Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations

Abstract

Pyridines and related N-heteroarenes are commonly found in pharmaceuticals, agrochemicals and other biologically active compounds1,2. Site-selective C–H functionalization would provide a direct way of making these medicinally active products3,4,5. For example, nicotinic acid derivatives could be made by C–H carboxylation, but this remains an elusive transformation6,7,8. Here we describe the development of an electrochemical strategy for the direct carboxylation of pyridines using CO2. The choice of the electrolysis setup gives rise to divergent site selectivity: a divided electrochemical cell leads to C5 carboxylation, whereas an undivided cell promotes C4 carboxylation. The undivided-cell reaction is proposed to operate through a paired-electrolysis mechanism9,10, in which both cathodic and anodic events play critical roles in altering the site selectivity. Specifically, anodically generated iodine preferentially reacts with a key radical anion intermediate in the C4-carboxylation pathway through hydrogen-atom transfer, thus diverting the reaction selectivity by means of the Curtin–Hammett principle11. The scope of the transformation was expanded to a wide range of N-heteroarenes, including bipyridines and terpyridines, pyrimidines, pyrazines and quinolines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Importance and background.
Fig. 2: Electrochemical carboxylation of pyridines.
Fig. 3: Substrate scope.
Fig. 4: Mechanistic studies.

Similar content being viewed by others

Data availability

All data supporting the findings of this work are available in the paper and its Supplementary Information.

References

  1. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Pozharskii, A. F., Soldatenkov, A. T. & Katritzky, A. R. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications (Wiley, 2011).

  3. Nakao, Y. Transition-metal-catalyzed C–H functionalization for the synthesis of substituted pyridines. Synthesis 20, 3209–3219 (2011).

    Article  Google Scholar 

  4. Stephens, D. E. & Larionov, O. V. Recent advances in the C–H-functionalization of the distal positions in pyridines and quinolines. Tetrahedron 71, 8683–8716 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seregin, I. V. & Gevorgyan, V. Direct transition metal-catalyzed functionalization of heteroaromatic compounds. Chem. Soc. Rev. 36, 1173–1193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khoshro, H., Zare, H. R., Jafari, A. A. & Gorji, A. Dual activity of electrocatalytic activated CO2 toward pyridine for synthesis of isonicotinic acid: an EC′C′C mechanism. Electrochem. Commun. 51, 69–71 (2015).

    Article  CAS  Google Scholar 

  7. Fuchs, P., Hess, U., Holst, H. H. & Lund, H. Electrochemical carboxylation of some heteroaromatic compounds. Acta Chem. Scand. B 35, 185–192 (1981).

    Article  Google Scholar 

  8. Fu, L. et al. Ligand-enabled site-selectivity in a versatile rhodium(II)-catalysed aryl C–H carboxylation with CO2. Nat. Catal. 1, 469–478 (2018).

    Article  CAS  Google Scholar 

  9. Llorente, M. J., Nguyen, B. H., Kubiak, C. P. & Moeller, K. D. Paired electrolysis in the simultaneous production of synthetic intermediates and substrates. J. Am. Chem. Soc. 138, 15110–15113 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Mo, Y. et al. Microfluidic electrochemistry for single-electron transfer redox-neutral reactions. Science 368, 1352–1357 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Seeman, J. I. Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics. Chem. Rev. 83, 83–134 (1983).

    Article  CAS  Google Scholar 

  12. Guo, P., Joo, J. M., Rakshit, S. & Sames, D. C–H arylation of pyridines: high regioselectivity as a consequence of the electronic character of C–H bonds and heteroarene ring. J. Am. Chem. Soc. 133, 16338–16341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C–H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Zhu, R.-Y., Farmer, M. E., Chen, Y.-Q. & Yu, J.-Q. A simple and versatile amide directing group for C–H functionalizations. Angew. Chem. Int. Ed. 55, 10578–10599 (2016).

    Article  CAS  Google Scholar 

  15. Arockiam, P. B., Bruneau, C. & Dixneuf, P. H. Ruthenium(II)-catalyzed C–H bond activation and functionalization. Chem. Rev. 112, 5879–5918 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Brückl, T., Baxter, R. D., Ishihara, Y. & Baran, P. S. Innate and guided C–H functionalization logic. Acc. Chem. Res. 45, 826–839 (2012).

    Article  PubMed  Google Scholar 

  17. Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).

    Article  ADS  PubMed  Google Scholar 

  19. Tortajada, A., Juliá-Hernández, F., Börjesson, M., Moragas, T. & Martin, R. Transition‐metal‐catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed. 57, 15948–15982 (2018).

    Article  CAS  Google Scholar 

  20. Ye, J.-H., Ju, T., Huang, H., Liao, L.-L. & Yu, D.-G. Radical carboxylative cyclizations and carboxylations with CO2. Acc. Chem. Res. 54, 2518–2531 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, L. & Hou, Z. N-Heterocyclic carbene (NHC)–copper-catalysed transformations of carbon dioxide. Chem. Sci. 4, 3395–3403 (2013).

    Article  ADS  CAS  Google Scholar 

  22. Boogaerts, I. I. F. & Nolan, S. P. Carboxylation of C–H bonds using N-heterocyclic carbene gold(I) complexes. J. Am. Chem. Soc. 132, 8858–8859 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, X.-F., Zhang, K., Tao, L., Lu, X.-B. & Zhang, W.-Z. Recent advances in electrochemical carboxylation reactions using carbon dioxide. Green Chem. Eng. 3, 125–137 (2022).

    Article  Google Scholar 

  24. Luo, J. & Larrosa, I. C–H carboxylation of aromatic compounds through CO2 fixation. ChemSusChem 10, 3317–3332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dhawa, U., Choi, I. & Ackerman, L. in CO2 as a Building Block in Organic Synthesis (ed. Das, S.) 29–57 (Wiley, 2020).

  26. Ye, M., Gao, G.-L. & Yu, J.-Q. Ligand-promoted C-3 selective C–H olefination of pyridines with Pd catalysts. J. Am. Chem. Soc. 133, 6964–6967 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Fosu, S. C., Hambira, C. M., Chen, A. D., Fuchs, J. R. & Nagib, D. A. Site-selective C–H functionalization of (hetero)arenes via transient, non-symmetric iodanes. Chem. 5, 417–428 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).

    Article  CAS  Google Scholar 

  29. Lewis, J. C., Bergman, R. G. & Ellman, J. A. Rh(I)-catalyzed alkylation of quinolines and pyridines via C–H bond activation. J. Am. Chem. Soc. 129, 5332–5333 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hilton, M. C. et al. Heterobiaryl synthesis by contractive C–C coupling via P(V) intermediates. Science 362, 799–804 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. O’Hara, F., Blackmond, D. G. & Baran, P. S. Radical-based regioselective C–H functionalization of electron-deficient heteroarenes: scope, tunability, and predictability. J. Am. Chem. Soc. 135, 12122–12134 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nakao, Y., Yamada, Y., Kashihara, N. & Hiyama, T. Selective C-4 alkylation of pyridine by nickel/Lewis acid catalysis. J. Am. Chem. Soc. 132, 13666–13668 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, J. H. et al. A radical approach for the selective C–H borylation of azines. Nature 595, 677–683 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Fier, P. S. & Hartwig, J. H. Selective C–H fluorination of pyridines and diazines inspired by a classic amination reaction. Science 342, 956–960 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Gao, Y., Cai, Z., Li, S. & Li, G. Rhodium(I)-catalyzed aryl C–H carboxylation of 2-arylanilines with CO2. Org. Lett. 21, 3663–3669 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article  CAS  Google Scholar 

  38. Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ackermann, L. Metalla-electrocatalyzed C–H activation by earth-abundant 3d metals and beyond. Acc. Chem. Res. 53, 84–104 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Jiao, K.-J., Xing, Y.-K., Yang, Q.-L., Qiu, H. & Mei, T.-S. Site-selective C–H functionalization via synergistic use of electrochemistry and transition metal catalysis. Acc. Chem. Res. 53, 300–310 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Kärkäs, M. D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).

    Article  PubMed  Google Scholar 

  42. Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, F. & Stahl, S. S. Electrochemical oxidation of organic molecules at lower overpotential: accessing broader functional group compatibility with electron–proton transfer mediators. Acc. Chem. Res. 53, 561–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan, Y., Zeitler, E. L., Gu, J., Hu, Y. & Bocarsly, A. B. Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J. Am. Chem. Soc. 135, 14020–14023 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, P. et al. Electrochemical arylation of electron-deficient arenes through reductive activation. Angew. Chem. Int. Ed. 58, 15747–15751 (2019).

    Article  CAS  Google Scholar 

  46. Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, R. E. & Gamboa-Aldeco, M. E.) 89–189 (Springer, 2008).

  47. Dunwell, M. et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Montoro, R. & Wirth, T. Direct iodination of alkanes. Org. Lett. 5, 4729–4731 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Murray, P. R. D. et al. Photochemical and electrochemical applications of proton-coupled electron transfer in organic synthesis. Chem. Rev. 122, 2017–2291 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Sore, H. F., Galloway, W. R. & Spring, D. R. Palladium-catalysed cross-coupling of organosilicon reagents. Chem. Soc. Rev. 41, 1845–1866 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Wang from the Analytical & Testing Center at Sichuan University, J. Li and D. Deng from the comprehensive training platform of the Specialized Laboratory in the College of Chemistry at Sichuan University and the analytical facilities at Cornell University (supported by National Science Foundation grant CHE-1531632) for compound characterization. This work was financed by the National Natural Science Foundation of China (22225106 and 21822108 to D.-G.Y.), Sichuan Science and Technology Program (20CXTD0112 to D.-G.Y.), the ‘973’ Project from the MOST of China (2015CB856600 to D.-G.Y.), Fundamental Research Funds from Sichuan University (2020SCUNL102 to D.-G.Y.), National Institute of General Medical Sciences (R01GM130928 to S.L.), Eli Lilly and Company (to S.L.) and Cornell University (to S.L.). S.L. is grateful to the Sloan Foundation for a Sloan Research Fellowship. Electron spin resonance data were collected and analysed at the National Biomedical Center for Advanced ESR Technology (ACERT) (P41GM103521) with assistance from S. Chandrasekaran. We thank M. Frederick for helpful discussions, P. Milner and S. Meng for the use of gas chromatography, C. Wagen and E. Jacobsen for the use of the Karl Fischer titrator, I. Keresztes for help with NMR analysis, J. Martinez Alvarado for graphic design of Fig. 2, J. Ho for manuscript editing and W. Guan for reproducing experiments.

Author information

Authors and Affiliations

Authors

Contributions

G.-Q.S., P.Y. and Wen Zhang contributed equally to this work. G.-Q.S., P.Y., Wen Zhang, Wei Zhang, L.-L.L., Z.Z. and L.L. performed synthetic experiments. P.Y., G.-Q.S. and Wen Zhang performed mechanistic experiments. Y.W. and Z.L. conducted DFT calculations and electroanalytic experiments. S.L. and D.-G.Y. supervised the project.

Corresponding authors

Correspondence to Da-Gang Yu or Song Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Ki Tae Nam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–20, including Supplementary Text and Data, Supplementary Tables 1–13, Supplementary Figs. 1–32 and references—see table of contents for details.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, GQ., Yu, P., Zhang, W. et al. Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature 615, 67–72 (2023). https://doi.org/10.1038/s41586-022-05667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05667-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing