Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Feshbach resonance in collisions between triplet ground-state molecules

Abstract

Collisional resonances are important tools that have been used to modify interactions in ultracold gases, for realizing previously unknown Hamiltonians in quantum simulations1, for creating molecules from atomic gases2 and for controlling chemical reactions. So far, such resonances have been observed for atom–atom collisions, atom–molecule collisions3,4,5,6,7 and collisions between Feshbach molecules, which are very weakly bound8,9,10. Whether such resonances exist for ultracold ground-state molecules has been debated owing to the possibly high density of states and/or rapid decay of the resonant complex11,12,13,14,15. Here we report a very pronounced and narrow (25 mG) Feshbach resonance in collisions between two triplet ground-state NaLi molecules. This molecular Feshbach resonance has two special characteristics. First, the collisional loss rate is enhanced by more than two orders of magnitude above the background loss rate, which is saturated at the p-wave universal value, owing to strong chemical reactivity. Second, the resonance is located at a magnetic field where two open channels become nearly degenerate. This implies that the intermediate complex predominantly decays to the second open channel. We describe the resonant loss feature using a model with coupled modes that is analogous to a Fabry–Pérot cavity. Our observations provide strong evidence for the existence of long-lived coherent intermediate complexes even in systems without reaction barriers and open up the possibility of coherent control of chemical reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resonant molecular loss.
Fig. 2: Two-body loss-rate coefficient.
Fig. 3: Three-state model for the resonance and optical analogues.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

The codes used to generate the results are available from the corresponding author on reasonable request.

References

  1. Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  CAS  Google Scholar 

  2. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010).

    Article  CAS  ADS  Google Scholar 

  3. Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    Article  CAS  ADS  Google Scholar 

  4. Wang, X.-Y. et al. Magnetic Feshbach resonances in collisions of 23Na40K with 40K. New J. Phys. 23, 115010 (2021).

    Article  CAS  ADS  Google Scholar 

  5. Son, H. et al. Control of reactive collisions by quantum interference. Science 375, 1006–1010 (2022).

    Article  CAS  ADS  Google Scholar 

  6. Knoop, S. et al. Observation of an Efimov-like trimer resonance in ultracold atom–dimer scattering. Nat. Phys. 5, 227–230 (2009).

    Article  CAS  Google Scholar 

  7. Zenesini, A. et al. Resonant atom-dimer collisions in cesium: testing universality at positive scattering lengths. Phys. Rev. A 90, 022704 (2014).

    Article  ADS  Google Scholar 

  8. Chin, C. et al. Observation of Feshbach-like resonances in collisions between ultracold molecules. Phys. Rev. Lett. 94, 123201 (2005).

    Article  CAS  ADS  Google Scholar 

  9. Wang, F., Ye, X., Guo, M., Blume, D. & Wang, D. Observation of resonant scattering between ultracold heteronuclear Feshbach molecules. Phys. Rev. A 100, 042706 (2019).

    Article  CAS  ADS  Google Scholar 

  10. Ferlaino, F. et al. Collisions of ultracold trapped cesium Feshbach molecules. Laser Phys. 20, 23–31 (2010).

    Article  CAS  ADS  Google Scholar 

  11. Mayle, M., Ruzic, B. P. & Bohn, J. L. Statistical aspects of ultracold resonant scattering. Phys. Rev. A 85, 062712 (2012).

    Article  ADS  Google Scholar 

  12. Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    Article  ADS  Google Scholar 

  13. Christianen, A., Karman, T. & Groenenboom, G. C. Quasiclassical method for calculating the density of states of ultracold collision complexes. Phys. Rev. A 100, 032708 (2019).

    Article  CAS  ADS  Google Scholar 

  14. Christianen, A., Zwierlein, M. W., Groenenboom, G. C. & Karman, T. Photoinduced two-body loss of ultracold molecules. Phys. Rev. Lett. 123, 123402 (2019).

