Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for Dirac flat band superconductivity enabled by quantum geometry

Abstract

In a flat band superconductor, the charge carriers’ group velocity vF is extremely slow. Superconductivity therein is particularly intriguing, being related to the long-standing mysteries of high-temperature superconductors1 and heavy-fermion systems2. Yet the emergence of superconductivity in flat bands would appear paradoxical, as a small vF in the conventional Bardeen–Cooper–Schrieffer theory implies vanishing coherence length, superfluid stiffness and critical current. Here, using twisted bilayer graphene3,4,5,6,7, we explore the profound effect of vanishingly small velocity in a superconducting Dirac flat band system8,9,10,11,12,13. Using Schwinger-limited non-linear transport studies14,15, we demonstrate an extremely slow normal state drift velocity vn ≈ 1,000 m s–1 for filling fraction ν between −1/2 and −3/4 of the moiré superlattice. In the superconducting state, the same velocity limit constitutes a new limiting mechanism for the critical current, analogous to a relativistic superfluid16. Importantly, our measurement of superfluid stiffness, which controls the superconductor’s electrodynamic response, shows that it is not dominated by the kinetic energy but instead by the interaction-driven superconducting gap, consistent with recent theories on a quantum geometric contribution8,9,10,11,12. We find evidence for small Cooper pairs, characteristic of the Bardeen–Cooper–Schrieffer to Bose–Einstein condensation crossover17,18,19, with an unprecedented ratio of the superconducting transition temperature to the Fermi temperature exceeding unity and discuss how this arises for ultra-strong coupling superconductivity in ultra-flat Dirac bands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Normal state transport of tBLG with θ =1.08° at B = 0.2 T and T = 0.3 K (unless specified otherwise).
Fig. 2: Zero-bias transport data at B = 0.
Fig. 3: Nonlinear transport data in the superconducting regime.
Fig. 4: Superfluid stiffness and characteristic temperatures of the flat band.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.  Source data are provided with this paper.

Code availability

The code that supports the findings of this study is available from the corresponding authors upon reasonable request.

References

  1. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006).

    Article  CAS  ADS  Google Scholar 

  2. Stewart, G. R. Unconventional superconductivity. Adv. Phys. 66, 75–196 (2017).

    Article  ADS  Google Scholar 

  3. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  CAS  Google Scholar 

  7. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Hu, X., Hyart, T., Pikulin, D. I. & Rossi, E. Geometric and conventional contribution to the superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 123, 237002 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Xie, F., Song, Z., Lian, B. & Bernevig, B. A. Topology-bounded superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 124, 167002 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T. & Törmä, P. Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene. Phys. Rev. B 101, 060505 (2020).

    Article  CAS  ADS  Google Scholar 

  12. Verma, N., Hazra, T. & Randeria, M. Optical spectral weight, phase stiffness, and Tc bounds for trivial and topological flat band superconductors. Proc. Nat. Acad. Sci. 118, e2106744118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herzog-Arbeitman, J., Peri, V., Schindler, F., Huber, S. D. & Bernevig, B. A. Superfluid weight bounds from symmetry and quantum geometry in flat band. Phys. Rev. Lett. 128, 087002 (2022)

  14. Berdyugin, A. I. et al. Out-of-equilibrium criticalities in graphene superlattices. Science 375, 430–433 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Nishida, Y. & Abuki, H. BCS-BEC crossover in a relativistic superfluid and its significance to quark matter. Phys. Rev. D 72, 096004 (2005).

    Article  ADS  Google Scholar 

  17. Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS–BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).

    Article  CAS  ADS  Google Scholar 

  18. Randeria, M. & Taylor, E. Crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein Condensation and the Unitary Fermi Gas. Annu. Rev. Condens. Matter Phys. 5, 209–232 (2014).

    Article  CAS  ADS  Google Scholar 

  19. Nakagawa, Y. et al. Gate-controlled BCS-BEC crossover in a two-dimensional superconductor. Science 372, 190–195 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Lu, X. et al. Superconductors, orbital magnets, and correlated states in magic angle bilayer graphene. Nature 574, 653 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Allor, D., Cohen, T. D. & McGady, D. A. Schwinger mechanism and graphene. Phys. Rev. D 78, 096009 (2008).

    Article  ADS  Google Scholar 

  23. Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).

    Article  CAS  Google Scholar 

  24. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene. Nature 592, 43–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Berezinsky, V. L. Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems. Sov. Phys. JETP 32, 493–500 (1971).

    MathSciNet  ADS  Google Scholar 

  26. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6, 1181–1203 (1973).

    Article  CAS  ADS  Google Scholar 

  27. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Codecido, E. et al. Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv. 5, eaaw9770 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39, 1201 (1977).

    Article  CAS  ADS  Google Scholar 

  30. Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, 1996).

  31. Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Sensarma, R., Randeria, M. & Ho, T.-L. Vortices in superfluid Fermi gases through the BEC to BCS crossover. Phys. Rev. Lett. 96, 090403 (2006).

    Article  PubMed  ADS  Google Scholar 

  34. Hazra, T., Verma, N. & Randeria, M. Bounds on the superconducting transition temperature: applications to twisted bilayer graphene and cold atoms. Phys. Rev. X 9, 031049 (2019).

    CAS  Google Scholar 

  35. Ahn, J., Park, S. & Yang, B.-J. Failure of Nielsen-Ninomiya theorem and fragile topology in two-dimensional systems with space-time inversion symmetry: application to twisted bilayer graphene at magic angle. Phys. Rev. X 9, 021013 (2019).

    CAS  Google Scholar 

  36. Po, H. C., Zou, L., Senthil, T. & Vishwanath, A. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

    Article  CAS  ADS  Google Scholar 

  37. Song, Z. et al. All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett. 123, 036401 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Ma, C. et al. Moiré band topology in twisted bilayer graphene. Nano Lett. 20, 6076–6083 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Fortin-Deschênes, M. et al. Uncovering Topological Edge States in Twisted Bilayer Graphene. Nano Lett. 22, 6186–6193 (2022).

    Article  PubMed  ADS  Google Scholar 

  40. Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Uemura, Y. J. et al. Basic similarities among cuprate, bismuthate, organic, Chevrel-phase, and heavy-fermion superconductors shown by penetration-depth measurements. Phys. Rev. Lett. 68, 2712–2712 (1992).

    Article  CAS  ADS  Google Scholar 

  43. Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    Article  CAS  Google Scholar 

  44. Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 17, 478–481 (2021).

    Article  CAS  Google Scholar 

  46. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Zhang, K., Zhang, Y., Fu, L. & Kim, E.-A. Fractional correlated insulating states at n±1/3 filled magic angle twisted bilayer graphene. Commun. Phys. 5, 250 (2022)

  48. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Nat. Acad. Sci. 108, 12233 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).

    CAS  Google Scholar 

  50. Dóra, B. & Moessner, R. Nonlinear electric transport in graphene: quantum quench dynamics and the Schwinger mechanism. Phys. Rev. B 81, 165431 (2010).

    Article  ADS  Google Scholar 

  51. Sainz-Cruz, H., Cea, T., Pantaleón, P. A. & Guinea, F. High transmission in twisted bilayer graphene with angle disorder. Phys. Rev. B 104, 075144 (2021).

    Article  CAS  ADS  Google Scholar 

  52. Beenakker, C. W. J. & van Houten, H. in Solid State Physics Vol. 44 (eds Ehrenreich, H. & Turnbull, D.) 1–228 (Academic Press, 1991).

Download references

Acknowledgements

We thank P. Stepanov for advice on device fabrication. The experiments are supported by DOE BES Division under grant number DE-SC0020187. M.R. and the nanofabrication facility were supported by NSF Materials Research Science and Engineering Center Grant DMR-2011876. T.X., P.C. and F.Z. were supported by the Army Research Office under grant number W911NF-18-1-0416 and by the National Science Foundation under grant numbers DMR-1945351 through the CAREER programme, DMR-1921581 through the DMREF programme and DMR-2105139 through the CMP programme. T.X., P.C. and F.Z. acknowledge the Texas Advanced Computing Center for providing resources that have contributed to the research results reported in this work. Growth of hexagonal boron nitride crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan (grant number JPMXP0112101001) and JSPS KAKENHI (grant numbers 19H05790, 20H00354 and 21H05233).

Author information

Authors and Affiliations

Authors

Contributions

H.T., C.N.L. and M.W.B. conceived the project. H. T., X.G., Y.Z. and S.C. fabricated samples. H.T. X.G. and Y.Z. performed transport measurements. T.X. and P.C. performed theoretical calculations under the supervision of F.Z. K.W. and T.T. provided hBN crystals. H.T., C.N.L. and M.W.B. analysed the data. M.W.B., C.N.L., M.R. and F.Z. interpreted the data and co-wrote the manuscript. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Chun Ning Lau or Marc W. Bockrath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Rxx (Vbg, B) of the device at T = 0.3 K.

The numbers on the right indicate the filling factors of the peaks (where the full-filling of the minibands correspond to filling factors \(\widetilde{\nu }\) = ±4). Using the convention that the full-filling of the minibands correspond to filling factor \(\widetilde{\nu }\) = ±4, we identify a number of peaks at fractional fillings of \(\widetilde{\nu }\) = −0.5, 1.5 and N± 1/3, where N is an integer.

Source data

Extended Data Fig. 2 Hall resistance and inferred charge densities.

Left: Symmetrized Rxy versus density. Right: Measured Hall density compared to inferred density from capacitance; the red line has a unit slope to show the agreement between the two.

Source data

Extended Data Fig. 3 Non-linear transport at B = 0 and higher temperatures.

ab dV/dI versus J and ñ at T = 5 K, and dV/dI in kΩ versus J at ñ = −1 (blue), −2 (green) and −3 (red) × 1011 cm−2, respectively. cd dV/dI in kΩ versus J and T at ñ ~ −2.8 and −1.7 × 1011 cm−2, respectively. The dV/dI peaks disappear at higher temperatures, which is consistent with an ultra-small Fermi energy of ~1 meV.

Source data

Extended Data Fig. 4 The shape of Fermi surface in the lab frame for various rescaled drift velocity \({\boldsymbol{\beta }}={{\boldsymbol{v}}}_{{\bf{n}}}/{{\boldsymbol{v}}}_{{\bf{F}}}\).

Plot of the Fermi surface for various β versus x and y momentum components px and py.

Extended Data Fig. 5 Theoretical modelling of Fermi velocity vF and the critical drift velocity vn.

a \({v}_{{\rm{F}}}\) and \({v}_{{\rm{n}}}\) in units of the Fermi velocity at the Dirac point \({v}_{{\rm{DP}}}\), as well as \({v}_{{\rm{n}}}/{v}_{{\rm{F}}}\), versus electron density \({n}_{e}\). b the effective masses at Fermi energy, \(\hbar {k}_{{\rm{F}}}/{v}_{{\rm{F}}}\) in theory and \(\hbar {k}_{{\rm{F}}}/{v}_{{\rm{n}}}\) in measurements, in units of the bare electron mass \({m}_{e}\) as functions of the electron density \({n}_{e}\).

Source data

Extended Data Fig. 6 Comparison between velocity measured from quantum Hall effect, Shubnikov–de Hass oscillations and non-linear transport measurements near charge neutrality.

a dV/dI versus density n and bias current I for device D2 with θ = 1.06º. Peaks due to the Schwinger effect are indicated by the red dashed lines. b Rxx versus n at T = 30, 25, 20, 18, 12, 10, 7, 5 and 2.02 K, respectively (blue to black). Inset: Activation plot of Rxx measured in the quantum Hall νq = 4 valley indicated by the arrow in the main panel taken at B = 4 T. cd Same as ab but for device D3. Inset in c: Zoom-in of same data in main panel with background subtracted. Colour scale: black: −1 kΩ; white: 3 kΩ. From blue to black, temperatures in d are T = 10, 6, 4, 2.5, 1.8, 1.2, 0.8, 0.4, 0.1 and 0.03 K. e Plot of vQH versus vNLT for D2 and D3. The dotted line indicates vQH = vNLT.

Source data

Extended Data Fig. 7 Non-linear transport data near charge neutrality and half-filling for device D4.

a dV/dI (n, I) near charge neutrality. Velocity obtained from slope of features near zero density such as shown by the red dashed line, yielding vNL = ~ 1.7 × 104 m s–1; averaging the slopes of features over four quadrants yields vNL = ~ 1.5 × 104 m s–1. b dV/dI data near half-filling. Features indicated by red dashed lines follow nearly equal slopes, yielding vNL = 2.3 × 103 m s–1.

Source data

Extended Data Fig. 8 Comparison of ac and dc measurements.

a R(n) at B = 0, T = 0.3 K and zero bias, measured using ac lock-in techniques with a large dynamic range. The superconducting region displays a “residual” resistance of ~20–30 Ω. b DC voltage-current curve at ñ = −1.65 × 1011 cm−2, B = 0 and T = 0.3 K. The blue line is a line fit to the zero-bias region, which has a slope of −0.2 ± 1.4 Ω.

Source data

Extended Data Fig. 9

Transport data over extended range. Nonlinear transport data dV/dI (J,ν) in kΩ over a large density range at B = 0 and T = 0.3 K.

Source data

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Gao, X., Zhang, Y. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023). https://doi.org/10.1038/s41586-022-05576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05576-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing