Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Valley formation aridifies East Africa and elevates Congo Basin rainfall

East African aridification during the past 8 million years is frequently invoked as a driver of large-scale shifts in vegetation1 and the evolution of new animal lineages, including hominins2,3,4. However, evidence for increasing aridity is debated5 and, crucially, the mechanisms leading to dry conditions are unclear6. Here, numerical model experiments show that valleys punctuating the 6,000-km-long East African Rift System (EARS) are central to the development of dry conditions in East Africa. These valleys, including the Turkana Basin in Kenya, cause East Africa to dry by channelling water vapour towards Central Africa, a process that simultaneously enhances rainfall in the Congo Basin rainforest. Without the valleys, the uplift of the rift system leads to a wetter climate in East Africa and a drier climate in the Congo Basin. Results from climate model experiments demonstrate that the detailed tectonic development of Africa has shaped the rainfall distribution, with profound implications for the evolution of African plant and animal lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of model experiments.
Fig. 2: The Turkana Channel influences the east–west rainfall gradient in tropical Africa.
Fig. 3: Water vapour export from East Africa increases as the Turkana Channel deepens.
Fig. 4: Valleys lead to lower rainfall in East Africa, with increased water vapour export across the rift system.

Similar content being viewed by others

Data availability

Model data arising from this paper used in plotting and the edited high-resolution GLOBE dataset orography files for each experiment are available on publication at https://doi.org/10.5281/zenodo.6956995. ERA5 data were downloaded from https://cds.climate.copernicus.eu/cdsapp#!/home. CHIRPS data are available at https://data.chc.ucsb.edu/products/CHIRPS-2.0/. GPCP data are from https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00979. Data used in base maps for figures are publicly available from https://www.naturalearthdata.com/ and plotted with Cartopy (https://github.com/SciTools/cartopy/archive/v0.11.2.tar.gz). The UK Met Office Unified Model is available for use under license. For further information on how to apply for a license, see http://www.metoffice.gov.uk/research/modelling-systems/unified-model.

Code availability

Code for producing figures is available on publication at https://doi.org/10.5281/zenodo.6956995.

References

  1. Bobe, R. The evolution of arid ecosystems in eastern Africa. J. Arid. Environ. 66, 564–584 (2006).

    Article  ADS  Google Scholar 

  2. deMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

    Article  ADS  CAS  Google Scholar 

  3. Maslin, M. A., Shultz, S. & Trauth, M. H. A synthesis of the theories and concepts of early human evolution. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140064 (2015).

    Article  Google Scholar 

  4. Vrba, E. S. in Evolutionary History of theRobustAustralopithecines (ed. Grine, F. E.) 405–426 (Aldine de Gruyter, 1988).

  5. Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl Acad. Sci. USA 114, 7331–7336 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levin, N. E. Environment and climate of early human evolution. Annu. Rev. Earth Planet. Sci. 43, 405–429 (2015).

    Article  ADS  CAS  Google Scholar 

  7. Trewartha, G. T. The Earth’s Problem Climates (Univ. Wisconsin Press, 1961).

  8. Yang, W., Seager, R., Cane, M. A. & Lyon, B. The annual cycle of East African precipitation. J. Clim. 28, 2385–2404 (2015).

    Article  ADS  Google Scholar 

  9. Nicholson, S. E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 55, 590–635 (2017).

    Article  ADS  Google Scholar 

  10. Washington, R., James, R., Pearce, H., Pokam, W. M. & Moufouma-Okia, W. Congo Basin rainfall climatology: can we believe the climate models? Philos. Trans. R. Soc. B Biol. Sci. 368, 20120296 (2013).

    Article  Google Scholar 

  11. Ring, U. The East African rift system. Austrian J. Earth Sci. 107, 132–146 (2014).

    Google Scholar 

  12. Sepulchre, P. et al. Tectonic uplift and Eastern Africa aridification. Science 313, 1419–1423 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Betzler, C. et al. The abrupt onset of the modern South Asian Monsoon winds. Sci. Rep. 6, 29838 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Indeje, M., Semazzi, F. H. M., Xie, L. & Ogallo, L. J. Mechanistic model simulations of the East African climate using NCAR regional climate model: influence of large-scale orography on the Turkana low-level jet. J. Clim. 14, 2710–2724 (2001).

    Article  ADS  Google Scholar 

  15. Nicholson, S. The Turkana low-level jet: mean climatology and association with regional aridity. Int. J. Climatol. 36, 2598–2614 (2016).

    Article  Google Scholar 

  16. Vizy, E. K. & Cook, K. H. Observed relationship between the Turkana low-level jet and boreal summer convection. Clim. Dyn. 53, 4037–4058 (2019).

    Article  Google Scholar 

  17. Munday, C., Washington, R. & Har, N. African low-level jets and their importance for water vapor transport and rainfall. Geophys. Res. Lett. 48, e2020GL090999 (2021).

    Article  ADS  Google Scholar 

  18. Chorowicz, J. The East African rift system. J. Afr. Earth Sci. 43, 379–410 (2005).

    Article  ADS  Google Scholar 

  19. Viste, E. & Sorteberg, A. Moisture transport into the Ethiopian highlands. Int. J. Climatol. 33, 249–263 (2013).

    Article  Google Scholar 

  20. Spavins‐Hicks, Z. D., Washington, R. & Munday, C. The Limpopo Low‐Level Jet: mean climatology and role in water vapor transport. J. Geophys. Res. Atmos. 126, e2020JD034364 (2021).

    Article  ADS  Google Scholar 

  21. Barimalala, R., Blamey, R. C., Desbiolles, F. & Reason, C. J. C. The influence of southeastern African river valley jets on regional rainfall. Clim. Dyn. 57, 2905–2920 (2021).

    Article  Google Scholar 

  22. Slingo, J., Spencer, H., Hoskins, B., Berrisford, P. & Black, E. The meteorology of the Western Indian Ocean, and the influence of the East African Highlands. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 363, 25–42 (2005).

    Article  ADS  Google Scholar 

  23. Prömmel, K., Cubasch, U. & Kaspar, F. A regional climate model study of the impact of tectonic and orbital forcing on African precipitation and vegetation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 154–162 (2013).

    Article  Google Scholar 

  24. Jung, G., Prange, M. & Schulz, M. Influence of topography on tropical African vegetation coverage. Clim. Dyn. 46, 2535–2549 (2016).

    Article  Google Scholar 

  25. DeMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Maslin, M. A. et al. East African climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).

    Article  ADS  Google Scholar 

  28. Trauth, M. H. et al. Northern Hemisphere Glaciation, African climate and human evolution. Quat. Sci. Rev. 268, 107095 (2021).

    Article  Google Scholar 

  29. Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article  ADS  CAS  Google Scholar 

  30. Hodell, D. A. & Channell, J. E. T. Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate. Clim. Past 12, 1805–1828 (2016).

    Article  Google Scholar 

  31. Wilks, D. The stippling shows statistically significant grid points. Bull. Am. Meteorol. Soc. 97, 2263–2274 (2016).

    Article  ADS  Google Scholar 

  32. Tucker, S. O. et al. Evaluation of a new 12 km regional perturbed parameter ensemble over Europe. Clim. Dyn. 58, 879–903 (2022).

    Article  Google Scholar 

  33. Wood, N. et al. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Q. J. R. Meteorol. Soc. 140, 1505–1520 (2014).

    Article  ADS  Google Scholar 

  34. Gregory, D. & Rowntree, P. R. A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Weather Rev. 118, 1483–1506 (1990).

    Article  ADS  Google Scholar 

  35. Davies, T. Lateral boundary conditions for limited area models. Q. J. R. Meteorol. Soc. 140, 185–196 (2014).

    Article  ADS  Google Scholar 

  36. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  ADS  Google Scholar 

  37. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Article  ADS  Google Scholar 

  38. Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Adler, R. F. et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere 9, 138 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Creese, A. & Washington, R. Using qflux to constrain modeled Congo Basin rainfall in the CMIP5 ensemble. J. Geophys. Res. Atmos. 121, 13,415–13,442 (2016).

    Article  Google Scholar 

  41. Haensler, A., Saeed, F. & Jacob, D. Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Clim. Change 121, 349–363 (2013).

    Article  ADS  Google Scholar 

  42. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  ADS  Google Scholar 

  43. Hastings, D. A. et al. The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0 (National Oceanic and Atmospheric Administration, 1999); http://www.ngdc.noaa.gov/mgg/topo/globe.html.

Download references

Acknowledgements

We acknowledge the input from and useful discussions with J. Lee-Thorp and R. Bobé (both Oxford University). This article is an output from the REACH programme, financed by UK Aid from the UK Foreign, Commonwealth and Development Office (FCDO) for the benefit of developing countries (programme code 201880). However, the views expressed and information contained in it are not necessarily those of or endorsed by the FCDO, which can accept no responsibility for such views or information or for any reliance placed on them.

Author information

Authors and Affiliations

Authors

Contributions

C.M. designed and ran the model experiments and wrote the manuscript. N.S. helped set up and run the model experiments and wrote part of the Methods section. R.W. contributed to the design of the experiments and edited the manuscript. R.G.J. contributed to the experimental design and edited the manuscript.

Corresponding author

Correspondence to Callum Munday.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Thierry C. Fotso-Nguemo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Extended data

is available for this paper at https://doi.org/10.1038/s41586-022-05662-5.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Water vapour transport in control and reanalysis data.

The arrows show the direction and strength at which atmospheric-column integrated water vapour is being transported (kg m−1 s−1) in the control experiment (a) and ERA5 (b). Shading gives the IWVT magnitude (kg m−1 s−1) (see Methods). The East African region we use to evaluate the moisture budget is bounded by the red line in a. ERA5 data42 are available at https://cds.climate.copernicus.eu/cdsapp#!/home.

Extended Data Fig. 2 Evaluation of rainfall in the control simulation.

Annual rainfall (mm year−1) in the control (a), CHIRPS (b) and GPCP version 2.2 (c). CHIRPS38 data are available at https://data.chc.ucsb.edu/products/CHIRPS-2.0/. GPCP data39 are from https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00979.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munday, C., Savage, N., Jones, R.G. et al. Valley formation aridifies East Africa and elevates Congo Basin rainfall. Nature 615, 276–279 (2023). https://doi.org/10.1038/s41586-022-05662-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05662-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene