseases, NIH) are summa-
rized in Supplementary Table 12. After incubation with antibodies for 
30 min, cells were washed twice with FACS buffer (0.1% BSA/PBS (pH 7.4)) 
and fixed in 1% paraformaldehyde. A total of 5 million cells were acquired 
on the Cytek Aurora spectral cytometer (Cytek Biosciences; SpectroFlo  
(v.2.2.0)). Data were analysed using FlowJo (v.10; BD Biosciences).

General immune phenotyping panel. Thawed PBMCs were washed 
in RPMI culture medium containing 50 U ml−1 benzonase nuclease and 
then washed with PBS. Cells were incubated with LIVE/DEAD Fixable 
Blue Dye (Life Technologies), which was used to exclude dead cells 
from analysis. Cells were washed in FACS staining buffer (1× PBS, 0.5% 
fetal calf serum, 0.5% normal mouse serum and 0.02% NaN3) and incu-
bated with Human Fc block reagent (BD Bioscience, 564220) at room 
temperature for 5 min. Cells were stained at room temperature for 
10 min in the dark with fluorochrome-conjugated antibodies against 
CCR7, CCR6, CXCR5, CXCR3 and TCRgd. Cells were then stained 
with fluorochrome-conjugated antibodies against CD45RA, CD16, 
CD11c, CD56, CD8, CD123, CD161, IgD, CD3, CD20, IgM, IgG, CD28, 
PD-1, CD141, CD57, CD45, CD25, CD4, CD24, CD95, CD27, CD1c, CD127, 
HLA-DR, CD38, ICOS, CD21, CD19 and CD14 at room temperature for 
30 min in the dark. Cells were washed twice with FACS staining buffer 
(1× PBS, 0.5% fetal calf serum, 0.5% normal mouse serum and 0.02% 
NaN3) and fixed in 1% paraformaldehyde. Supplementary Table 13 shows 
the clones and information of the antibodies used in the phenotyp-
ing panel. A total of 1 million PBMCs were acquired using the Cytek 
Aurora spectral cytometer (Cytek Biosciences; SpectroFlo (v.2.2.0)). 
The frequency of major populations was analysed using FlowJo (v.10; 
BD Biosciences) on the basis of previously described manual gating  
strategies62–64.

In vitro stimulation T cell panel. In vitro simulated PBMCs were 
collected and washed in PBS. Cells were incubated with Zombie UV  
Fixable Viability Dye (BioLegend) in the dark (at room temperature) for 
20 min. Cells were then washed and incubated with Human TruStain 
FcX (BioLegend) for 10 min and subsequently with anti-CCR7 anti-
bodies for 10 min. A cocktail of fluorochrome-conjugated antibodies 
against CD8, CD4, HLA-DR, CD69, CD45RA, CD11c, CD5, CD3, TCRVa7.2, 
CD45RO, CD56, CD122, CD158e/k (KIR3DL1/DL2), KIR2D, NKG2A, CD14, 
CD29 and GPR56 was added and cells were stained for 30 min in the 
dark. Cells were washed and fixed using the Fixation/Permeablization 
kit (BD Biosciences). The intracellular proteins IFNγ, TNF and Ki-67 
were stained after fixation. The samples were collected using the BD 
FACSymphony flow cytometer (BD Biosciences) and analysed using 
FlowJo (v.10). A list of the antibodies used in the panel is provided in 
Supplementary Table 14.

Data processing and transformation
Bulk RNA-seq data processing. Sequencing reads from plate 5 were 
adaptor- and quality-trimmed to 100 bp using Trimmomatic (v.0.38.0)65 
to match the read length of the other plates (resulting reads with less 
than 100 bp were discarded). Reads were then aligned to the human 
genome hg38 using the STAR (v.2.6.0b) aligner. Duplicate reads from 
PCR amplification were removed based on unique molecular identi-
fiers using UMI-tools (v.0.5.3). Gene expression quantification was 
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performed using the featureCounts66 function from Subread package 
(v.1.6.2). Samples with less than 5 million assigned reads were rese-
quenced and replaced. Reads were normalized and log transformed 
using limma voom67. Low-expressed genes, defined as having fewer 
than five samples with >0.5 counts per million reads, were removed. 
Prevaccination (days −7 and 0) samples from the same healthy control 
participants were considered to be replicates and were used to estimate 
latent technical factors using the RUVs function of the RUVSeq68 R pack-
age (v.1.18). Four latent variables were included to derive normalized 
gene expression values used for visualization and when specifically 
noted. Variable genes based on intraparticipant variability of prevac-
cination samples in the healthy control individuals and across technical 
replicates were filtered out, resulting in a total of 10,017 remaining 
genes for downstream analyses.

CITE-seq data processing. Single-cell sample demultiplexing and 
preprocessing. Single-cell sequencing data were demultiplexed, 
converted to FASTQ format, mapped to the human hg19 reference 
genome and counted using the CellRanger (10x Genomics) pipeline. 
The sample-level demultiplex was performed based on two levels as 
previously described15: (1) hashtag antibody staining to distinguish dif-
ferent timepoint samples from a same participant; (2) single-nucleotide 
polymorphisms (SNPs) called from the whole-blood RNA-seq data to 
identify different participants. Specifically, CellRanger (v.6.0.1) was used 
for generating count matrix and the software package demuxlet (v.2, 
from the popscle software suite)69 was used to match single-cell gene 
expression data to each donor and identify empty droplets and doublets.
Single-cell data clustering and cell annotation. Single-cell data 
were further processed using Seurat (v.4.0.3) running in R v.4.1.1. We 
removed cells with less than 200 and greater than 5,000 detected 
genes; greater than 60% of reads mapped to a single gene; greater 
than 15% mitochondrial reads; cell surface protein tag greater than 
20,000; and hashtag antibody counts greater than 20,000. The protein 
data were normalized and denoised using the DSB method (v.0.3.0)70. 
The following parameters were used in the dsb normalization func-
tion: define.pseudocount = TRUE, pseudocount.use = 10, denoise_
counts = TRUE, use.isotype.control = TRUE. The DSB-normalized 
protein data were used to generate the top variable features (n = 100) 
and principal components (PCs). The shared nearest neighbour graph 
followed by k-nearest neighbours clustering were then built using the  
FindNeighbors and FindClusters functions using the first 15 PCs in 
Seurat (v.4.0.3), respectively. Cell clusters were quality-controlled on 
the basis of their nearest neighbours and cell surface proteins. Cells 
were then further clustered within each major cell population using 
weighted-nearest neighbour (WNN) analysis in Seurat71 (v.4.1.0) by 
integrating both cell surface protein and gene expression modalities. 
WNN FindMultiModalNeighbors was performed using both the top 
10 PCs for cell surface protein and RNA of variable features. The WNN 
clusters were manually annotated and quality-controlled using the 
surface protein together with gene expression.
CD8+ EM cell annotation for CITE-seq clusters. All CD8+ cells were 
clustered using WNN as described above. CD8+ clusters were annotated 
on the basis of their surface markers as reported72 together with gene 
expression profile. RNA expression of CD8+ cells was mapped to an 
external dataset using the Seurat Label transfer method71,73 (v.4.1.0). 
Clusters annotated as CD8+ EM are surface CD45ROhigh, CD45RAlow, 
CD95+, CD62Llow and CCR7 mRNA− with most cells (around 90%) mapped 
to CD8+ EM phenotype cells in an external dataset71,73.
Single-cell TCR data processing. CellRanger (v.6.0.1) was used to 
assemble V(D)J contigs. The V(D)J assignment and clonotype were 
from the CellRanger output of the filtered contig_annotations.csv 
file for each 10x lane. The data were combined for all lanes and paired 
TCRα and TCRβ chains for each single cell were combined using the 
scRepertoire R package (v.1.4.0)74 and integrated with the single-cell 
CITE-seq Seurat object metadata. Cells annotated as CD8+ T cells and 

with both α and β chains detected were filtered and analysed. CD8+ 
subsets and GPR56+CD8+ EM cell clonality were visualized by Circos 
plots using the Circlize R package (v.0.4.14)75. For the purpose of visuali-
zation, cells from each subset were downsampled with equal numbers 
in each subset (a comparison between subsets is shown in Extended 
Data Fig. 4g) or in each timepoint (a comparison between timepoints is 
shown in Extended Data Fig. 4h,i). Cells were considered to be the same 
clone when they had identical CDR3 (both α and β chains). Identical 
clones were connected within each sample or each participant across 
timepoints with lines.

OLINK serum proteomics. Missing values were imputed using the 
k-nearest neighbours approach with k = 10 using the impute R pack-
age76 (v.1.60.0). For each sample, probes targeting the same protein 
were averaged.

Cytek flow cytometry. Cell frequencies were generated by convert-
ing cell counts as fraction of live cells or lymphocytes as specified. 
The frequency data were log2-transformed for linear modelling. For 
populations with zero counts in any of the samples, an offset equal to 
half of the smallest non-zero value was added across samples.

CBCs and lymphocyte phenotyping. Both absolute and relative 
counts were log2-transformed for linear modelling. Missing values 
were imputed using k-nearest neighbours approach. For parameters 
with zero values in any of the samples, an offset equal to half of the 
smallest non-zero value was added across samples.

Statistical analysis
Baseline differential expression analysis. Using the dream77 func-
tion in the variancePartition R package (v.1.16.1), mixed-effects mod-
els were applied to determine differential levels of analytes (that is, 
whole-blood gene expression, serum proteins, cell frequencies, flu 
titre and SPR, and haematological parameters) between participants 
who had recovered from COVID-19 and healthy control participants in 
a sex-specific manner as follows: ~ 0 + group:sex + age + race + batch.
effects + (1|participant.ID).

Batch-effect-related covariates were added to specific models 
depending on the assay type. For bulk RNA-seq, these include the four 
latent technical factors (see the ‘Bulk RNA-seq data processing’ section) 
and the timepoint-matched % neutrophils parameter from the CBC 
panel. For the Cytek and Olink platforms, sampling batch/plate was 
included as covariates. In addition to day 0, available samples from day 
−7 (in the RNA-seq and CBC panel) were included as baseline replicates 
in the modelling.

Sex-specific group differences were computed from the contrasts 
covid.Female − healthy.Female and covid.Male − healthy.Male. 
Overall COVID-19 versus healthy control difference was determined 
by combining the two contrasts, that is, (covid.Female − healthy.
Female)/2 + (covid.Male − healthy.Male)/2. Sex difference linked to 
SARS-CoV-2 infection was derived from the contrast (covid.male −  
covid.female) − (healthy.male − healthy.female) to account for normal 
differences between males and females. P values were adjusted for 
multiple testing within each assay type and contrast combination using 
the Benjamini–Hochberg method78.

Association with TSD. To evaluate whether any of the differences 
detected at baseline had stabilized or might still be resolving, a linear 
model was used to test the association of relevant parameters with 
the time since COVID-19 diagnosis (TSD) among participants who had 
recovered from COVID-19: ~ 0 + sex + sex:scale(TSD) + age + race +  
(1|participant.ID).

Two asymptomatic participants without a known TSD were 
excluded from the model. Association was assessed separately for 
female and male individuals, and jointly by the combined contrast 
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(female:TSD + male:TSD)/2. Dependent variables were converted to 
ranks in the model to reduce the effect of potential outliers.

Using a conservative approach, genes were classified as TSD- 
associated if they had an unadjusted P < 0.05 and were excluded from 
subsequent analyses as specified. To determine whether any of the 
baseline differential gene sets were associated with TSD, LEG modules 
were derived from the union of all LEGs of the same gene set from differ-
ent contrasts (see the ‘Bulk RNA-seq gene set module scores’ section). 
A gene set was considered to be stable if none of three contrasts tested 
in the association model were significant (using an unadjusted P value 
threshold of 0.05).

Post-vaccination differential expression analysis. Similar to the work-
flow used in the baseline differential expression analysis, mixed-effects 
models were created to evaluate changes and group differences at each 
available timepoint after vaccination. Participants aged 65 and above 
were excluded as they received a different type of vaccine. In addition 
to the baseline covariates, the model also accounts for the participants’ 
flu vaccination history within last 10 years as follows: ~ 0 + visit:group: 
sex + age + race + flu.vax.count.10yr + batch.effects + (1|participant.ID).

Three types of comparisons were examined using this model:
Timepoint-specific group differences: similar to the contrasts in 

the baseline model, but for individual timepoints post vaccination 
(day 1 to day 100).

Vaccine-induced changes in group difference: similar to the 
timepoint-specific contrasts above, but additionally subtracting 
off the corresponding baseline contrast to assess the changes rela-
tive to the baseline. For example, the differences in vaccine-induced 
changes for female individuals with COVID-19 versus healthy control 
individuals at D1 is evaluated with the contrast: (D1.covid.female − D1.
healthy.female) − (baseline.covid.female − baseline.healthy.female).

Reversal of COVID-19 versus healthy control difference: instead 
of using the healthy control participants at the same correspond-
ing timepoints as the reference, post-vaccination samples from the 
participants who had recovered from COVID-19 were compared to 
baseline healthy control individuals with the contrasts [timepoint].
covid.female − baseline.healthy.female and [timepoint].covid.
male − baseline.healthy.male. These contrasts can inform whether 
any prevaccination differences observed in the participants who had 
recovered from COVID-19 were reverted towards healthy baseline 
levels after vaccination. Reversal is defined as having a smaller abso-
lute effect size (using the z.std value from the dream function) at D1 
and D28 after vaccination compared with the baseline absolute effect  
size.

P values were adjusted for multiple testing for each timepoint, 
assay type and contrast combination using the Benjamini–Hochberg  
method.

Gene set enrichment of differentially expressed genes. Enriched 
gene sets were identified using the preranked GSEA algorithm imple-
mented in the clusterProfiler R package (v3.17.0)79. Genes were ranked 
using signed −log10-transformed P values from differential expression 
models. Enrichment was assessed with gene set lists from MSigDB’s 
Hallmark collection80, blood transcriptomic modules81 and cell type 
gene signatures53. Only gene sets with 10 to 300 genes were consid-
ered. P values were adjusted per gene set list for each contrast using 
the Benjamini–Hochberg method and gene sets with FDR-adjusted 
P < 0.05 were considered to be significant. Baseline enriched gene 
sets were derived by intersecting significant gene sets extracted from 
differential expression models using samples independently from 
day –7, day 0, and both days combined. Genes associated with TSD at 
the baseline (see the ‘Association with TSD’ section; Supplementary 
Table 1) were excluded from the post-vaccination enrichment analyses 
to help to segregate the effect of vaccination from the natural temporal 
resolution of the SARS-CoV-2 infection.

Pseudobulk differential expression and GSEA. Single cells from 
a given sample were computationally pooled according to their cell 
type assignment by summing all reads for a given gene. Pseudobulk 
libraries that were made up by few cells and were therefore probably 
not modelled properly using bulk differential expression methods 
were removed from the analysis for each cell type to remove samples 
that contained fewer than 4 cells and with less than 35,000 library size 
after pooling. Low-expressed genes were removed for each cell type  
individually using the filterByExpr function of edgeR (v.3.26.8)82 with 
min.count = 2. Log-transformed counts per million (CPM) of each 
gene were calculated with scaling factors for library size normaliza-
tion provided by the calcNormFactors function. Differential expres-
sion analysis was performed using the same models described in the 
‘Post-vaccination differential expression analysis’ section without 
running baseline models separately because the entire CITE-seq  
cohort was aged under 65 years. Batch assignment and the number of 
barcodes/cells per sample were included as batch effects in this model.

Similarly, GSEA was performed for each cell type in the same manner 
as described for the bulk RNA-seq data (see the ‘Gene set enrichment 
of differentially expressed genes’ section), which particularly focuses  
on the baseline enriched gene sets identified by the bulk RNA-seq 
analysis. The Monaco gene sets were excluded from the single-cell 
analysis given the cell clusters were annotated and no further cell type 
demultiplex needed.

Bulk RNA-seq gene set module scores. Gene set module scores were 
generated from RUVseq (v.1.18) normalized gene expression values (see 
the ‘Bulk RNA-seq data processing’ section) using the gene set variation 
analysis (GSVA) method in the GSVA R package (v.1.30.0)83. LEG module  
scores representing enriched pathway activities were calculated 
for relevant samples using LEGs identified by GSEA to enhance the 
signal-to-noise ratio. The average scores between days −7 and 0 were 
used for calculating post-vaccination changes relative to the baseline.

Pseudobulk gene set module score calculation. Module scores 
(gene set signature score) representing enriched pathway activities 
were calculated for each pseudobulk sample of certain cell types. The 
pseudobulk gene counts were corrected using the removeBatchEffect  
function in the limma package (v.3.42.2) to remove experimental batch 
and cell number effects and then normalized with voom84. The scores 
were then generated using the gene set variation analysis (GSVA) meth-
od from the GSVA R package (v.1.42.0)83. Specifically, for monocyte 
signatures, LEGs of BTM modules M4.0 and M11.0 were identified by 
GSEA from the (1) D0.COVR-F versus D0.HC-F and (2) D0.COVR-M versus 
D0.HC-M models. The union of LEGs was used for the score calculation 
for female and male samples.

For the BTM-M7.3 T cell activation signature and other signatures 
from acute COVID-19 data as indicated in the figures, LEGs were used 
from the indicated comparison groups for the score calculation  
of female and male individuals separately.

For the monocyte antigen presentation signature, the module score 
was generated using LEGs from the BTM-M71 enriched in antigen pres-
entation (I) and M95.0 enriched in antigen presentation (II) gene sets 
of the comparison: D1 − D0 change between the COVR-M versus HC-M 
groups (Fig. 2f).

For the Hallmark IFNγ response module score, all genes from the 
gene set were used for calculating module scores in each cell type, so 
that the differences between cell types could be compared.

Single-cell module score calculation and visualization. To visualize  
the difference between subject groups in certain gene signatures  
using single data, the genes from the indicated gene sets were used to 
calculate the corresponding module score of each single cell. Module 
scores were calculated using the AddModuleScore function in Seurat 



(v.4.1.0) and then visualized in UMAP plots. For D1 versus D0 Hallmark 
IFNγ response module score difference (D1–D0) shown in UMAP pro-
jections (Fig. 2d), cells from the D1.HC-F, D1.COVR-F, D1.HC-M and 
D1.COVR-M groups were downsampled to the same number of cells. The 
UMAP embeddings of cells coloured with the average difference (D1–D0)  
of each high-resolution cell subsets are shown (each of the major cell 
clusters shown can contain one or more high-resolution cell subsets).

Single-cell module score calculation and test of external acute 
COVID-19 single-cell CITE-seq data. Single-cell data from the Brescia 
cohort of ref. 15 were downloaded from the Gene Expression Omnibus 
(GEO). Single monocyte data were extracted and single-cell data from 
the Brescia cohort were pooled as described in the ‘Pseudobulk dif-
ferential expression and GSEA’ section. The gene set module scores 
of BTM modules M4.0 and M11.0 for all of the samples were generated 
using the union LEGs of male and female in the ‘Gene set module score 
calculation’ section. The pseudobulk gene counts were normalized 
using the varianceStabilizingTransformation function of the DEseq2 
R package (v.1.34.0)85. The scores were then generated using the GSVA 
method from the GSVA R package (v.1.42.0)83. Given there are multiple 
samples from each participant, the differences between patient groups 
(healthy control, less severe and more severe, corresponding to HC, 
DSM-low and DSM-high in ref. 15) were tested using the Limma (v.3.50.1) 
linear model, where samples from the same donors were treated as 
duplicates using duplicateCorrelation. P values of t statistics from the 
linear model of the indicated contrasts are shown.

Visualization of gene expression in heat maps. Heat maps showing 
pseudo-bulk data were generated using the ComplexHeatmap R pack-
age (v.2.10.0)86. The log[CPM]-normalized expression for each sample 
for a given cell type was calculated by pooling cells as described in the 
‘Pseudobulk differential expression and GSEA’ section. Heat maps show 
the z-score of the normalized expression for each gene in each sample.

Data visualization. Plots were created using ggplot2 (v.3.3.5) with 
ggpubr (v.0.4.0) for statistical calculation unless noted.

End-point association. To evaluate the association of relevant para-
meters, including gene set module scores and cell frequencies, with 
IFN or antibody titre fold change end points, the following model was 
applied: end point ~ group:sex + scale(parameter):group:sex + age + 
race + flu.vax.count.10yr.

The end-point values were converted to rank to reduce the effects of 
potential outliers. Replicates from the same participants were averaged.

Serology. Influenza antibody titres below the detection limit of 1:20 
were set to 1:10. Maximum titre across strains was calculated by nor-
malizing titre levels across all of the samples from both D0 and D28 
individually for each of the four strains followed by taking the maximum 
standardized titre for each sample.

Baseline titre difference analysis. For each of the four strains, a 
linear model was applied to determine the baseline titre differences 
between participants who had recovered from COVID-19 and healthy 
control participants in a sex-specific manner as follows: day 0 titre ~  
group:sex + age + race.

Titre values were log10-transformed in the model, and sex-specific 
group differences were computed from the contrasts covid.Female −  
healthy.Female and covid.Male − healthy.Male. Participants aged 65 
and above were excluded from the analysis.

D28 titre difference analysis. For post-vaccination titre response, 
influenza vaccination history and baseline titre were included as 
covariates to partly account for previous exposure, similar to the  
approach used for influenza vaccine evaluation by the Food and 

Drug Administration (page 27 of https://www.fda.gov/media/135687/
download). Both D28 titre and D28/D0 FC were evaluated as end 
points to determine group differences between participants who 
had recovered from COVID-19 and healthy control participants for 
each of the four strains: endpoint ~ group:sex + age + race + flu.vax.
count.10yr + day 0 titre.

For D28 FC, a negative binomial model with log link was applied 
using the glm.nb function in the MASS R package (v.7.3-53). A linear 
model was used to fit the D28 titres. Strain-specific titre values were 
log10-transformed in the model. Group differences were assessed using 
the same participants and contrasts as in the baseline analysis.

Influenza antibody avidity as measured using SPR was analysed in the 
same manner as the titre data across HA1 and HA2, with the exception 
that that a linear model was applied for the fold changes.

Concordance in the natural influenza infection cohorts. A prospec-
tive cohort study with participants profiled before and at least 21 days 
after natural influenza infection in two seasons18 was used to assess 
the residual effects of the infection separately in male and female 
individuals. Gene expression data were downloaded from the GEO 
(GSE68310). Participants with only influenza A virus infection (n = 51 
female and n = 35 male) were identified and included for this analysis. 
Low-expressed probes were removed, and the remaining data were 
converted to gene-based expressions. No additional processing steps 
were performed as the data were already normalized.

Separately for each season, differential expression analysis between 
baseline (pre-infection) and spring (long-term post-infection) samples 
from the same individuals were performed using the dream function 
in the variancePartition R package (v.1.16.1). A mixed-effects model 
accounting for flu vaccination history and disease severity (based 
on fever grade: none, low and high) was constructed as follows: 
~ 0 + timepoint:sex + age + num.flu.vaccination + fever.grade + (1|par-
ticipant.ID).

Differentially expressed genes were identified using the contrasts 
Spring.F − Baseline.F and Spring.M − Baseline.M for female and male 
individuals, respectively. Sex difference was evaluated by the contrast 
(Spring.M − Baseline.M) − (Spring.F − Baseline.F). Concordance of 
differential expression results between the two seasons was evaluated 
on the basis of the correlation of effect size across genes (z.std values 
generated by dream).

Enrichment analysis was performed to determine whether the 
same set of genes was differentially expressed between pre- and 
post-influenza infection from this independent cohort and in partici-
pants who had recovered from COVID-19 compared with healthy control 
individuals before vaccination. To better match the age range of partici-
pants between the two studies, baseline differential gene analysis was 
performed again with participants under 65 years of age in the COVID-19 
cohort (see the ‘Baseline differential expression analysis’ section). Given 
that the male participants showed stronger concordance between 
the two flu seasons (Extended Data Fig. 2b), COVID-19 differentially 
expressed genes were ranked by signed −log10-transformed P values 
and tested against a gene set formed by the intersect of differentially 
expressed (P < 0.05) genes in male participants from the flu infection 
cohort.

Elastic net multivariate predictive modelling. Elastic net models 
were constructed using the eNetXplorer R package (v.1.1.3)87 to predict 
day 1 (D1) INFγ response after influenza vaccination with both CITE-seq 
and flow cytometry cell frequencies at D0 as predictors. A total of 33 
participants (COVR-F = 11, HC-F = 8, COVR-M = 9, HC-M = 5) with both 
CITE-seq and flow cytometry data were included. On the basis of 20 
runs of fivefold cross-validation, a grid of regularization parameters 
(α and λ) were tested to determine models with best performance and 
cell subsets with consistent predictive power. Model performance 
was assessed on the basis of the mean squared error between the 
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predicted and observed response. The importance of a cell population was  
determined by the frequency that it was selected by the models (that 
is, having non-zero coefficient). P values of the model performance 
and feature importance were derived by comparing to null models 
constructed with permuted response.

TCR diversity metric calculation. Shannon’s entropy (H′ index) was 
calculated as a measure of TCR diversity88,89. Samples for each CD8+ 
subset with fewer than 50 cells were filtered out from the calculation. 
All of the samples were downsampled to 50 cells because the diversity 
metric can be affected by the sample cell numbers. The process was 
repeated 1,000 times with random downsampling of 50 cells, and the 
median Shannon’s index was used as an estimate of diversity for a given 
sample. Differences in the diversity metric between different CD8+ 
subsets or timepoints were tested using two-tailed Wilcoxon tests.

Reversal genes and bootstrapping to infer the significance of dif-
ference in the reversal of monocyte-repressed signature between 
the COVR-F and COVR-M groups. Reversal genes are defined as those 
genes of which the COVID-19-recovered versus D0 healthy control 
absolute effect size (z.std values from dream; see the ‘Post-vaccination 
differential expression analysis’ section) are smaller at both D1 and D28 
compared with at D0.

Bootstrapping was used to determine the significance of the dif-
ference between the COVR-F and COVR-M groups in their proportion 
of baseline LEGs from the monocyte-depressed signature (BTM M4.0 
and M11.0) that moved towards the healthy control baseline. Members 
from each participant group were randomly sampled with replacement 
in each round of the bootstrapping and their samples were analysed 
as described in the ‘Post-vaccination differential expression analysis’ 
section. The proportion of LEGs reversed after vaccination was cal-
culated in each round for the COVR-F and COVR-M groups in classical 
and non-classical monocytes, separately, and the P values plotted in 
Fig. 4e were determined on the basis of 20 rounds of this procedure.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw and processed data from the whole-blood bulk RNA-seq and 
single-cell CITE-seq are available from the NCBI GEO under accession 
numbers GSE194378 and GSE206265, respectively. Additional data-
sets, including clinical, proteomics, flow cytometry and influenza anti-
body measurements, are available at Zenodo (https://doi.org/10.5281/
zenodo.5935845). The influenza infection dataset that we used was 
downloaded directly from the GEO (GSE68310).

Code availability
Analysis code, extended patient and sample metadata are available at 
GitHub (https://github.com/niaid/covid-flu).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Baseline differences between COVID-19-recovered 
participants and matching controls. a, Box plot showing the distribution of 
time since diagnosis (TSD; x-axis) in COVR-F (n = 16) and COVR-M (n = 15). Two 
participants with asymptomatic COVID-19 infection and thus unknown TSD are 
not included. Significance of group difference is determined by two-tailed 
Wilcoxon test. b, Scatterplot showing the correlation between the TSD (x-axis) 
and the SARS-CoV-2 neutralization titre (WA1 strain; y-axis) for COVR 
individuals at D0 prior to influenza vaccination. Spearman’s rank correlation 
and unadjusted P values are shown. Participants with asymptomatic COVID-19 
infection not included in TSD analyses. The shaded area represents 95% 
confidence interval. c, Similar to (b), but for the percentage of monocytes in 
peripheral blood as measured by the complete blood count (y-axis) at D0. 
Dotted lines represent median level in HC-F and HC-M. d, Similar to (b), but for 
the proportion of CD11c+ dendritic cells (DCs; as fraction of live cells; y-axis) as 
measured by flow cytometry of PBMCs at D0. e, Blood transcriptomic analysis 
of the stable baseline (prevaccination) differences among COVR and HC 
groups. Enrichment plot shows the normalized enrichment scores (NES) of 
selected gene sets of the different comparisons (GSEA FDR < 0.05; Methods; 
see Supplementary Table 3 for all significant gene sets with FDR < 0.05). The 
NES are plotted separately for COVR-F versus HC females (HC-F), COVR-M 
versus HC males (HC-M), or the difference between the two sets of comparisons 
(COVR-M versus COVR-F taking healthy sex differences into account). Positive 
(negative) NES indicates that gene set scores are higher (lower) in the first 
group than the second group listed in the comparison. Only gene sets not 

correlated with TSD across COVR individuals at baseline are considered stable. 
f, Similar to Fig. 1d, but for percent of CD3+ cells (T cells). g, Similar to (e), but for 
a subset of monocyte and T cell activation gene sets with significant enrichment 
(P < 0.05) using the D0 CITE-seq pseudobulk expression for the specified cell 
types (Methods; see Supplementary Table 5 for complete results). h, Scatterplots 
showing the relationship between the TSD and leading-edge gene (LEG) 
module scores [left two boxes: the T cell activation gene set (BTM-M7.3); right 
two boxes: the union of the LEGs from gene sets BTM M4.0 and M11.0; Methods] 
in COVR-F (n = 12) (top row) and COVR-M (n = 12) (bottom row) at D0 using the 
CITE-seq pseudobulk data of the indicated cell types. Each dot represents a 
COVR individual. The dotted lines represent the median score for the sex-
matched HC group at D0 in the comparison shown. Spearman’s rank correlation 
and P values are shown. The shaded area represents 95% confidence interval.  
i, (left) Box plot comparing the classical monocyte pseudobulk module scores 
of the LEGs used in Fig. 1f (union of female (F) and male (M) gene sets) in an acute 
COVID-19 CITE-seq dataset from Liu et al.15. Both M (n = 50) and F (n = 9) 
individuals are included in all three groups (HC n = 13, less severe n = 21, more 
severe n = 25). Each dot represents a sample. Unadjusted P values from the 
indicated two-group comparisons are shown. P values were generated using 
the moderated t statistics from a linear model in which samples from the same 
donors were treated as duplicates (Methods). (right) Bubble plot showing 
expression of the genes in Fig. 1f right panel within the classical monocyte 
CITE-seq data from Liu et al. in the same three patient groups shown in the left 
panel. All plot elements are the same as indicated in Fig. 1.
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Extended Data Fig. 2 | Persistent post-infection gene expression changes 
following natural influenza infection. a, Schematic showing the approach 
used to evaluate changes in blood gene expression between before (pre-infection 
baseline) and months after natural influenza infection over two distinct 
seasons published in Zhai et al.18, and how those gene changes may relate to 
sex-specific differences resulted from prior COVID-19 in this study. b, Scatter 
density plot showing the correlation between the gene expression changes 
(Supplementary Table 6) before (fall) and after (spring) natural influenza A 
infection in 2009 (x-axis) and 2010 (y-axis) for females (F; left), males (M; centre), 

and M vs F contrast (right). Shown are Spearman’s rank correlation and 
unadjusted P values. c, Gene set enrichment plot of the genes that increased in 
M between fall (pre-infection) and spring (post-infection) in both 2009–2010 
and 2010–2011 seasons. Genes were ranked by the signed -log10-transformed 
(unadjusted) P values in the COVID-19-recovered (COVR)-M vs COVR-F contrast 
at baseline using only participants under 65 years of age. The tick marks denote 
the location of the genes in the influenza gene set. The diagram in a was created 
using BioRender.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Sex-specific molecular, cellular, and humoral 
response differences to influenza vaccination in COVID-19-recovered 
individuals and matching controls. a, Similar to Extended Data Fig. 1e but 
here showing enriched gene sets in whole blood comparing the early (D1 and 
D7) influenza vaccination responses in COVID recovered (COVR) vs. healthy 
control (HC) participants for females (F; Contrast 1), males (M; Contrast 2), and 
sex differences (Contrast 2 vs. 1; i.e., COVR-M versus COVR-F taking healthy sex 
differences into account; see Methods). Plotted are the gene sets that show 
significant changes from the baseline (D-7 and D0) within each comparison 
group [e.g., COVR-F and HC-F for D1] and significant differences between the 
two groups at the indicated timepoints (FDR < 0.05; see Supplementary 
Table 5). b, Similar to Fig. 2e, but showing the D0 Hallmark IFNγ Response 
module score for the indicated cell types from the CITE-seq pseudobulk 
expression data. CD4 = CD4+ T cells; cDC = conventional/myeloid dendritic 
cells; B = B cells. c, Box plot showing the D7 whole blood signature score from 
genes identified in Nakaya et al.52 whose D7/D0 fold-change positively 
correlated with D28 influenza hemagglutination inhibition titres. Only 
participants under 65 years of age [COVR-F (n = 15), COVR-M (n = 14), and HC-F 
(n = 16), and HC-M (n = 14)] are included. Significance of differences is 

determined by two-tailed Wilcoxon rank-sum test. d, Scatter plot showing the 
correlation of the whole blood D1 – D0 Hallmark Interferon Gamma Response 
gene set module score (x-axis) to the whole blood D7 – D0 plasmablast (PB) 
gene set module score (left y-axis; Monaco et al.53) and D7 – D0 difference of 
influenza-specific PB (all HA+CD27+CD38+CD20lowCD21low) frequency from  
flow cytometry (right y-axis; as fraction of CD19+ B cells). Only study 
participants < 65 years of age are included. Spearman’s rank correlation and 
unadjusted P values are shown. e, Box plots showing the D0 (prevaccination) 
microneutralization titres for each of the four strains in the seasonal influenza 
vaccine (columns) in females (COVR-F and HC-F) under the age of 65. 
Unadjusted P values are from linear models accounting for age and race 
(Methods). f, Similar to (e) but for males (COVR-M and HC-M) under 65 years of 
age. g, Maximum standardized influenza vaccine titre (among the four strains 
in the vaccine) at D28 after vaccination for females (left) and males (right), 
respectively. Unadjusted P values are from linear regression models 
accounting for age, race, influenza vaccination history, and baseline influenza 
titre (Methods). Unadjusted P values are shown. All plot elements are the same 
as indicated in Fig. 2.



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | GPR56+ virtual memory-like CD8+ T cells contribute 
to increased day 1 IFNγ response in COVID-19-recovered males. a, Scatterplots 
showing the correlation between the day 0 (D0) log2 frequency of early effector- 
like CD8+ T cells measured by flow cytometry (as fractions of live lymphocytes; 
see Population 50 in Supplementary Table 9 and Supplementary Fig. 1; x-axis) 
and the change (D1 – D0) in serum interferon gamma (IFNγ) protein levels 
measured by the OLINK platform (y-axis) for COVID-19-recovered (COVR) 
females (COVR-F; top, n = 14) and COVR males (COVR-M; bottom; n = 11). 
Spearman’s rank correlation and P values are shown. b, Similar to a but showing 
the correlation between the D0 log2 frequency of early effector-like CD8+ T cells 
measured by from flow cytometry (as fraction of live lymphocytes; x-axis) and 
the change (D1 - D0) in the whole blood signature score of the Hallmark IFNγ 
Response gene set (y-axis). c, Box plots comparing D0 and D1 pseudobulk IFNγ 
gene (IFNG) expression (y-axis) in GPR56+ CD8+ EM population for HC-F (n = 8), 
COVR-F (n = 12), HC-M (n = 8) and COVR-M (n = 12). Significance is determined 
by a linear model accounting for age, race, and influenza vaccination history 
(Methods). d, Bar plot showing the t statistic of the vaccine-induced change  
(D1 - D0) in IFNG expression using CITE-seq pseudobulk data (x-axis) within the 
GPR56+ and GRP56− CD8+ EM for HC-F (n = 8), COVR-F (n = 12), HC-M (n = 8), and 
COVR-M (n = 12). * P < 0.05 with exact value shown in (c). e, Scatter plot showing 
the correlation between GPR56+ CD8+ EM cell frequency (as fractions of total 
CD8+ EM in the CITE-seq data; x-axis) and BTM-M7.3 T cell activation signature 
score of CD8+ EM cells computed using CITE-seq pseudobulk gene expression 
data (y-axis). Spearman correlation and P values are shown. The shaded area 
represents the 95% confidence interval. f, Related to Fig. 3h but showing 
CD45RA and CD45RO only with CD8+ TEMRA cells included as an additional 
comparator. g, (left) Circos plot of T cell receptor (TCR) clonality for different 
CD8+ T cell subsets at D0. Segments in the outer circle represent different CD8+ 
T cell populations. Segments in inner circle represent male (M) and female (F) 

for both COVR and HC participants. Grey lines connect clones sharing identical 
CDR3 sequences within each individual. Cell subsets are downsampled for 
visualization (Methods). (right) Box plot showing Shannon’s entropy index 
(y-axis) at D0 for each of the indicated CD8+ populations. Significance of 
differences is determined by two-tailed Wilcoxon test. Shannon’s entropy 
index evaluates the TCR repertoire diversity for each sample. Higher indices 
indicate higher diversity (i.e., fewer shared clones shown in Circos plot). 
EM, effector memory; CM, central memory; TEMRA, EM cells re-expressing 
CD45RA. h, (left) Circos plot of TCR clonality for GPR56+ CD8+ EM cells at 
different timepoints. Segments in the outer circle represent different days in 
the study (D0, D1, D28). Segments in the inner circle represent males (M) and 
females (F) for both COVR and HC participants. Grey lines connect clones 
sharing identical CDR3 sequences within each sample. Timepoints are 
downsampled for visualization purposes (Methods). (right) Box plot showing 
Shannon’s entropy index (y-axis) of TCR clonality at each of the indicated time 
points (D0, D1, D28; x-axis) for GPR56+ CD8+ EM T cells (left) and GPR56+ CD8+ 
TEMRA (right). Significance of differences is determined by two-tailed 
Wilcoxon test. i, (left) Similar to (h), but showing the shared clones among 
different timepoints (segments in the outer circle). Segments in the inner circle 
represent unique clones for each individual. Clones and lines connecting 
shared clones are coloured. Samples with less than 30 cells were filtered out for 
visualization purposes. (right) Line chart showing frequencies of each clone 
(y-axis) shown in Circos plot (left) at D0, D1 and D28 for each participant.  
P-values of paired Wilcoxon test are shown comparing the clone frequency 
differences among D0, D1 and D28. j, Related to Fig. 3i but showing the 
frequencies of IFNγ+ NK, IFNγ+CD45RA+CD45RO+ TEMRA CD8+ T cells and IFNγ+ 
MAIT cells after IL-15 stimulation in vitro. All plot elements are the same as 
indicated in Fig. 3. Unadjusted P values are shown.



Extended Data Fig. 5 | Changes in immune states in COVID-19-recovered 
individuals following influenza vaccination. a, Distributions of gene-level 
difference of the innate immune receptor (IIR) signature (see Fig. 1f) in classical 
monocytes separately for females (F) and males (M) [shown as z-scores, on a per 
gene level, capturing the average difference between COVID Recovered (COVR) 
at the indicated timepoint (top to bottom: D0, D1, and D28) and healthy control 
(HC) at D0; see Methods]. Dashed red vertical lines represent the median of the 
distribution. Dark tick marks at the bottom represent individual genes and 
coloured dots highlight specific genes of interest. Significance of differences 
from D0 is determined by paired two-tailed Wilcoxon rank-sum test. b, Similar 

to (a) but for the non-classical monocytes (see Fig. 1g). c, Similar to Fig. 4d but 
for non-classical monocytes (see Fig. 1g for the innate receptor signature in 
non-classical monocytes). d, Similar to Fig. 4b but for COVR-F (red) and COVR-M 
(blue) only and gene sets shown on top of each plot. Box plots showing the 
classical monocyte LEG module scores (y-axis) of gene sets from Supplementary 
Fig. 2: antigen presentation related gene sets, Hallmark Inflammatory response, 
Hallmark TNF-α signalling via NF-κB, and MS-1 signature from Reyes et al.17. 
LEGs from the first three gene sets were found to be repressed in acute COVID-19 
patients in Liu et al.15. e, Similar to (d), but for non-classical monocytes. All plot 
elements are the same as indicated in Fig. 4. Unadjusted P values are shown.
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Extended Data Table 1 | Cohort characteristics

Demographics (age, sex, self-reported race), influenza vaccination history, and COVID-19 related information (for recoverees). COVR = COVID-19 recovered.
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model for assessing immune response differences among the groups. We model post-vaccination titer as the outcome variable with influenza 
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Blinding Blinding was not performed as individuals were recruited based on a known history of SARS-CoV-2 infection. Furthermore, as part of the 
study, an individual's SARS-CoV-2 infection history was confirmed by antibody test in order to allocate them to the correct subject group. 
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Antibodies
Antibodies used TotalSeq™-C Human Universal Cocktail, V1.0; Fluorochrome-conjugated antibodies as indicated in Methods Table 1, 2 and 3.

Validation See Supplementary Tables 11-14 for antibody data, including validation information from the commercial companies who made the 
products.
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Cell line source(s) Lenti-X- 293T cells were obtained from Takara Bio (Cat. No. 632180). 293T-ACE2 cells were obtained from ATCC. 
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Authentication Cell line was checked for expression of ACE2 and validated by FACS analysis. None of the cell lines were authenticated by 
karyotyping or other genomic techniques.

Mycoplasma contamination Negative for Mycoplasma

Commonly misidentified lines
(See ICLAC register)

No misidentified cell lines were used in the study.

Human research participants
Policy information about studies involving human research participants

Population characteristics COVID-19-recovered males (n=16; ages 21-67; median time since COVID-19 diagnosis: 186 days). COVID-19-recovered 
females (n=17; ages 23-70; median time since COVID-19 diagnosis: 172 days). Healthy control males (n=19; ages 24-69). 
Healthy control females (n=21; ages 22-70). 

Recruitment Subjects were recruited from the community using email listserv messages, newspaper advertisements, and follow-up 
contact from a COVID-19 convalescent plasma study. All subjects were self-selected based on interest in participating in 
COVID-19-related research, ability to participate in study visits, and exposure to recruitment materials. As influenza vaccine 
titers and responses are not routinely measured outside of research settings, it is unlikely that individuals who opted to 
participate in the study introduced systemic bias as a result of prior knowledge about their individual cellular or molecular 
responses to the influenza vaccine. 

Ethics oversight Institutional Review Board of the National Institutes of Health. Informed consent was obtained from all study participants 
prior to the onset of study procedures. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NCT04025580

Study protocol 19-I-0126 (Systems analyses of the immune response to the seasonal influenza vaccine). Trial protocol described on clinicaltrials.gov.

Data collection Subjects were recruited between August and December 2020. Study visits occurred at the National Institutes of Health (NIH) Clinical 
Center (CC) in Bethesda, Maryland, USA. Blood samples were collected by phlebotomy staff at the NIH CC. Samples were collected 
between September 2020 and April 2021. 

Outcomes Primary outcome to be measured was serum microneutralization titers to the four influenza strains in the FDA-approved seasonal 
influenza vaccines used in the study (Flucelvax and high dose Fluzone).
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Methodology

Sample preparation Whole blood was collected from study participants, PBMCs were isolated using a modified Ficoll procedure, and cells were 
frozen and stored at -80C. Thawed PBMC were washed in RPMI culture medium containing 50U/ml benzonase nuclease and 
then washed by PBS. Cells were incubated with LIVE/DEAD Fixable Blue Dye, which was used to exclude dead cells from 
analysis. Cells were incubated with fluorochrome-conjugated B, H1, H3 probes and fluorochrome-conjugated antibodies 
against IgM, IgA, CD21, CD85J, FCRL5, CD20, IgG, CD38, CD14, CD56, CD3, CD27, CD71, CD19, IgD etc as indicated in the 
Method for 30 min at 4 C in the dark. After incubation with antibodies for 30 minutes, cells were washed two times with 
FACS buffer (0.1%BSA/PBS (pH7.4)) and fixed in 1% paraformaldehyde.

Instrument Cytek Auora (Cytek Biosciences), BD Symphony (BD Biosciences)

Software SpectroFlo version 2.2.0 (Cytek Biosciences) and BD FACSDiva Software were used for collecting the data and FlowJo version 
10 (BD Biosciences) was used for flow cytometry data analysis.
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Cell population abundance Post-sort fractions not evaluated.

Gating strategy Gating strategies provided in Supplementary Information Figures 1, 3 and 6.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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