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Abstract

The process of cancer immunosurveillance is a mechanism of tumor suppression that
can protect the host from cancer development throughout its lifetime!?. Yet, it is
unknown whether its effectiveness fluctuates over a single day. Here, we demonstrate
that the initial time-of-day of tumor engraftment dictates ensuing tumor size across
murine cancer models. Using immunodeficient mice and animals lacking lineage-
specific circadian functions, we show that dendritic cells (DCs) and CD8* T cells exert
circadian anti-tumor functions that control melanoma volume. Specifically, we find that
rhythmic trafficking of DCs to the tumor draining lymph node (dLN) governs a
circadian response of tumor antigen-specific CD8" T cells, which is dependent on
circadian expression of the co-stimulatory molecule CD80. Consequently, cancer
immunotherapy is more effective when synchronized with DC functions, shows
circadian outcomes in mice and suggests similar effects in humans. These data
demonstrate that circadian rhythms of anti-tumor immune components are not only

critical for the control of tumor size but can also be exploited therapeutically.
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Main text

The immune system provides sophisticated defense mechanisms that most often
eliminate or contain the appearance of tumor cells in healthy tissue, and prevent the
development of life-threatening cancers'?. Both the innate and adaptive arms of
immunity show circadian (~24h) rhythmicity in their response* !, so that even weeks
after an initial stimulus is encountered, time-of-day immune effects are still observed!!”
16 There is evidence that cancer cells can exhibit a perturbation in their circadian clock

components, which drives cancer development!’

. However, the impact of a rhythmic
immune system on tumor surveillance, and the effectiveness of treatments involving

the immune system, remain unknown. Here, we provide evidence that a circadian anti-

tumor immune response controls tumor volume and the response to therapy.

Results
Timed engraftment dictates tumor size

To explore whether tumor volume depends on the time-of-day of tumor cell
engraftment, we injected B16-F10 melanoma cells expressing ovalbumin (B16-F10-
OVA) subcutaneously (s.c.) into cohorts of mice at six different times of the day ((that
is, at Zeitgeber time 1 (ZT1; 1 h after light onset in a 12h light / 12h dark environment;
‘morning’), ZT5 (‘midday’), ZT9 (‘afternoon’), ZT13 (‘evening’), ZT17 (‘midnight”)
and ZT21 (‘early morning’)) and quantified tumor size over the ensuing two weeks. To
control these data, animals were housed in distinct environmental light cabinets, 12h
phase-shifted to each other, allowing the simultaneous injection of the same batch of
tumor cells into differently-timed recipients. Tumor size was strongly affected by the
time-of-day of engraftment, yielding significantly larger tumors when inoculated in the

late night (ZT21), and smaller tumors when inoculated in the late afternoon (ZT9-ZT13)
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(Fig. 1a-b, Extended Data Fig. 1a). We observed similar results in two orthotopic
mammary carcinoma models (E0771 and 4T1) (Extended Data Fig. 1b-d) and a
murine colon carcinoma model (MC-38) (Extended Data Fig. 1e). This indicated that
the time-of-day effect of engraftment on tumor size represented a phenomenon relevant
across different tumor types and sites of engraftment. We further confirmed these data
by quantitative imaging approaches with luciferase-expressing melanoma cells (B16-
F10-OVA-Luc) (Extended Data Fig. 1f). Using B16-F10 melanoma cell lines that did
or did not express OVA yielded very similar results (Extended Data Fig. 1g). This
indicated that the observed time-of-day effect of inoculation represented a general

phenotype not affected by potentially different immunogenicity of the tumor.

Circadian rhythms are defined by their persistence in the absence of environmental
entraining cues, such as rhythmic light onset and offset. Transferring animals to
complete darkness conditions did not alter the observed time-of-day differences,
demonstrating the effect to be bona fide circadian in nature (Fig.1c). However,
switching mice to a 12h inverted dark-light cycle inversed tumor size, demonstrating
that the effect was not dependent on light per se but that it could be entrained by light,
an additional feature of circadian rhythms (Fig. 1d and Extended Data Fig. 1h).
Subjecting mice to a jet-lag protocol (Extended Data Fig. 1h) abrogated time-of-day
differences and increased tumors, indicating that acutely altering lighting regimes
negatively affected disease outcome (Fig. 1d). Together, these data provide unexpected
evidence that tumor size is highly governed by the initial time-of-day of engraftment,

driven by circadian rhythms in the host, which are entrained by light.
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Circadian anti-tumor immune effects

To assess whether these effects were dependent on the immune system, we injected
B16-F10-OV A melanoma cells during the day (ZT9) or at night (ZT21) into NSG mice,
which lack both adaptive and innate immune cells. Of importance, the previously
observed dependency of tumor volume on time-of-day engraftment was abrogated in
these mice, indicating the differences to be mediated by the immune system (Fig. 1e).
To define which arm of immunity was involved, we utilized Rag2”~ mice, which lack
an adaptive immune system. Similar to NSG mice, time-of-day differences in tumor
size were ablated in these animals, demonstrating the adaptive immune system to be

critical in mediating the phenotype (Fig. 1e).

We subsequently used flow cytometry to assess the immune cell infiltrates in
tumors 14 days after inoculation. Tumors were harvested at ZT1, in order to limit
variables to just the time of engraftment. Numbers of CD8* T cells were dependent on
the time of engraftment, with cellularity peaking when tumor inoculation occurred
during the day (ZT9) and troughing at night (ZT21) (Fig. 1f and Extended Data Fig.
2a). In contrast, the numbers of other leukocyte subsets were not affected (Extended
Data Fig. 2b). To assess the functional relevance of rhythmicity in the tumor immune
cell infiltrate, we used different antibodies to deplete specific subpopulations of
leukocytes. Antibody-mediated depletion of CD8" T cells or CD4" T cells — but not of
neutrophils — abrogated the time-of-day difference in tumor size (Fig. 1g and Extended
Data Fig. 2¢-j). However, only depletion of CD8" T cells increased tumor volume (Fig.
1g), while depletion of CD4" T cells reduced it (Extended Data Fig. 2¢). These results
indicate CD8* T cells to exert anti-tumorigenic effects in a time-of-day dependent

manner.
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Rhythmic anti-tumor response in DCs

To explore the mechanisms controlling the time-of-day-dependent impact of
CD8" T cells on tumor size, we focused on the early events that potentially accounted
for the observed effects. Using flow cytometry and quantitative imaging approaches to
characterize the site of engraftment 4 hours after tumor inoculation, we found
CD11c"™™MHCII" cells to represent the predominant leukocyte subset, with higher
numbers of these cells when tumor cells were inoculated at ZT9 compared to ZT21 (Fig
2a-c and Extended Data Fig. 3a-c). Furthermore, 24h after tumor inoculation, we
detected more leukocytes in draining lymph nodes (dLN).of mice in which tumor cells
were inoculated at ZT9 compared to ZT21 (Extended Data Fig. 3d-e). Specifically,
we observed more CD4" and CD8" T cells, including increased numbers of activated
central memory (CD44" CD62L") and naive (CD44- CD62L") T cells, following ZT9
tumor cell engraftment (Extended Data Fig. 3e-f). These dLNs also contained more
CD11c" cells, including CD11b* CD11c* MHCIIM, CD103* CD11c¢* MHCIIM, CD11b*
CD11¢"MHCII", and CD8* CD11c¢" MHCII'" subsets (Extended Data Fig. 3g-i). This
phenotype was also observed in the orthotopic mammary carcinoma as well as the colon
carcinoma models (Extended Data Fig. 4a-g). Under sham conditions, time-of-day
changes in the number of these cell types were observed but showed smaller differences
(Extended Data Fig. Sa). To further identify relevant tumor-derived antigen-
presenting cells (APCs) in the dLN, we used an antibody specific for SIINFEKL
peptide bound to H-2K® (Extended Data Fig. 3h-i). We found that APCs presenting
this antigen predominantly displayed a CD103*CD11¢"MHCIIM phenotype. These
CD103*CD11¢*MHCIIM (SIINFEKL:H-2KP)" cells were also more numerous in dLNs

of mice inoculated with tumor cells at ZT9 (Fig. 2d and Extended Data Fig. 3h-i).
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This phenotype was also observed in the orthotopic E0771-OVA breast cancer model
(Extended Data Fig. 4c-d). No differences were observed in the processing of OVA-
antigen in CD11c" cells (Extended Data Fig. S5b), suggesting that changes in levels of

antigen presentation were not responsible for the phenotype.

Using dextramer staining to detect endogenous T cells specific  for
H-2KYSIINFEKL in the dLN 72h after tumor engraftment, we detected higher numbers
and proportions of antigen-specific CD44" CD8" T cells, when tumor inoculation was
performed at ZT9 compared to ZT21 in both the melanoma and mammary carcinoma
models (Fig. 2e and Extended Data Fig. 4e). We also observed significantly more
EdU* CD8" T cells and EQU* CD4" T cells in the dLN 48h after tumor inoculation at
ZT9 compared to ZT21, demonstrating a higher T cell proliferation rate following ZT9
tumor inoculation (Fig. 2f and Extended Data Fig. 5¢). In an analogous manner, we
performed dextramer staining to detect endogenous T cells specific for a peptide of the
neoantigen Adpgk (H-2DY’ASMTNMELM), expressed by MC-38 colon carcinoma
cells. We detected higher numbers of Adpgk™-neoantigen specific CD8 T cells in this
tumor model in the dLN 72h after tumor engraftment when tumor inoculation was
performed at ZT9 compared to ZT21 (Extended Data Fig. 4f-g). These data indicate a
time-of-day-dependent generation of tumor antigen-specific CD8" T cells in the dLN
to OVA-antigen as well as neoantigen and similar mechanisms at play in a

subcutaneous and orthotopic engraftment setting.

Contribution of DC and T cell clocks
To investigate whether differences were driven by immune cell intrinsic

mechanisms, we used Cd4cre:Bmall’* mice, where the key circadian clock gene
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Bmall (encoded by Arntl) is specifically deleted in T cells (Bmal12T""), rendering them
arrhythmic. Bmall*"®" mice showed similar kinetics of tumor volume when tumor cells
were inoculated either at ZT9 or ZT21, demonstrating the importance of T cell-intrinsic
rhythms in the control of tumor size (Fig. 2g). Similarly, Clec9acre:Bmall* mice,
which lack BMALI expression in conventional DCs (Bmall*°P%), showed comparable
tumor size kinetics when tumor cells were inoculated either at ZT9 or ZT21 (Fig. 2h).
This demonstrated BMAL1 and cell-autonomous circadian oscillations in both DCs and
T cells to be critical for the time-of-day differences in tumor volume. Mechanistically,
Bmall deletion in cDCs abrogated differences in total and antigen-specific DC numbers
in the dLN after tumor engraftment, in contrast to control animals (Fig. 2i). Furthermore,
dextramer staining in Bmall**P¢ mice revealed reduced antigen-specific CD8" T cell
levels and abrogated time-of-day differences (Fig. 2j). These data demonstrate DC and
T cell autonomous circadian clocks to be responsible for the time-of-day-dependent

anti-tumor effects, with DCs governing rhythmic CD8" T cell responses.

DCs govern rhythmic anti-tumor immunity

To obtain global information on DC changes after tumor inoculation at different
times of the day, we performed RNA sequencing (RNAseq) analyses of the subset of
CD1ic" MHCII™ migratory DCs in the dLN collected 24 hours after tumor engraftment
or sham conditions, inoculated at ZT3, 9, 15 or 21. We observed strong time-of-day
differences in overall gene expression, indicating differences in DC functionality. First,
we found that CD11¢” MHCIIM cells exhibited rhythmicity in the expression of clock
genes and clock-controlled genes (Extended Data Fig. 6a), with the expression of
these genes being sufficient to define the time of day from which the cells were derived

(Extended Data Fig. 6b). Next, we detected two main clusters of oscillatory genes,
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one of which was expressed more highly in the morning (ZT9) and the other in the
evening (ZT15) (Fig. 3a-b). Whereas the morning cluster consisted mainly of metabolic
genes — with the exception of the co-stimulatory molecule CD80 — the second cluster
was highly enriched in T cell activation pathways (Fig. 3b-d, Fig. 4a and Extended
Data Fig. 6¢-d). In contrast, RNAseq analyes of CD11¢* MHCIIM cells harvested from
Bmall**P¢ mice showed altered rhythmicity, gene expression patterns and cellular
pathways compared to controls (Fig. 3b, d, Fig. 4a, Extended Data Fig. 6c and
Extended Data Fig. 7a-c). These data indicated that, in addition to differences in DC
numbers, the rhythmicity in DC co-stimulatory factors that was specific for the tumor
scenario (Extended Data Fig. 8a-c) could be responsible for the generation of thythmic
CD8" T cell activation phenotypes.

CD80 expression was confirmed to be time-of-day-dependent in different
CD11c" subsets at the protein level by flow cytometry (Fig. 4b). To interrogate whether
oscillations in CD80 were driven by a cell-autonomous circadian rhythm — independent
of the environment as indicated by the RNAseq data (Fig. 4a) — we performed in vitro
synchronization assays of immature as well as LPS-matured bone marrow-derived DC
(BMDCs) using a serum shock'®!° (Fig. 4c and Extended Data Fig. 9a-c). We
detected significant differences in Cd80 expression at different time points after BMDC
synchronization (Fig. 4c and Extended Data Fig. 9¢). In contrast, we observed no
circadian differences in the expression of various cytokines but rather a timer-
dependent progressive change through time (Extended Data Fig. 9d). Furthermore,
circadian differences in Cd80 expression were abrogated in CD11c¢* MHCIIM cells
harvested from Bmall*°P¢ in vivo as well as BMDCs generated from mice lacking
overall expression of circadian genes in vitro (Bmall”~ or Perl”-Per2”) (Fig. 4a, c-d).

To further test whether circadian rhythmicity in myeloid cells was necessary to control

10
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Cd80 expression, we assessed BMDCs produced from mice lacking BMALI
specifically in myeloid cells (Lyz2cre:Bmall; Bmall*™¥¢°id); again, we found that
loss of BMALI abrogated time-of-day differences in CD80 expression (Fig. 4e). Taken
together, these findings indicate a critical role for the circadian clock machinery in

controlling CD80 expression.

To investigate whether the circadian rhythmicity in DC gene expression patterns
had a functional and causal consequence on T cell activation, we performed co-culture
experiments of synchronized, SIINFEKL-pulsed BMDCs with - non-synchronized
OVA-specific OT-I CD8" T cells. This approach allowed us to observe that the
rhythmicity of DCs directly controlled that of T cells. Indeed, the proliferation of OT-I
CD8" T cells was highly dependent on the rhythmic phase in which the DCs were
located (Fig. 4f). BMDCs harvested 36h after synchronization induced stronger OT-I
T cell proliferation than BMDCs harvested 24h after synchronization (Fig. 4f). In
contrast, BMAL1-deficient:BMDCs failed to induce rhythmic OT-I CD8" T cell
proliferation (Fig. 4g). Furthermore, treatment with an anti-CD80 antibody abrogated
time-of-day differences in OT-I CD8" T cell proliferation (Fig. 4h), demonstrating the

relevance of CD80 in the rhythmic CD8" T cell response.

To specifically investigate the importance of rhythmicity in co-stimulatory signals
provided by BMDCs, we performed co-culture experiments of synchronized,
SIINFEKL-pulsed BMDCs with non-synchronized OV A-specific OT-1 CD8" T cells,
as before, but bypassing MHCI-TCR interactions using an anti-CD3 antibody. Co-
stimulatory signals, in the presence of isotype-matched control antibodies, were

sufficient to promote time-of-day differences in OT-I CD8" T cell proliferation;
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however, anti-CD80 treatment abrogated these time-of-day differences (Fig. 4i).
Finally, antibody treatment against CD80 abrogated the differences in tumor volume
after time-of-day dependent engraftment (Fig. 4j), demonstrating the functional
relevance of CD80 in vivo in driving differences in tumor size. These data indicate that

CDS8O is a critical molecule in this process.

In addition, we identified the presence of BMALI1-binding sites, namely canonical
enhancer boxes (E-boxes), in the promoter region of the Cd80 gene. This suggests that
Cd80 expression is directly regulated by the circadian clock (Extended Data Fig. 9e).
Indeed, using ChIP assays, we confirmed rhythmic binding of BMALI to the Cd80
promoter (Fig. 4k and Extended Data Fig. 9f). Together, these data demonstrate that
circadian rhythms in DCs direct the rhythms of T cell proliferation, a phenomenon
dependent on the rhythmic expression of CD80, which is under direct transcriptional

control of the clock gene BMALI.

Vaccination tumor chrono-immunotherapy

To evaluate the translational potential of our findings, we explored tumor chrono-
immunotherapy. ~Specifically, we studied mice inoculated with B16-F10-OVA
melanoma cells at ZT9 and then immunized with OV A either during the day (ZT9) or
at night (ZT21). This setting limited the time-of-day information to the timepoint of
vaccination only. Strikingly, we found that tumor volume was strongly suppressed by
the vaccine when administered to wild-type mice at ZT9 compared to ZT21 (Fig. 5a),
even when the relative incubation time of the vaccine was significantly longer for ZT21
than for ZT9 (Extended Data Fig. 10a). In contrast, Bmal/l*°’¢ mice vaccinated with

OVA at ZT9 or ZT21 showed similar tumor sizes (Fig. Sb). Analysis of dLNs from
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wild-type mice 24h after vaccination revealed a higher number of SIINFEKL-
presenting DCs in mice vaccinated at ZT9 compared to those vaccinated at ZT21
(Figure Sc and Extended Data Fig. 10b). Furthermore, this increase at ZT9 coincided
with higher numbers of CD69" CD8" and CD69" CD4" T cells (Fig. 5d and Extended
Data Fig. 10c). In contrast, DC and T cell numbers and phenotypes remained similar
in Bmal1%°P¢ mice vaccinated at ZT9 or ZT21 (Fig. S¢-d and Extended Data Fig. 10b-
¢). These data indicate a key role of cDC rhythmicity in generating a productive anti-

tumor immune response following treatment.

We further performed vaccination experiments at ZT9 and ZT21 in a scenario
which also tumors where inoculated at ZT9 and ZT21, thus assessing the contribution
of time-of-day effects in both the timing of tumor inoculation and the timing of
vaccination. In these experiments, we observed that the timing of vaccination had a
greater impact than the timing of tumor inoculation on tumor burden (Extended Data
Fig. 10d). Also, we confirmed the time-of-day differences in vaccine efficacy in
additional experiments in which two vaccinations were performed at ZT9 or ZT21
several days apart (Extended Data Fig. 10e). These data demonstrate that the timing
of vaccination is a powerful means of reducing tumor size, and that rhythmicity of cDCs

plays a critical role in this process.

To bypass any endogenous DCs acting as potential APCs in this scenario, we
performed vaccinations with s.c. injections of SIINFEKL peptide-loaded BMDCs
during the day (ZT9) or at night (ZT21). These experiments showed very similar results
to the antigen vaccination studies, with suppressed tumor volume after daytime

administration of the BMDCs (Fig. 5e). To assess whether these observations could
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translate to humans, we generated human monocyte-derived DCs (hMoDCs) from
CD14" primary monocytes isolated from buffy coats from healthy donors and
synchronized them in vitro. hMoDCs exhibited a circadian expression of CD80 as well
as of the clock gene PER?2 (Fig. 5f-g and Extended Data Fig. 10f), analogous to the
results obtained in mice. Furthermore, co-culture experiments using synchronized
hMoDCs together with naive CD8" T cells isolated from the same healthy donors and
stimulated with anti-human CD3 antibody — thus limiting rhythmicity to co-stimulatory
factors in DCs only — showed an increased T cell proliferation in hMoDC 36h after
synchronization compared to the 24h time point (Fig. Sh).

Moreover, by generating HLA-A2"MoDCs, pulsed with Melan-A2¢-35(a271) peptide
(ELAGIGILTV; ‘ELA’) and co-cultured with HLA-A2/ELA-specific CD8" T cell
clones derived from malignant melanoma’ patients®®, we observed time-of-day
differences in the T cell proliferation capacity (Fig. 5i). This indicated that the rhythmic
anti-tumor responses we observed in mice were also present in human cells. Indeed,
using retrospective time-of-day analyses of a tumor vaccination trial including 10 HLA-
A2" patients with advanced malignant melanoma®, we observed time-of-day
differences in vaccine administration to result in increased Melan-A-specific CD8" T
cells in patients” blood, when vaccinations were perfomed in the morning compared to
the afternoon (Fig. 5j). Together, these data provide evidence for an unexpected role of
time-of-day in tumor engraftment and in the efficacy of cancer immunotherapy in mice

and humans.

In this study, we focused mostly on a mouse model of melanoma, while our
additional data indicate that other cancer types are also affected by a rhythmic immune

system; however, whether similar immune mechanisms are at play in other tumor
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models remains to be formally demonstrated. Furthermore, our initial patient data
indicate the importance of considering the time of day for the administration of cancer
immunotherapy. By extension, it is possible that the time of day for the administration
of any other treatment that involves activation of the immune system may matter. Given
the relative simplicity of controlling this timing parameter in the clinic, it seems
important to conduct prospective clinical trials that include sufficient numbers of
patients and that can test whether the timing of injection of a given treatment improves

the anti-tumor response and the patient’s clinical outcome.
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Figure Legends

Figure 1. Time-of-day of engraftment dictates tumor size

(a) Tumor volume after engraftment of B16-F10-OVA cells at 6 different times of the
day (Zeitgeber time (ZT)); n=10 mice from 2 independent experiments, two-way
ANOVA. (b) Tumor volume on day 14 from a, Cosinor analysis. (¢) Tumor volume
after engraftment of B16-F10-OV A cells at 2 different times of the day under constant
darkness (DD) conditions (circadian time (CT)); n=6 mice, from 2 independent
experiments, two-way ANOVA. (d) Tumor volume after engraftment of B16<F10-
OVA at 2 different times of the day under light:dark (LD, n=6 mice), inverted dark:light
(DL, n=7 mice), or jet lag (JL, n=7 mice) conditions, from 2 independent experiments,
two-way ANOVA. (e) Tumor volume after engraftment of B16-F10-OVA at 2 different
times of the day in NSG mice (left, n=10 mice) or Rag2” mice (right, n=10 (ZT9), and
n=11 (ZT21) mice). Control WT mice (n=9) are plotted as reference. Data are from 2
independent experiments, two-way ANOVA. (f) Tumor infiltrating CD8" T cells on
day 14 from a; from ZT1 to 21, n = 10, 9, 10, 7, 10, 8 mice from 4 independent
experiments, Cosinor analysis. (g) Tumor volume after engraftment of B16-F10-OVA
at 2 different times of the day after anti-CDS8 antibody depletion; n=6 mice from 2
independent experiments, two-way ANOVA. Shaded areas indicate dark phases. All
data are represented as mean + SEM, ns, not significant.

Figure 2. Dendritic cells respond rhythmically to tumor engraftment

(a) Number of cells at the skin engraftment site 4h after B16-F10-OVA engraftment at
2 different times of the day, n=8 mice from 2 independent experiments, unpaired
Student's #-test. (b-¢) Imaging (scale bar 500um) (b), and quantification (¢) of CD11c*
cells of the skin engraftment site 4h after B16-F10-OV A cell engraftment; n=6 mice
from 2 independent experiments, unpaired Student's #-test. (d) Numbers of cells in the
dLN 24h after B16-F10-OVA cell engraftment; n=8 mice from 2 independent
experiments, unpaired Student's #-test. (e) H-2K®SIINFEKL dextramer staining of
CD8" T cells in the dLN 72h after B16-F10-OVA engraftment; n=8 (ZT9) and n=7
(ZT21) mice from 2 independent experiments, unpaired Student's z-test. (f) EAU
staining gated on CD3"CD8" T cells in the dLN 48h after B16-F10-OVA cell
engraftment; n=3 (ZT9) and 4 (ZT21) mice, representative from 2 independent
experiments, unpaired Student's #-test. (g-h) Tumor volume after engraftment of B16-
F10-OVA cells in Cd4cre:Bmall’** mice, n=8 (ZT9 control), n=16 (ZT9 Cre), n=16
(ZT21 control), and n=7 (ZT21 Cre) (g), and Clec9acre:Bmall"** mice, n=17 (ZT9
control), n=9 (ZT9 Cre), n=16 (ZT21 control), and n=10 (ZT21 Cre) (h), from 3
independent experiments, two-way ANOVA. (i) Numbers of CD11c¢"MHCII" subsets
in the dLN 24h after B16-F10-OVA cell engraftment in Clec9acre:Bmall"**mice, n=8
(ZT9 control), n=7 (ZT9 Cre), n=7 (ZT21 control), and n=6 (ZT21 Cre) from 2
independent experiments, unpaired Student's #-test. (j) H-2KY/SIINFEKL dextramer
staining of CD8" T cells in the dLN 72h after B16-F10-OVA cell engraftment in
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Clec9acre:Bmall"*mice; n=8 (ZT9 control), n=7 (ZT9 Cre), n=7 (ZT21 control), and
n=8 (ZT21 Cre) mice from 2 independent experiments, unpaired Student's z-test. All
data are represented as mean = SEM, ns, not significant, all #-tests are two-tailed.

Figure 3. DCs exhibit circadian gene expression patterns

(a-d) RNAseq analyses of CD11c¢* MHCIIM cells in the dLN 24h after B16-F10-OVA
cell engraftment at ZT3, ZT9, ZT15 or ZT21 in control mice (n=5 mice) or
Clec9acre:Bmal ' mice (n=3 mice), from 2 independent experiments. (a) Principal
component (PC) analyses of the two main peaks in gene expression oscillation in
control mice; n=5 mice, Cosinor analysis. (b) Significantly enriched GO pathways from
PC2 in control cells (a), with T cell activation pathways highlighted in-red, shown for
control and Clec9acre:Bmall"* CD11c¢* MHCIIM cells. The vertical ‘dashed line
represents the significant P values, hypergeometric test. (¢) Significantly expressed
genes in the CD28 dependent PI3K/Akt signaling pathway (top) or T cell activation
pathways (bottom) in control mice and (d) lack of significance in Clec9acre:Bmall**
mice.

Figure 4. Rhythmic expression of CD80 in DCs governs T cell responses

(a) Expression (counts per million (CPM)) of Cd80 in CD11c¢* MHCIIM cells from
control (n=5) or Clec9acre:Bmall® mice (n=3), one-way ANOVA. (b) CD80
expression in DCs subsets by flow cytometry in dLN 24h after B16-F10-OVA cell
engraftment; n=6 mice from 2 independent experiments, one-way ANOVA. (¢) Cd80
mRNA expression after synchronization of LPS-matured BMDCs from WT (n=10) and
Bmall”~ (n=4) mice from 2 independent experiments, Cosinor analysis. (d) Cd80
mRNA expression after synchronization of BMDCs generated from WT (n=4) Perl”
Per2” (n=2) or Bmall” mice (n=4), from 2 independent experiments, unpaired
Student's -test. (¢) CD80 protein expression in synchronized Lyz2cre:Bmall
BMDCs by flow cytometry; n=4 (control), n=5 (Cre) mice from 2 independent
experiments, paired Student's ¢-test. (f-h) In vitro co-culture proliferation experiments
with OT-LCDS8" T cells and SIINFEKL loaded BMDCs generated from WT mice (n=3
mice from 2 independent experiments), one-way ANOVA (f), or Bmall”- mice (n=4,
from 2 independent experiments), unpaired Student's #-test (g) or anti-CD80 antibody
treatment (h), n=9 (control) and n=5 (anti-CD80) mice from 9 independent experiments,
paired Student's #-test. (i) /n vitro co-culture proliferation experiments with naive CD8*
T cells, anti-CD3 antibody and WT BMDC:s in the presence of absence of anti-CD80
antibody; n=3 mice 2 replicates each, from 2 independent experiments, unpaired
Student's #-test. (j) Tumor volume after engraftment of B16-F10-OVA cells at 2
different times of the day and anti-CD80 or isotype control treatment, n=10 mice from
2 independent experiments, two-way ANOVA. (k) Chromatin immunoprecipitation
(ChIP) of BMALI binding to the promoter region of Cd80 in synchronized BMDCs,
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n=3 mice, from 2 independent experiments, unpaired Student's z-test. All data are
represented as mean = SEM, ns, not significant, all #-tests are two-tailed.

Figure 5. Chronotherapeutic vaccination as tumor immunotherapy

(a) Tumor volume after engraftment of B16-F10-OVA cells at ZT9 and OVA
vaccination on day 5 (arrow) at ZT9 or ZT21; n=12 mice, and n=3 unvaccinated control
mice from 2 independent experiments, two-way ANOVA. (b) Tumor volume after
engraftment of B16-F10-OVA cells with OV A vaccination on day 5 (arrow) at ZT9 or
ZT21 in control or Clec9acre:Bmall™* mice; n=5 mice from 2 independent
experiments, two-way ANOVA. (¢-d) Numbers of DC subsets (c¢) and T cells (d) in the
dLN 24h after OVA vaccination (on day 5 after B16-F10-OV A cell engraftment) in
control or Clec9acre:Bmall"® mice, n=5 mice from 2 independent €xperiments,
unpaired Student's ¢-test. (e) Tumor volume after B16-F10-OV A cell engraftment with
SIINFEKL-loaded BMDC vaccination on day 5 (arrow) at ZT9 or ZT21; n=6 mice
from 2 independent experiments, two-way ANOVA. (f) mRNA expression of CDS80 in
human monocyte derived DCs (hMoDC) after synchronization; n=3 patients, Cosinor
analysis. (g) Human CD80 protein expression by flow cytometry in hMoDC after
synchronization; n=7 patients, paired Student's #test. (h) In vitro co-culture
proliferation experiments with human naive CD8*. T cells and synchronized-hMoDC,
n=4 patients, paired Student's #-test. (i) [n vitro co-culture proliferation experiments
with antigen specific CD8* T cells from melanoma patients and synchronized HLA-
A2" hMoDC, data are technical replicates, representative from 2 donors from two
independent experiments, unpaired Student's #-test. (j) Fold change of Melan-A specific
T cells after 2 and 4 vaccinations (with Melan-A peptide, CpG 7909 and incomplete
Freund’s adjuvant) in the morning (n=6) or afternoon (n=4) patients, linear regression
analysis. All data are represented as mean + SEM, ns, not significant, all ¢-tests are two-
tailed.
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Materials and Methods

Animals

C57BL/6N and NSG mice were purchased from Charles River, BALB/c mice were
purchased from Envigo. Rag2”’- mice (gift from Walter Reith, University of Geneva,
Switzerland) were bred at Charles River. Other transgenic mouse lines were bred at
ENVIGO: Bmall/*fx Cd4cre (both purchased from Jackson Labs) and Clec9acre
(gift from Barbara Schraml, LMU Munich, Germany). Transgenic mice were
maintained as homozygous for Bmall/*/'°x and heterozygous for the relevant Cre.
CD45.1 OTI (gift from Walter Reith) mice and Bmall”" (gift from Charna Dibner,
University of Geneva, Switzerland) mice were bred in house. All mice used were
females at 8-12 weeks of age. Mice were housed under a 12 h:12 h light:dark schedule
with food and water ad [libitum. When multiple time points were investigated
simultaneously, light-tight cabinets (Techniplast) were used to shift animals to the
respective phase for a minimum of 1 day per lh of shift prior to the experiments.
Treatment times correspond to Zeitgeber time (Z7T) and indicate timing relative to lights
on in the animal facility such that ZT1 is 1 h after lights on (morning), ZT7 is 7 h after
lights on (day time), ZT13 is 1 h after lights off (evening) and ZT19 is 7 h after lights
off (night time). Animals were humanely euthanized if the tumor diameter reached 1.5
cm. All animal procedures and experiments were approved and performed in
accordance with the guidelines of the animal research committee of Geneva,

Switzerland or by the Italian Istituto Superiore di Sanita (ISS).
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Tumor cell lines and inoculation

B16-F10 (ATCC) and B16-F10-OVA melanoma cells (gift from Stéphanie Hugues,
University of Geneva, Switzerland) were maintained in RPMI (Gibco) supplemented
with 10% heat-inactivated FCS (Gibco), 100 umol/L penicillin—streptomycin (Gibco),
and 50 mmol/L of B-mercaptoethanol (Gibco). B16-F10-OVA-Luc were created using
ready-to-use lentivirus (GenTarget, LVP324) according to the manufacturer’s
instructions. Transduced cells were selected by puromycin (ThermoFisher, A1113803)
and isolated by fluorescence-activated cell sorting (FACS). MC38 murine colon
adenocarcinoma cells (gift from Stéphanie Hugues, University of Geneva, Switzerland)
were maintained in DMEM (Gibco), 10% heat-inactivated FCS, 100 umol/L penicillin—
streptomycin and 50 mmol/L of B-mercaptoethanol. EO771 and E0771-OVA (gift from
Stéphanie Hugues, University of Geneva, Switzerland) were maintained in RPMI
(Gibco) supplemented with 10% heat-inactivated FCS (Gibco), 100 pmol/L penicillin—
streptomycin (Gibco), and 50 mmol/L of -mercaptoethanol (Gibco). The 4T1 cell line
was purchased from ATCC and maintained in RPMI1640 medium supplemented with
10% heat-inactivated FBS, penicillin (50 units/ml), and streptomycin (50 pg/ml)
(LifeTechnologies, Italy). Cell lines were used by passage 10 and tested negative
for Mycoplasma. Unless otherwise specified, 5x10° tumor cells in 100ul PBS were
injected subcutaneously (s.c.) into the right flank of mice, under isoflurane anesthesia.
5x10° 4T1, E0771, or E0771-OVA cells resuspended in PBS were injected

orthotopically into the fourth abdominal fat pad of BALB/c (4T1) or C57BL/6 (E0771,
23
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E0771-OVA) female mice under ketamine/xylazine anesthesia. Tumor volume was
monitored every 1 to 2 days using a caliper and calculated by length x widthx width/2.
Time-of-day of measurements did not influence tumor volume (data not shown). In a
sham injection experiment, 100 pl of PBS were injected subcutaneously without tumor

cell injection.

IVIS imaging

D-Luciferin (Abcam ab143655, 150) was injected intraperitoneally (i.p.) into mice at a
dose of 75 mg/kg body weight. Mice were anaesthetized with isoflurane and placed in
the abdominal position. Images were collected 8 min after luciferin injection using the
IVIS Imaging System (Xenogen, Alameda, CA), and photons emitted from the tumor

were quantified using Living Image Software (Xenogen).

Bone Marrow-Derived Dendritic Cells

Bone marrow-derived dendritic cells (BMDCs) were cultured as previously described?!,
with complete culture media (RPMI, 10% heat-inactivated FCS, 2 mM L-glutamine, 1%
penicillin-streptomycin, 50 uM B-mercaptoethanol) supplemented with 20 ng/ml
recombinant murine GM-CSF (Peprotech). The medium was refreshed every 3 days.
At day 10, all non- and semi-adherent cells were collected in complete media
supplemented with 10 ng/ml GM-CSF and stimulated with 100 ng/ml

lipopolysaccharide (LPS, L4516, Sigma-Aldrich) for 24 hours.
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BMDC synchronization

Cells were synchronized as previously described '8. In brief, an equal volume of horse
serum (Sigma, h1270) was pre-warmed and added directly to the dish (serum shock).
After 2h incubation at 37°C with 5% CO2, cells were washed and resuspended in

complete medium.

Tissue digestion and single-cell preparation

The draining inguinal lymph node was collected and chopped into small pieces, then
digested in 1 mL RPMI containing 1mg/mL collagenase IV (Worthington Biochemical
Corporation), 40 pg/mL DNase I (Roche 04716728001) and 2% heat-inactivated FCS
for 15 minutes at 37 °C using a thermoblock. Skin tissue was digested in RPMI
containing 1mg/mL collagenase 1V, 2mg/mL Dispase II (Roche), 40 pg/mL DNase I
and 2% heat-inactivated FCS for 30 minutes at 37 °C. Chopped tumor tissue was
digested using 1mg/mL collagenase IV, 40ug/mL DNase I and 2% heat-inactivated FBS
for 30 minutes at 37 °C, and the remaining tumor went through 30 min further digestion
using1 mg/mL collagenase D (Roche). Cells were rinsed through a 70 um cell strainer

to obtain single-cell suspensions.

Flow Cytometry

Single-cell suspensions were prepared and incubated with mouse or human Fc receptor

block (anti-mouse CD16/32 Biolegend, human FcR blocking reagent, Miltenyi Biotec)
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for 10 minutes at room temperature (RT). After incubation, unless specified otherwise,
the antibody mix was added directly into the cell suspension and incubated for 15 min
at 4°C.

The following anti-mouse antibodies were used for immunostaining: CD45 (clone 30-
F11, BUV 395, BUV 737, BD, 564279, 748371, FITC, Biolegend 103107), CD45.1
(A20, PE, Biolegend 110707), CD3e (clone 145-2C11, BUV395, BD563565, APC,
Biolegend 100312, clone KT3.1.1, BV421, Biolegend 155617), CD4 (clone GK1.5,
BV650, BD 563232), CD8a (clone 53-6.7, BV605, BD 563152, APC, Biolegend
100711), CDl11c (clone HL3, BUV737, BD612796, clone N418, PE, Biolegend
117307), CD19 (clone 1D3, BB700,BD 566412), CD86 (clone GL1, BUV395, BD
564199), CD8O0 (clone 16-10A1, PE/Cy5, Biolegend, 104711), CD103 (clone 2E7,
BV421, Biolegend, 121421), NKI.1 (clone PK136, PE/Cy5,Biolegend 108715),
MHCII  (clone  M5/114.15.2, BV421, BV711, BV650, Biolegend
107631,107643,107641), CD40 (clone 1C10, PerCP-eFluor710, eBioscience 46-0401-
82), CD69 (clone H1.2F3, BUV737,BD 612793, BV421, Biolegend 104527), Ly6G
(clone 1A8, BV785, Biolegend 127645), Ly6C (clone HK1.4, AF700, Biolegend
128023). The following anti-human antibodies were used for immunostaining: HLA-
DR (clone G46-6, BV480, BD566154), CD11C (clone B-ly6, BV711, BD563130),
CD45RA (clone HI100, PE,BD555489), CD25 (clone 2A3, BUV737, BD612807),
CD44 (clone G44-26, APC/H7, BD,560532), CD62L (clone DREG-56, BVS510,
BD563203), CDS8 (clone RPA-T8, BUV395, BD563795), CCR7 (clone G043H7,

BV785, Biolegend353230), CD3 (clone BW264/56, APC, Miltenyi Biotec 130-113-
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687).

For peptide-MHC-dextramer staining, 10ul dextramer (PE-H-2Kb SIINFEKL,
or APC-H-2Db Adpgk, Immudex) were added and incubated at room temperature for
15 min. Anti-mouse H-2K" bound to SIINFEKL antibody staining (Clone 25-D1.16,
APC, PE/Cy7, Biolegend, 141605) was performed at 37°C for 15 min. Cells ‘were
washed and resuspended in 300 pl FACs buffer with viability dye (DAPI, Biolegend, 3
uM; or Propidium lodide, Invitrogen, 1.7 ug/ml; or DRAQ7, Biolegend, 2 uM) and
characterized using an 18-colour BD LSR Fortessa (BD Biosciences) or Beckman
Coulter Cytoflex. Acquired data were analyzed using FACSDiva 6 (BD Biosciences)
and FlowJo 10 (BD). Cell counts were calculated using Counting Beads (C36950,
C36995, ThermoFisher).

When intracellular staining needs to be performed, cells were first stained with
viability dye (eBioscience™ Fixable Viability Dye eFluor™ 780, 65-0865-18),
followed by surface staining as previous described. For intracellular staining, cells were
fixed and permeabilized using Foxp3 / Transcription Factor Staining Buffer Set
(eBioscience, 00-5523-00). Upon wash with permeabilization buffer, the intracellular
antibody (anti-mouse Foxp3, clone MF-14, AF647, Biolegend, 126408) was added and

incubated for 30 min at room temperature.

RNA extraction, reverse transcription and gPCR

Cells were collected at the indicated time points and lysed using Trizol Reagent

(Invitrogen). Tissues were homogenized in Trizol (Invitrogen) using a Precellys 24
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(Bertin) bead mill homogenizer. Lysed and homogenized samples were processed using
a Direct-zol RNA MiniPrep kit (Zymo Research) according to the manufacturer’s
instructions. RNA quantity and quality was analyzed using a Nanodrop 2000
(ThermoFisher) or Bioanalyzer. Reverse transcription was performed using
PrimeScript™ RT Reagent Kit (Takara) according to the provided instructions. Q-PCR
analyses were performed using PowerUp SYBR Green (Applied Biosystems): primer
sequences are provided in Supplementary Information Table 4. Quantification of the
transcript was performed using the 2-24¢t method using Rplp0, Rpl32, and/or Gapdh,

as internal reference genes.

In vivo antibody treatments

To deplete specific leukocyte subsets, depletion antibody or isotype control were
injected i.p. 1 day before the tumor inoculation, and repeated every 3 days. The
following antibodies 'were used, anti-mouse CD4, clone GK1.5, 100ug; anti-mouse
CD8a, clone YTS 169.4, 100ug; anti-mouse Ly6G, clone 1AS8, 200ug, all from
BioXCell. For anti-CD80 treatment, 200ug anti-mouse CD80 antibody (clone 16-10A1,
BioXCell) or isotype control (BE0091, BioXCell) were given i.p 1 day before the tumor

inoculation, and repeated every 3 days.

Human monocyte-derived DCs

Human peripheral blood mononuclear cells (PBMCs) were collected from healthy

donors’ buffy coat (provided by University Hospitals of Geneva (HUG), Switzerland)
28



683  using Ficoll-Paque Plus (Cytiva). Monocytes (MoDCs) were isolated using a Classical
684  Monocyte Isolation Kit (human, Miltenyi Biotec) according to the manufacturer’s
685  instructions. Cells were spun down and resuspended into complete medium (RPMI, 10%
686  heat-inactivated FCS, 2 mM L-glutamine, 1% penicillin-streptomycin, 50 pM B-
687  mercaptoethanol) plus 500U/mL human GM-CSF and 250U/mL human IL-4 (both
688  from Miltenyi Biotec) and cultured in 12-well cell culture plate at 37°C with 5% CO:x.
689  The medium was refreshed every other day. On day 6, non-adherent cells were collected

690 for experiments.

691

692  Proliferation Assays

693  Mouse spleen and lymph nodes were harvested from OT-1 mice and then passed through
694 a 70 um cell strainer. After obtaining single-cell suspension, naive CD8" T cells were
695  purified using a cell isolation kit (Miltenyi) according to the manufacturer’s instructions.
696  Cells were adjusted to 2x10° cells/ml concentration and stained using Cell Trace Violet
697  Proliferation Kit (C34557, Invitrogen) at a final concentration of 5 uM in PBS for 15
698  min at 37°C. LPS-matured BMDCs were loaded with 10nM OVA-peptide SIINFEKL
699  for 15min at 37°C. Then 1,000 BMDCs were co-cultured with 10,000 naive CD8 T
700 - cellsin 200ul complete medium (RPMI, 10% heat-inactivated FCS, 2 mM L-glutamine,
701 1% penicillin-streptomycin, 50 uM B-mercaptoethanol, ImM pyruvate sodium) in a 96-
702 well round bottom plate. Plates were incubated at 37°C with 5% COx2 for 48h before
703  analysis. For polyclonal proliferation assays, naive CD8 T cells were collected from

704  C57BL/6N mice and labelled as described above. A total of 1,000 LPS-matured
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BMDCs were co-cultured with 10,000 naive CD8" T cells in 200ul complete medium
(RPMI, 10% heat-inactivated FCS, 2 mM L-glutamine, 1% penicillin-streptomycin, 50
UM B-mercaptoethanol, 1mM pyruvate sodium) supplemented with anti-mouse CD3
antibody (1pg/mL, ThermoFisher, Cat.16-0032-82) to provide the TCR signal. Human
MoDCs were synchronized using horse serum as described above. Before co-culture
with T cells, hMoDCs were matured with LPS (200ng/mL) for 24h. To assess
proliferation, HLA-A2" MoDCs were used and loaded with Melan-A26-35(a27L) peptide
(ELAGIGILTV (‘ELA’), 10ug/mL)) 24h prior to co-culture. For naive T cell
proliferation assays, human CD8" T cells were isolated from PBMCs (the same donor
as hMoDC) using a CD8" T cell isolation kit (Miltenyi Biotec) then labelled with Cell
Trace Violet (Invitrogen™). 10,000 labelled T cells were co-cultured with 1,000
matured hMoDC, together with Spg/mL-anti-human CD3 antibody (Invitrogen™,
Catalog # 16-0037-81). Five days later, T cells were collected for flow cytometry
analysis. For patients’ T cell proliferation assays, antigen-specific CD8" T cells were
FACS sorted from PBMC of melanoma patients using PE-conjugated HLA-A2/ELA
multimers. Multimer® cells were cloned by limiting dilution and expanded with
phytohemagglutinin (PHA) and allogenic feeder cells in a medium containing 150 U/ml
human recombinant IL-2 (hrIL-2), as previously described °. Then, single clones of T
cells were used for co-culture with hMoDC in a ratio of 5:1. On day 5, cells were

harvested for flow cytometry analysis.

Vaccinations
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Unless specified, 30pug OVA together with 20pg CpG OND 1826 and 20 pg Poly(1:C)
(VacciGrade, all from InvivoGen) were injected s.c. into tumor-bearing mice adjacent
to the tumor. For vaccination with BMDCs, 1 million SIINFEKL loaded LPS-matured
BMDCs were injected together with 20pg CpG and 20pg Poly(1:C). Tumor volume was
then measured every one or two days using a caliper. The human vaccination trial was
performed as previously detailed?®. The times of vaccination were stratified into
vaccinations performed before or after 1pm. Patients included received all their

vaccinations before or after this cutoff time.

In vitro cell treatment

SIINFEKL-loaded, LPS-matured BMDCs were adjusted to a concentration of 1 x 10°
cells/well and incubated with anti-mouse CD80 (50pg/mL, 16-10A1, BioXCell) or
isotype control for 15 min at 37°C. Then, proliferation assays were performed as

described above.

Immunofluorescence imaging

B16-F10-OVA cells were cultured as mentioned above, and labelled with CellTrace™
Violet (Invitrogen). Cells were counted and resuspended into PBS, then an equal
volume of cold Corning® Matrigel® was added and mixed thoroughly with tumor cells.
One million cells in 50ul were injected s.c. into the right flank of the mouse. 4h later,
matrigels were harvested directly into 4% PFA and stored at +4°C for 4 hours. Matrigels

were kept in 30% sucrose (Sigma) overnight at +4°C after fixation, embedded into OCT
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blocks (CellPath) and kept at -80°C. Matrigels were subsequently dissected and
processed for cryosectioning with 50 pm serial cryosections being cut and processed
for immunohistochemistry. Sections were postfixed with 4% PFA for 10 min at RT.
Following three washes with PBS, they were incubated with blocking buffer (PBS with
20% normal goat serum and 0.5% Triton-100X) for 2 hr at RT. After three consecutive
washes with PBS, the sections were stained with an antibody mix of FITC conjugated
mouse anti-CD45 (Clone: 30-F11; Biolegend), PE/Dazzle594 conjugated mouse anti-
CD11b (Clone: M1/70; Biolegend), Alexa Fluor F647 conjugated mouse anti-CD11c
(Clone: N418, Biolegend) diluted in the same blocking buffer as before and incubated
overnight at +4°C. Sections were washed three times with PBS before mounting in
Fluoromount Aqueous Mounting Medium (Sigma). Images of matrigels were obtained
as sections using a Zeiss Axio Examiner.Z1 confocal spinning disk microscope
equipped with 405-, 488-, 561- and 640-nm laser sources. Step size was determined as
4 um and images were acquired at 20x magnification. All image analyses were
performed in ImageJ. Volume fractions were obtained from binary images in a 3D
environment by thresholding the voxels for both Matrigel volume and the signals of

interest.

Sorting of CD11c*MHCII? cells and RNA sequencing

To obtain dendritic cells (DCs), draining inguinal LNs were collected from mice 24h
after tumor engraftment and harvested at 4 time points (ZT3, 9, 15, and 21; n = 5 mice

for control, n = 3 mice for Clec9acre: Bmall"** and n = 3 mice for sham-injected mice).
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LNs were digested as previously described, and CD45"CD11C*MHCII"e" cells were
sorted using an Astrios sorter (Beckman). Flow cytometry sorted DCs were collected
in RNAprotect Cell Reagent (cat. #76526, Qiagen). RNA was isolated using an RNeasy
Plus Micro Kit (cat. #74034, Qiagen) according to the manufacturer’s instructions.
RNA integrity and quantity were assessed with a Bioanalyzer (Agilent Technologies).
cDNA libraries were constructed by the Genomic platform of the University of Geneva
as follows: The SMART-Seq v4 kit from Clontech was used for the reverse
transcription and cDNA amplification according to the manufacturer’s specifications,
starting with 1 ng of total RNA as input. 200 pg of cDNA were used for library
preparation using the Nextera XT kit from Illumina. Library molarity and quality were
assessed with the Qubit and Tapestation using a DNA High sensitivity chip (Agilent
Technologies). Libraries were pooled and loaded for clustering on 2 lanes of a Single-
read [llumina Flow cell. Reads of 50 bases were generated using the TruSeq SBS

chemistry on an Illumina HiSeq 4000 sequencer.

Reads were aligned with STAR v.2.7.0%? to the mouse mm10 UCSC genome.
Gene expression was quantified with HTSeq v.0.9.1. Differential expression analysis
was performed with the R/Bioconductor edgeR package . The counts were normalized
according to the library size and filtered. Genes having a count above 1 count per
million reads in at least 5 samples were kept for subsequent analysis. Tests for
differentially expressed genes were done with a GLM (general linear model) using a
negative binomial distribution. The genes were considered as differentially expressed

when the fold change (FC) was at least 2-fold with a 5% false discovery rate (FDR)
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Benjamini-Hochberg multiple testing correction. DiscoRhythm?* R package version
1.10.0 was used to characterize the rhythmicity present in the provided dataset by
performing outlier detection, principal component analysis (PCA) and detection of
gene-wise oscillation characteristics. Default parameters were used, except when

indicated.

PCA was used to extract the strongest recurring patterns in the dataset. Gene
expression values were scaled to a standard deviation of one prior to PCA, such that all
genes were on an equal scale. The first four PCA scores were used to detect outliers
(flagged by their deviation from the mean). A threshold of three units of standard
deviations was used. The Cosinor method was used to test the summarized temporal
signal for rhythmicity. PC1 and PC2 were kept as they scored above 10% of the variance
each (WT: PC1: 18.9%, PC2: 13.6%; Bmall*P¢: PC1: 20.6%, PC2: 12.3%; PBS sham
injection: PC1: 20.2%, PC2: 11.6%) suggesting that two main phases of oscillation exist
in the data (Supplementary Information Tables 1-3). Each gene was tested for
rhythmicity with a significance value of a P-value < 0.05. Genes with significant
rhythmicity were assigned to two sets, depending on their acrophase (the time in a
periodic cycle where a temporal pattern is at its maximum value). Genes with a sincoef >
0 corresponded to an acrophase between 0 and 12 h (PC1), while genes with a sincoef
< 0 corresponded to an acrophase between 12 and 24 h (PC2). Both oscillating gene
lists were tested for pathway enrichment, using Over-Representation Analyses (ORA)
in Gene Ontology Biological Process (GOBP) and Reactome pathways, using

ClusterProfiler R>32¢ (23, 24) package version 4.4.4. Pathways with an enrichment P-
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value < 0.05 were reported as significant.

Chromatin Immunoprecipitation and qPCR

A total of 2x10” BMDCs were collected and fixed in PBS containing 1% formaldehyde
(Thermo Fisher Scientific) for 10 min at room temperature and quenched with 1M
glycine in PBS. Cells were then pelleted and sonicated (Diagenode Bioruptor) to obtain
fragments of 0.2-0.8 kilobases in size. Immunoprecipitation was performed with
anti-BMALL (clone D2L7G, Cell Signaling Technology), anti-Histone H3 (Abcam), or
control IgG (Cell Signaling Technology). DNA was isolated with MinElute PCR
Purification kits (Qiagen). Q-PCR was performed using PowerUp SYBR Green
(Applied Biosystems) in a StepOne™ Real-Time PCR System. Occupancy of BMALI
at the Cd80 and Per2 promoters was quantified by qPCR targeting regions identified as
containing E-boxes using the SCOPE motif finder and EPFL eukaryotic database.

Relative enrichment was determined as the percentage of input.

Statistical analyses

Unless'specified, all data were plotted from independent biological replicates. Data was
analyzed using Prism 9 (GraphPad). *P<0.05; **P<0.01; ***P<0.001;
***%P <(0.0001. Unless specified, Student's ¢-tests are two-tailed. All other statistical
information including ¢ or F value and degrees of freedom can be found in the source

data.
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Extended Data Figure 1. Time-of-day of engraftment dictates tumor size

(a) Tumor volume of each mouse after engraftment of B16-F10-OVA cells at 6 different
times of the day (Zeitgeber time (ZT)); n=10 mice per time point from 2 independent
experiments. (b) Tumor volume after engraftment of E0771 cells at 2 different times of
the day, plotted per group (left) and mouse (right); n=5 mice from 2 independent
experiments, two-way ANOVA. (c-d) Normalized tumor volume, plotted per group
(left) and mouse (right) (¢) and tumor volume on day 20 (d), after engraftment of 4T1
cells at 2 different times of the day; n=12 (ZT9), n=10 (ZT21) mice from 2 independent
experiments, two-way ANOVA (c¢) and unpaired Student's #-test (d). (e¢) Normalized
tumor volume after engraftment of MC-38 cells at 2 different times of the day, plotted
per group (left) and mouse (right); n=8 (ZT9), n=6 (ZT21) mice from 2 independent
experiments, two-way ANOVA. (f) Fluorescence flux in photons/seconds of B16-F10-
OVA-Luc (5x10° cells) tumors on day 5 after engraftment; n=8 (ZT9), n=7(ZT21) mice
from 2 independent experiments, unpaired Student's #-test. (g) Tumor volume in phase-
shifted mice injected using the same batch of B16-F10 cells (without OVA expression);
n=9 (ZT9), n=6 (ZT21) mice from 2 independent experiments, two-way ANOVA. (h)
Scheme of the normal (light:dark), inverted lighting (dark:light)and jet lag protocols.
For the jet lag, every three days mice were placed into a 6h- or 12h-phase delayed
environment. The red dots represent the time when tumors were engrafted (9h after the
start of the cycle). All data are represented as mean = SEM, all #-tests are two-tailed.

Extended Data Figure 2. Depletion of CD4 T cells and neutrophils

(a) Flow cytometry gating strategy of tumor infiltrating leukocytes. (b) Normalized cell
numbers of tumor infiltrating leukocytes after 14 days of tumor engraftment; from ZT1
to 21, n=10, 9, 10, 7, 10, 8 mice from 4 independent experiments, Cosinor analysis.
Treg, regulatory T cells. (e-d) Tumor volume upon anti-CD4 antibody depletion, n=4
(ZT9 anti-CD4), n=5 (ZT21 anti-CD4), n=6 (control) mice (¢), or anti Ly6G antibody
depletion, n=5 (control), n=6 (anti-Ly6G) mice (d), from 2 independent experiments,
two-way ANOVA. (e-j) Flow cytometry gating strategies and quantification of
neutrophils in blood (e-h) or tumor (i-j) after anti-Ly6G treatment. Anti-mouse Ly6G
antibody was given every 3 days, starting 1 day before the tumor inoculation (d-1).
Neutrophil frequency after treatment at days 0 and 1 (e-f), from left to right, n=3, 2, 3
mice, orday 12 (g-j), n=3 (iso), n=5 (anti-Ly6G) mice from 2 independent experiments,
unpaired Student's ¢-test. All data are represented as mean + SEM, ns, not significant,
all #-tests are two-tailed.

Extended Data Figure 3. Leukocyte populations in skin and dLN

(a) Flow cytometry gating strategy of skin myeloid populations. (b-¢) Number (b) and
proportion (¢) of leukocytes at the tumor engraftment site 4h after B16-F10-OVA
engraftment; n=8 mice from 2 independent experiments, unpaired Student's #-test. Leu,
leukocyte; N, neutrophils; EOS, eosinophil; IM, inflammatory monocytes; NK, natural
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killer cells. (d) Flow cytometry gating strategy of DC subsets in draining lymph nodes
(dLN). (e-i) Leukocytes, T cell (e-f) and DCs (g-h) in the dLN, 24h after tumor
engraftment (5x10° B16-F10-OVA); n=8 mice, from 2 independent experiments,
unpaired Student's #-test. (i) Gating of anti-mouse H-2K" bound to SIINFEKL" DCs in
the B16-F10-OVA model. All data are represented as mean = SEM, all #-tests are two-
tailed.

Extended Data Figure 4. Time-of-day differences exist in other tumor models

(a-d) DCs and T cell numbers in the dLN, 24h after tumor engraftment of MC-38 cells
(n=6 mice) (a), 4T1 cells (n=6 mice) (b), or EO771-OVA cells, n=7 (ZT9), n=6 (ZT21)
mice, (c-d), from 2 independent experiments, unpaired Student's ¢-test. (¢) Gating of
anti-mouse H-2K® bound to SIINFEKL"* DCs in the E0771-OVA model. (e-g) T cell
numbers in the dLN 72h after tumor engraftment of E0771-OVA cells, n=5 (ZT9), n=7
(ZT21) (e), or MC-38 cells, n=6 mice (f-g), from 2 independent experiments, unpaired
Student's #-test. (f) Gating of Dextramer H-2D® ASMTNMELM bound to CD8 T cells in
the MC-38 model and, (g) quantification. All data are represented as mean + SEM, all
t-tests are two-tailed.

Extended Data Figure 5. Differences in DCs and CD4 T cells in the dLN

(a) DCs numbers in the dLN 24h after sham PBS injection without tumor inoculation,
n=7 (ZT9), n=8 (ZT21) mice, from 2 independent experiments, unpaired Student's z-
test. (b) DQ-OVA™ DCs in dLN 24h after inoculation; n=4 mice from 2 independent
experiments, unpaired Student's #-test. (¢) EdU staining in CD3"CD4" T cells in the
dLN 48h after B16-F10-OVA cell engraftment; n=3 (ZT19), n=4 (ZT21) mice,
representative from 2 independent experiments, unpaired Student's #-test. All data are
represented as mean = SEM, all #tests are two-tailed.

Extended Data Figure 6. RNAseq analyses of CD11" MHCII" cells in the dLN

(a-d) RNAseq analyses of CD11c* MHCIIM cells in the dLN 24h after B16-F10-OVA
cell engraftment in control mice (n=5 mice) or Clec9acre:Bmall’**mice (n=3 mice),
from 2 independent experiments. (a) Expression (Counts per million (CPM)) of Perl
and Dbp in CD11c¢* MHCII™ cells from control mice, Cosinor analysis. (b) Principal
Component (PC) analyses of each sample from sequencing of CD11¢* MHCII™ DCs in
control mice. (¢) Significantly enriched pathways from PC1 in control cells with CD28
signaling pathways highlighted in red, shown for control and Clec9acre:Bmall'"**
CD11c" MHCIIM cells. The vertical dashed line represents the significant p values,
hypergeometric test. (d) GO Biological Process interactions in the PC2 gene cluster for
control cells. All data are represented as mean + SEM.
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Extended Data Figure 7. RNAseq analyses in Clec9acre:Bmall"* mice

(a-¢) RNAseq analyses of CD11* MHCII" cells in the dLN 24h after B16-F10-OVA
cell engraftment at ZT3, 9, 15 and ZT21 in Clec9acre:Bmall'** mice (n=3 mice). (a-
b) Significantly enriched pathways from PC1 (a) and PC2 (b) in Clec9acre:Bmall*
cells, hypergeometric test. (¢) GO Biological Process interactions in PC2 gene cluster
for Clec9acre:Bmall’"* cells.

Extended Data Figure 8. RNAseq analyses in sham conditions

(a-¢) RNAseq analyses of CD11¢” MHCIIM cells in the dLN 24h after PBS injection
(n=3 mice) or after B16-F10-OVA cell (n=5 mice) at ZT3,9, 15 and ZT21 in WT mice,
from 2 independent experiments. (a) Pathways found significantly enriched by over-
representation analysis in the lists of significantly oscillating genes in PC1 (Reactome
database) in WT mice. The same pathways from RNAseq analyses in PBS injection
mice were also plotted; n=3 mice per time point. The vertical dashed line represents the
significant P values, hypergeometric test. (b-¢) Pathways found significantly enriched
by over-representation analysis in the lists of significantly oscillating genes in PC1 and
PC2 in PBS injection mice, hypergeometric test.

Extended Data Figure 9. Synchronization experiments of BMDCs

(a-b) Synchronization scheme of BMDCs for qPCR analyses (a) and co-culture
experiments (b). (¢) Cd80 mRNA expression after synchronization of immature
BMDCs from WT (n=15 mice) and Bmall”- (n=4 mice) mice without LPS maturation,
Cosinor analysis. (d) gPCR. of LPS-matured BMDCs at different times after
synchronization; n=9 mice from 2 independent experiments, one-way ANOVA. (e)
Predicted binding regions of BMALI to the Cd80 gene using Eukaryotic Promoter
Database with a cutoff P-value of 0.001. (f) Chromatin immunoprecipitation (ChIP) of
BMALLI binding the promoter of Per2 of BMDCs after synchronization; n=3 mice,
from 2 independent experiments, two-way ANOVA. All data are represented as mean
+ SEM, ns, notsignificant.

Extended Data Figure 10. Time-of-day differences in vaccination efficacy

(a) Tumor volume after B16-F10-OVA cell engraftment at ZT9 and OV A vaccination
at ZT9 (120h after tumor engraftment, n=11) or ZT21 (108h, n=12, or 132h, n=11 mice,
after tumor engraftment); from 2 independent experiments, two-way ANOVA. (b-c)
Numbers of DC subsets (b) and T cells (¢) in the draining LN 24h after OVA vaccination
(on day 5 after B16-F10-OVA cell engraftment) in control or Clec9acre:Bmall"**mice,
n=>5 mice from 2 independent experiments, unpaired Student's #-test. (d) Tumor volume
in WT mice after tumor engraftment (B16-F10-OVA cells 5x10°) at ZT9 or ZT21, with
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or without OVA vaccination on day 5 (arrow) at ZT9 or ZT21, n=4 mice, two-way
ANOVA. (e) Tumor volume after B16-F10-OVA cell engraftment at ZT9 and OVA
vaccination on day 5 and 8 (arrows), both at ZT9 or ZT21 (n=6 mice) or unvaccinated
controls (n=9 mice), from 2 independent experiments, two-way ANOVA. (f) qPCR of
human PER2 expression in human monocyte derived DCs (hMoDC) after
synchronization, n=3 patients, Cosinor analysis. All data are represented as mean +
SEM, ns, not significant, all ¢-tests are two-tailed.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

XI The statistical test(s) used AND whether they are one- or two-sided
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[ ] Adescription of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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Data collection  BD FACSDiva, StepOne, SlideBook, Leica Application Suite, Beckman Coulter Cytoflex

Data analysis Graph Pad Prism v9, ImageJ, FlowJo vlO, R (Discorhythm, R/Bioconductor edgeR, ClusterProfiler V4.4.4, package), Microsoft Excel
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Data exclusions  Data was not excluded, unless suggested via statistical testing (GraphPad, Identitication of outliers, ROUT method, Q=1%).
Replication All experiments were replicated at least once to prove reproducibility and only included if obtained results were the same.

Randomization | Mice were randomly allocated into different experimental groups. With respect to human data, due to the retrospective analysis, no
randomization was performed.

Blinding Investigators were blind to genotype and/or treatment where applicable.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study

[1IX Antibodies [ ] chip-seq

g |:| Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging

|:| g Animals and other organisms

|:| Human research participants

X|[] clinical data

|Z |:| Dual use research of concern

Antibodies

Antibodies used The following anti-mouse antibodies were used for immunostaining: CD45 (clone 30-F11, BUV 395, BUV 737, BD,564279,748371,
FITC, Biolegend 103107), CD45.1 (A20, PE, Biolegend,110707), CD3e (clone 145-2C11, BUV395,BD563565, APC, Biolegend100312
, clone KT3.1.1, BV421, Biolegend 155617), CD4 (clone GK1.5, BV650, BD 563232), CD8a (clone 53-6.7, BV605, BD 563152, APC,
Biolegend 100711), CD11c (clone HL3, BUV737, BD612796, clone N418, PE,Biolegend 117307), CD19 (clone 1D3, BB700,BD 566412),
CD86 (clone GL1, BUV395, BD 564199), CD80 (clone 16-10A1, PE/Cy5, Biolegend, 104711), CD103 (clone 2E7, BV421, Biolegend,
121421), NK1.1 (clone PK136, PE/Cy5,Biolegend 108715), MHCII (clone M5/114.15.2, BV421, BV711, BV650,Biolegend
107631,107643,107641), CD40 (clone 1C10, PerCP-eFluor710,eBioscience 46-0401-82), CD69 (clone H1.2F3, BUV737,BD 612793,
BV421, Biolegend 104527), Ly6G (clone 1A8, BV785, Biolegend 127645), Ly6C (clone HK1.4, AF700, Biolegend 128023), anti-mouse
H-2Kb bound to SIINFEKL antibody (Clone 25-D1.16, APC, PE/Cy7, Biolegend, 141605, 127645), anti-mouse Foxp3 (clone MF-14,
AF647,Biolegend 126408).
The following anti-human antibodies were used for immunostaining: HLA-DR (clone G46-6, BV480, BD566154), CD11C (clone B-ly6,
BV711, BD563130), CD45RA (clone HI100, PE,BD555489), CD25 (clone 2A3, BUV737, BD612807), CD44 (clone G44-26, APC/H7,
BD,560532), CD62L (clone DREG-56, BV510, BD563203), CD8 (clone RPA-T8, BUV395, BD563795), CCR7 (clone GO43H7, BV785,
Biolegend353230), CD3 (clone BW264/56, APC, Miltenyi Biotec 130-113-687).
For in vivo treatment, anti-mouse CD4, clone GK1.5, 100ug,BEO003-1; anti-mouse CD8a, clone YTS 169.4, 100ug,BE0117; anti-mouse {‘g
Ly6G, clone 1A8, 200ug, BEOO7S5, all from BioXCell. For anti-CD80 treatment, 200ug anti-mouse CD80 antibody (clone 16-10A1, i
BioXCell, BEOO24) or isotype control (BEO091, BioXCell) were given. 1
For ChIP, anti-BMAL1 (D2L7G) Rabbit mAb #14020 CST were used. S

Validation Primary antibodies have been validated by the manufacturer for the specific species. All neutralization antibodies used were taken

from publications that have validated the antibodies prior to this study.




Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6N and NSG mice were purchased from Charles River, BALB/c mice were purchased from Envigo. Rag2-/- mice (gift from
Walter Reith, University of Geneva, Switzerland) were bred at Charles River. Other transgenic mouse lines were bred at ENVIGO:
Bmallflox/flox, Cd4cre (both purchased from Jackson Labs) and Clec9acre (gift from Barbara Schraml, LMU Munich, Germany).
Transgenic mice were maintained as homozygous for Bmallflox/flox and heterozygous for the relevant Cre. CD45.1 OTI (gift from
Walter Reith) mice and Bmall-/- (gift from Charna Dibner, University of Geneva, Switzerland) mice were bred in house. All mice used
were females at 6-12 weeks of age.

Wild animals The study did not involve wild animals.
Field-collected samples  This study did not involve field samples.

Ethics oversight All animal procedures and experiments were approved and performed in accordance with the guidelines of the animal research
committee of Geneva, Switzerland, or by the Italian Istituto Superiore di Sanita (ISS).
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics A thorough explanation of all human data is provided in the methods section. PBMCs were from healthy donor’s buffy coat.
Antigen specific T cells were from patients with melanoma. More details of the patients’ characteristics can be found in
Speiser et al JCI 2005.

Recruitment Human buffy coats were collected from blood donors at the University Hospitals of Geneva. Human vaccination data was a
retrospectively analysis of a previous publication (Speiser et al JCI 2005). Due to a retrospectively analysis, no additional
recruitment was performed. Patients were divided into "morning" or "afternoon" based on the time they received the
vaccines.

Ethics oversight Written informed consent was obtained for buffy coats from the healthy donors by the University Hospitals of Geneva. The
sampling was conducted according to the Declaration of Helsinki and approved by the Commission Cantonale d'Ethique de la
Recherche of the University Hospitals of Geneva.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

IE The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Single-cell suspensions were prepared and incubated with mouse or human Fc receptor block (anti-mouse CD16/32
Biolegend, human FcR blocking reagent, Miltenyi Biotec) for 10 minutes at room temperature (RT). After incubation, unless
specified otherwise, the antibody mix was added directly into the cell suspension and incubated for 15 min at 4°C.

For peptide-MHC-dextramer staining, 10ul dextramer (PE-H-2Kb SIINFEKL, or APC-H-2Db Adpgk, Immudex) were added and
incubated at room temperature for 15 min. Anti-mouse H-2Kb bound to SIINFEKL antibody staining (Clone 25-D1.16, APC, PE/
Cy7) was performed at 37°C for 15 min. Cells were washed and resuspended in 300 pl FACs buffer with viability dye (DAPI,
Biolegend, 3 uM; or Propidium lodide, Invitrogen, 1.7 pg/ml; or DRAQ7, Biolegend, 2 uM) and characterized using an 18-
colour BD LSR Fortessa (BD Biosciences). Acquired data were analyzed using FACSDiva 6 (BD Biosciences) and FlowJo 10 (BD).
Cell counts were calculated using Counting Beads (C36950, C36995, ThermoFisher).

For intracellular staining, cells were fixed and permeabilized using Foxp3 / Transcription Factor Staining Buffer Set
(eBioscience, 00-5523-00). Upon wash with permeabilization buffer, the intracellular antibody (anti-mouse Foxp3, clone
MF-14, AF647) was added and incubated for 30 min at room temperature.

With respect to FACS, LNs were digested and CD45+CD11C+MHClIlhigh cells were sorted using an Astrios sorter (Beckman).

120¢ Y21DW

Instrument 18-colour BD LSR Fortessa (BD Biosciences), Astrios sorter (Beckman).

Software FACSDiva 6 (BD Biosciences) and FlowJo 10 (BD).




Cell population abundance Post-sort purity was checked after sorting.

Gating strategy After removal of debris, cells were gated by live cells (negative for DAPI or DRAQ7, or Pl) and single cells

g Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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