    Article  CAS  ADS  Google Scholar 

  15. Liu, Y. & Ni, K.-K. Bimolecular chemistry in the ultracold regime. Annu. Rev. Phys. Chem. 73, 73–96 (2022).

    Article  ADS  Google Scholar 

  16. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Article  CAS  Google Scholar 

  17. Balakrishnan, N. Perspective: Ultracold molecules and the dawn of cold controlled chemistry. J. Chem. Phys 145, 150901 (2016).

    Article  CAS  ADS  Google Scholar 

  18. Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Article  CAS  Google Scholar 

  19. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    Article  CAS  ADS  Google Scholar 

  20. Blackmore, J. A. et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci. Technol. 4, 014010 (2018).

    Article  ADS  Google Scholar 

  21. Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article  CAS  Google Scholar 

  22. Herrera, F., Cao, Y., Kais, S. & Whaley, K. B. Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing. New J. Phys. 16, 075001 (2014).

    Article  CAS  MATH  ADS  Google Scholar 

  23. Hughes, M. et al. Robust entangling gate for polar molecules using magnetic and microwave fields. Phys. Rev. A 101, 062308 (2020).

    Article  CAS  ADS  Google Scholar 

  24. Sawant, R. et al. Ultracold polar molecules as qudits. New J. Phys. 22, 013027 (2020).

    Article  CAS  ADS  Google Scholar 

  25. Rvachov, T. M. et al. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).

    Article  ADS  Google Scholar 

  26. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  CAS  ADS  Google Scholar 

  27. Winkler, K., Lang, F., Thalhammer, G., vd Straten, P., Grimm, R. & Denschlag, J. H. Coherent optical transfer of Feshbach molecules to a lower vibrational state. Phys. Rev. Lett. 98, 043201 (2007).

    Article  CAS  ADS  Google Scholar 

  28. Danzl, J. G. et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265–270 (2010).

    Article  CAS  Google Scholar 

  29. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic Na23K40 molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    Article  ADS  Google Scholar 

  30. Danzl, J. G. et al. Quantum gas of deeply bound ground state molecules. Science 321, 1062–1066 (2008).

    Article  CAS  ADS  Google Scholar 

  31. Krzyzewski, S. P., Akin, T. G., Dizikes, J., Morrison, M. A. & Abraham, E. R. I. Observation of deeply bound 85Rb2 vibrational levels using Feshbach optimized photoassociation. Phys. Rev. A 92, 062714 (2015).

    Article  ADS  Google Scholar 

  32. Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010).

    Article  CAS  ADS  Google Scholar 

  33. Anderegg, L. et al. Laser cooling of optically trapped molecules. Nat. Phys. 14, 890–893 (2018).

    Article  CAS  Google Scholar 

  34. Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

    Article  CAS  ADS  Google Scholar 

  35. Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132–1136 (2020).

    Article  CAS  ADS  Google Scholar 

  36. Gregory, P., Blackmore, J., Bromley, S. & Cornish, S. Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124, 163402 (2020).

    Article  CAS  ADS  Google Scholar 

  37. Gregory, P. D. et al. Molecule–molecule and atom–molecule collisions with ultracold RbCs molecules. New J. Phys. 23, 125004 (2021).

    Article  CAS  ADS  Google Scholar 

  38. Gersema, P. et al. Probing photoinduced two-body loss of ultracold nonreactive bosonic 23Na87Rb and 23Na39K molecules. Phys. Rev. Lett. 127, 163401 (2021).

    Article  CAS  ADS  Google Scholar 

  39. Bause, R. et al. Collisions of ultracold molecules in bright and dark optical dipole traps. Phys. Rev. Res. 3, 033013 (2021).

    Article  CAS  Google Scholar 

  40. Idziaszek, Z. & Julienne, P. S. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).

    Article  ADS  Google Scholar 

  41. Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    Article  CAS  ADS  Google Scholar 

  42. Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).

    Article  CAS  ADS  Google Scholar 

  43. Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779–782 (2021).

    Article  CAS  ADS  Google Scholar 

  44. Wigner, E. P. On the behavior of cross sections near thresholds. Phys. Rev. 73, 1002 (1948).

    Article  CAS  MATH  ADS  Google Scholar 

  45. Derevianko, A., Babb, J. & Dalgarno, A. High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers. Phys. Rev. A 63, 052704 (2001).

    Article  ADS  Google Scholar 

  46. Julienne, P. S., Hanna, T. M. & Idziaszek, Z. Universal ultracold collision rates for polar molecules of two alkali-metal atoms. Phys. Chem. Chem. Phys. 13, 19114–19124 (2011).

    Article  CAS  Google Scholar 

  47. Idziaszek, Z., Jachymski, K. & Julienne, P. S. Reactive collisions in confined geometries. New J. Phys. 17, 035007 (2015).

    Article  ADS  Google Scholar 

  48. Chevy, F. et al. Resonant scattering properties close to a p-wave Feshbach resonance. Phys. Rev. A 71, 062710 (2005).

    Article  ADS  Google Scholar 

  49. Tomza, M., Madison, K. W., Moszynski, R. & Krems, R. V. Chemical reactions of ultracold alkali-metal dimers in the lowest-energy 3Σ state. Phys. Rev. A 88, 050701 (2013).

    Article  ADS  Google Scholar 

  50. Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    Article  CAS  ADS  Google Scholar 

  51. De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article  ADS  Google Scholar 

  52. Mies, F. H., Williams, C. J., Julienne, P. S. & Krauss, M. Estimating bounds on collisional relaxation rates of spin-polarized 87Rb atoms at ultracold temperatures. J. Res. Natl Inst. Stand. Technol. 101, 521 (1996).

    Article  CAS  Google Scholar 

  53. Krems, R. & Dalgarno, A. Quantum-mechanical theory of atom-molecule and molecular collisions in a magnetic field: spin depolarization. J. Chem. Phys. 120, 2296–2307 (2004).

    Article  CAS  ADS  Google Scholar 

  54. Tscherbul, T., Suleimanov, Y. V., Aquilanti, V. & Krems, R. Magnetic field modification of ultracold molecule–molecule collisions. New J. Phys. 11, 055021 (2009).

    Article  ADS  Google Scholar 

  55. Stone, A. The Theory of Intermolecular Forces 2nd edn, Ch. 3 (Oxford Univ. Press, 2013).

  56. Gronowski, M., Koza, A. M. & Tomza, M. Ab initio properties of the NaLi molecule in the a3Σ+ electronic state. Phys. Rev. A 102, 020801 (2020).

    Article  CAS  ADS  Google Scholar 

  57. Harrison, J. F. & Lawson, D. B. Quadrupole moments of the alkali dimers, Li2, Na2, and K2. Int. J. Quantum Chem. 102, 1087–1091 (2005).

    Article  CAS  ADS  Google Scholar 

  58. Hermsmeier, R., Kłos, J., Kotochigova, S. & Tscherbul, T. V. Quantum spin state selectivity and magnetic tuning of ultracold chemical reactions of triplet alkali-metal dimers with alkali-metal atoms. Phys. Rev. Lett. 127, 103402 (2021).

    Article  CAS  ADS  Google Scholar 

  59. Ismail, N., Kores, C. C., Geskus, D. & Pollnau, M. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity. Opt. Express 24, 16366–16389 (2016).

    Article  ADS  Google Scholar 

  60. Friedrich, H. Theoretical Atomic Physics 4th edn (Springer, 2017).

  61. Bai, Y.-P., Li, J.-L., Wang, G.-R. & Cong, S.-L. Model for investigating quantum reflection and quantum coherence in ultracold molecular collisions. Phys. Rev. A 100, 012705 (2019).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Bohn for valuable discussions. We acknowledge support from the National Science Foundation (NSF) through the Center for Ultracold Atoms and grant no. 1506369 and from the Air Force Office of Scientific Research (MURI, grant no. FA9550-21-1-0069). Some of the analysis was performed by W.K. at the Aspen Center for Physics, which is supported by NSF grant PHY-1607611. J.J.P. acknowledges further support from the Samsung Scholarship. T.V.T. gratefully acknowledges support from the NSF CAREER award no. 2045681.

Author information

Authors and Affiliations

Authors

Contributions

J.J.P. carried out the experimental work. All authors contributed to the development of models, data analysis and writing the manuscript.

Corresponding author

Correspondence to Juliana J. Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Density and temperature-dependent loss rate.

a, Density dependency of molecular decay rate at 334.92 G. The initial decay rates are plotted as a function of initial molecule mean density. The green, blue and red dashed lines show the behaviour expected for single-molecule decay, two-body and three-body collisions, respectively. b, Threshold laws of molecule–molecule collisions. Initial rate coefficients are plotted as a function of the initial temperature of NaLi molecules. Blue data points are measurements near the centre of the resonance and red data points are measurements away from resonance near 745 G. The lines show the linear dependence expected for p-wave collisions. Data points were acquired from five to eight different hold times at each bias field; three to six measurements at a given hold time were averaged. Error bars represent one standard deviation of a fitted decay parameter.

Extended Data Fig. 2 Ground-state hyperfine structure in an external magnetic field.

The dashed vertical blue line indicates the position of the Feshbach resonance (about 334.92 G). The subplot shows the Zeeman energies of NaLi hyperfine states from 0 to 1,000 G, whereas the main plot is zoomed into where there are nine near-degenerate hyperfine states (between 300 and 400 G).

Extended Data Fig. 3 Ground-state hyperfine structure near 334.92 G.

State a in red is the lower stretched hyperfine state of NaLi molecules. States b1, b2 and b3 in blue are other hyperfine states that are energetically close to state a near 334.92 G.

Extended Data Fig. 4 Radial dependence of NaLi–NaLi interactions.

Radial dependence of the dipole–dipole, dipole–quadrupole and quadrupole–quadrupole interactions of NaLi(a3Σ+) molecules. The p-wave centrifugal barrier is also shown (dashed line). The upper and lower bounds on the experimental collision energies (4.2 μK and 1.8 μK) are marked by green horizontal lines. The turning points at the centrifugal barrier for these collision energies are Rb = 89.3 and 136.4 nm, respectively.

Extended Data Fig. 5 Matrix elements of NaLi–NaLi interactions.

Matrix elements of the NaLi–NaLi interaction at R = 100 nm as a function of the channel index labelling the basis states |γAγBlmlη. The initial channel is |aa, l = 1, ml = 0 and the total angular momentum projection Mtot = −7. The channel index labels closed channels, in which one or both NaLi molecules are in their N ≥ 1 excited rotational states. Only the matrix elements with the absolute magnitude exceeding 1 Hz are plotted. The magnetic field B = 333 G is tuned near the crossing between the |a and |b1 hyperfine-Zeeman levels. Inset, histogram of direct coupling matrix elements between the incident channel and lower-lying open channels, in which both NaLi molecules are in the ground N = 0 rotational states.

Extended Data Fig. 6 Degeneracy-induced resonance model.

a, Schematic of the resonance model with two open channels and a p-wave bound state trapped behind a centrifugal barrier. b, Inelastic rate \({g}_{2}\left(\widetilde{\Delta }\right)\) (in arbitrary units) plotted as a function of \(\widetilde{\Delta }/{\gamma }_{1}\) for the different values of detuning from resonance normalized by γ1, δE/γ1. Note that for \(\widetilde{\Delta } < 0\), the channel |2 becomes closed and thus \({g}_{2}\left(\widetilde{\Delta }\right)=0\).

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.J., Lu, YK., Jamison, A.O. et al. A Feshbach resonance in collisions between triplet ground-state molecules. Nature 614, 54–58 (2023). https://doi.org/10.1038/s41586-022-05635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05635-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing