Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing site-resolved correlations in a spin system of ultracold molecules

Abstract

Synthetic quantum systems with interacting constituents play an important role in quantum information processing and in explaining fundamental phenomena in many-body physics. Following impressive advances in cooling and trapping techniques, ensembles of ultracold polar molecules have emerged as a promising platform that combines several advantageous properties1,2,3,4,5,6,7,8,9,10,11. These include a large set of internal states with long coherence times12,13,14,15,16,17 and long-range, anisotropic interactions. These features could enable the exploration of intriguing phases of correlated quantum matter, such as topological superfluids18, quantum spin liquids19, fractional Chern insulators20 and quantum magnets21,22. Probing correlations in these phases is crucial to understanding their properties, necessitating the development of new experimental techniques. Here we use quantum gas microscopy23 to measure the site-resolved dynamics of quantum correlations of polar 23Na87Rb molecules confined in a two-dimensional optical lattice. By using two rotational states of the molecules, we realize a spin-1/2 system with dipolar interactions between particles, producing a quantum spin-exchange model21,22,24,25. We study the evolution of correlations during the thermalization process of an out-of-equilibrium spin system for both spatially isotropic and anisotropic interactions. Furthermore, we examine the correlation dynamics of a spin-anisotropic Heisenberg model engineered from the native spin-exchange model by using periodic microwave pulses26,27,28. These experiments push the frontier of probing and controlling interacting systems of ultracold molecules, with prospects for exploring new regimes of quantum matter and characterizing entangled states that are useful for quantum computation29,30 and metrology31.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular quantum gas microscope.
Fig. 2: Rotational state coherence.
Fig. 3: Correlation dynamics in an XY spin model.
Fig. 4: Tunable spatial anisotropy of the dipolar interactions.
Fig. 5: Floquet engineering of an anisotropic Heisenberg model.

Similar content being viewed by others

Data availability

Source data can be found in the Harvard Dataverse58. All other supporting data are available from the corresponding author upon reasonable request.

Code availability

The code used in this manuscript is available from the corresponding author upon reasonable request.

References

  1. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  CAS  ADS  Google Scholar 

  2. Barry, J., McCarron, D., Norrgard, E., Steinecker, M. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article  CAS  ADS  Google Scholar 

  3. De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article  ADS  Google Scholar 

  4. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article  CAS  ADS  Google Scholar 

  5. Cairncross, W. B. et al. Assembly of a rovibrational ground state molecule in an optical tweezer. Phys. Rev. Lett. 126, 123402 (2021).

    Article  CAS  ADS  Google Scholar 

  6. Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    Article  CAS  ADS  Google Scholar 

  7. Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).

    Article  CAS  ADS  Google Scholar 

  8. Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70–74 (2022).

    Article  CAS  ADS  Google Scholar 

  9. Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    Article  CAS  MATH  ADS  Google Scholar 

  10. Gadway, B. & Yan, B. Strongly interacting ultracold polar molecules. J. Phys. B 49, 152002 (2016).

    Article  ADS  Google Scholar 

  11. Moses, S. A., Covey, J. P., Miecnikowski, M. T., Jin, D. S. & Ye, J. New frontiers for quantum gases of polar molecules. Nat. Phys. 13, 13–20 (2017).

    Article  CAS  Google Scholar 

  12. Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 357, 372–375 (2017).

    Article  CAS  ADS  Google Scholar 

  13. Seeßelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).

    Article  ADS  Google Scholar 

  14. Caldwell, L. et al. Long rotational coherence times of molecules in a magnetic trap. Phys. Rev. Lett. 124, 063001 (2020).

    Article  CAS  ADS  Google Scholar 

  15. Blackmore, J., Gregory, P., Bromley, S., Hutson, J. & Cornish, S. Robust storage qubits in ultracold polar molecules. Nat. Phys. 17, 1149–1153 (2021).

    Article  Google Scholar 

  16. Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    Article  CAS  ADS  Google Scholar 

  17. Lin, J., He, J., Jin, M., Chen, G. & Wang, D. Seconds-scale coherence on nuclear spin transitions of ultracold polar molecules in 3D optical lattices. Phys. Rev. Lett. 128, 223201 (2022).

    Article  CAS  ADS  Google Scholar 

  18. Cooper, N. R. & Shlyapnikov, G. V. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett. 103, 155302 (2009).

    Article  CAS  ADS  Google Scholar 

  19. Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405–410 (2018).

    Article  CAS  Google Scholar 

  20. Yao, N. Y. et al. Realizing fractional Chern insulators in dipolar spin systems. Phys. Rev. Lett. 110, 185302 (2013).

    Article  CAS  ADS  Google Scholar 

  21. Hazzard, K. R. A., Manmana, S. R., Foss-Feig, M. & Rey, A. M. Far-from-equilibrium quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 110, 075301 (2013).

    Article  ADS  Google Scholar 

  22. Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article  ADS  Google Scholar 

  23. Gross, C. & Bakr, W. S. Quantum gas microscopy for single atom and spin detection. Nat. Phys. 17, 1316–1323 (2021).

    Article  CAS  Google Scholar 

  24. Barnett, R., Petrov, D., Lukin, M. & Demler, E. Quantum magnetism with multicomponent dipolar molecules in an optical lattice. Phys. Rev. Lett. 96, 190401 (2006).

    Article  ADS  Google Scholar 

  25. Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article  CAS  ADS  Google Scholar 

  26. Choi, J. et al. Robust dynamic Hamiltonian engineering of many-body spin systems. Phys. Rev. X 10, 031002 (2020).

    CAS  Google Scholar 

  27. Geier, S. et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374, 1149–1152 (2021).

    Article  CAS  ADS  Google Scholar 

  28. Scholl, P. et al. Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRX Quantum 3, 020303 (2022).

    Article  ADS  Google Scholar 

  29. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  CAS  ADS  Google Scholar 

  30. Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article  CAS  Google Scholar 

  31. Perlin, M. A., Qu, C. & Rey, A. M. Spin squeezing with short-range spin-exchange interactions. Phys. Rev. Lett. 125, 223401 (2020).

    Article  CAS  ADS  Google Scholar 

  32. Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Article  CAS  Google Scholar 

  33. Defenu, N. et al. Long-range interacting quantum systems. Preprint at https://arxiv.org/abs/2109.01063 (2021).

  34. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  CAS  Google Scholar 

  35. Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Preprint at https://arxiv.org/abs/2201.02672 (2022).

  36. de Paz, A. et al. Nonequilibrium quantum magnetism in a dipolar lattice gas. Phys. Rev. Lett. 111, 185305 (2013).

    Article  ADS  Google Scholar 

  37. de Léséleuc, S. et al. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science 365, 775–780 (2019).

    Article  MATH  ADS  Google Scholar 

  38. Baier, S. et al. Extended Bose-Hubbard models with ultracold magnetic atoms. Science 352, 201–205 (2016).

    Article  CAS  MATH  ADS  Google Scholar 

  39. Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

    Article  CAS  Google Scholar 

  40. Rosenberg, J. S., Christakis, L., Guardado-Sanchez, E., Yan, Z. Z. & Bakr, W. S. Observation of the Hanbury Brown-Twiss effect with ultracold molecules. Nat. Phys. 18, 1062–1066 (2022).

    Article  CAS  Google Scholar 

  41. Tobias, W. G. et al. Reactions between layer-resolved molecules mediated by dipolar spin exchange. Science 375, 1299–1303 (2022).

    Article  CAS  ADS  Google Scholar 

  42. Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).

    Article  ADS  Google Scholar 

  43. Reichsöllner, L., Schindewolf, A., Takekoshi, T., Grimm, R. & Nägerl, H.-C. Quantum engineering of a low-entropy gas of heteronuclear bosonic molecules in an optical lattice. Phys. Rev. Lett. 118, 073201 (2017).

    Article  ADS  Google Scholar 

  44. Moses, S. A. et al. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350, 659–662 (2015).

    Article  CAS  ADS  Google Scholar 

  45. Kwasigroch, M. & Cooper, N. Bose-Einstein condensation and many-body localization of rotational excitations of polar molecules following a microwave pulse. Phys. Rev. A 90, 021605 (2014).

    Article  ADS  Google Scholar 

  46. Zeiher, J. et al. Many-body interferometry of a Rydberg-dressed spin lattice. Nat. Phys. 12, 1095–1099 (2016).

    Article  CAS  Google Scholar 

  47. Jepsen, P. N. et al. Spin transport in a tunable Heisenberg model realized with ultracold atoms. Nature 588, 403–407 (2020).

    Article  CAS  ADS  Google Scholar 

  48. Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

    Article  ADS  Google Scholar 

  49. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    Article  CAS  ADS  Google Scholar 

  50. Koepsell, J. et al. Robust bilayer charge pumping for spin- and density-resolved quantum gas microscopy. Phys. Rev. Lett. 125, 010403 (2020).

    Article  CAS  ADS  Google Scholar 

  51. Yan, Z. Z. et al. Two-dimensional programmable tweezer arrays of fermions. Phys. Rev. Lett. 129, 123201 (2022).

    Article  CAS  ADS  Google Scholar 

  52. Kotochigova, S. & DeMille, D. Electric-field-dependent dynamic polarizability and state-insensitive conditions for optical trapping of diatomic polar molecules. Phys. Rev. A 82, 063421 (2010).

    Article  ADS  Google Scholar 

  53. Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).

    Article  CAS  ADS  Google Scholar 

  54. Lin, J., He, J., Ye, X. & Wang, D. Anisotropic polarizability of ultracold ground-state 23Na87Rb molecules. Phys. Rev. A 103, 023332 (2021).

    Article  CAS  ADS  Google Scholar 

  55. Blackmore, J. A. et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci. Technol. 4, 014010 (2018).

    Article  ADS  Google Scholar 

  56. Guo, M., Ye, X., He, J., Quéméner, G. & Wang, D. High-resolution internal state control of ultracold 23Na87Rb molecules. Phys. Rev. A 97, 020501 (2018).

    Article  CAS  ADS  Google Scholar 

  57. Vexiau, R. et al. Dynamic dipole polarizabilities of heteronuclear alkali dimers: optical response, trapping and control of ultracold molecules. Int. Rev. Phys. Chem. 36, 709–750 (2017).

    Article  CAS  Google Scholar 

  58. Christakis, L. et al. Replication Data for: Probing Site-Resolved Correlations in a Spin System of Ultracold Molecules (Harvard Dataverse, 2022); https://doi.org/10.7910/DVN/3WMCXJ.

Download references

Acknowledgements

We thank E. Guardado-Sanchez and G. Zheng for experimental assistance. This work was supported by the NSF (grant no. 1912154) and the David and Lucile Packard Foundation (grant no. 2016-65128). L.C. was supported by the NSF Graduate Research Fellowship Program. D.A.H. and A.M. were supported in part by the NSF QLCI grant no. OMA-2120757.

Author information

Authors and Affiliations

Authors

Contributions

W.S.B. and D.A.H. conceived the study and supervised the experiment. L.C., J.S.R., R.R. and Z.Z.Y. performed the experiments and the data analysis. A.M. and S.C. performed the numerical calculations. All authors contributed to the manuscript.

Corresponding author

Correspondence to Waseem S. Bakr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Microwave spectroscopy.

a, Molecular rotational and hyperfine spectrum measured at 60 G. Green, blue and orange lines are the theoretical predictions using molecular parameters in refs. 54,56 for microwave transitions from \(\left|\uparrow \right\rangle \) to selected hyperfine states in the N = 1 manifold using π, σ, and σ+ polarization, respectively. The transition on the far right, indicated by the black arrow, is the \(\left|\uparrow \right\rangle \) to \(\left|\downarrow \right\rangle \) transition. b, Sample Rabi oscillation between \(\left|\uparrow \right\rangle \) and \(\left|\downarrow \right\rangle \). The extracted Rabi frequency from this measurement is 2π × 9.529(4) kHz. Error bars are s.e.m.

Source data

Extended Data Fig. 2 Differential polarizabilities between \({\boldsymbol{| }}{\boldsymbol{\uparrow }}{\boldsymbol{\rangle }}\) and \({\boldsymbol{| }}{\boldsymbol{\downarrow }}{\boldsymbol{\rangle }}\) versus trapping light intensity.

a, In the isotropic configuration, B = 60 G, and the angle between the light’s electric field and the quantization axis is 0°. The intensity varies by ~4% over the cloud, denoted by the grey shading. b, In the anisotropic configuration, B = 4.1 G, and the angle is 90°.

Source data

Extended Data Fig. 3 Ramsey fringe contrast as a function of time at varying lattice filling.

Fringe contrast shown for 1.0(2)% (blue circles), 3.3(2)% (green squares), and 8.4(3)% (orange diamonds) peak lattice fillings. Dashed lines represent exponential fits with 1/e times of 83(4) ms, 25(4) ms, and 11(2) ms respectively. Error bars are s.e.m.

Source data

Extended Data Fig. 4 Spin-exchange coupling.

The values of V(a)/h calculated for the isotropic (a) and anisotropic (b) cases for different separations in x and y.

Source data

Extended Data Fig. 5 Numerical simulation comparison between XYY and Floquet dynamics.

a, Comparing magnetization dynamics for different initial states between the exact XYY model (shaded bands) and a Floquet drive with a 5.8 μs π-pulse time (points). Red: \(\left|+X\right\rangle \) initial state. Orange: \(\left|+Y\right\rangle \) initial state. The dashed line indicates the demagnetized value with N = N0/2. b, Correlation dynamics compared between the exact XYY model (shaded bands) and a Floquet drive with a 5.8 μs π-pulse time (points). Top: nearest-neighbor correlations. Middle: next-nearest neighbor correlations. Bottom: next-next-nearest neighbor correlations. c, Comparing magnetization dynamics for different initial states between the exact XYY model (shaded bands) and a Floquet drive with a 58 μs π-pulse time (points). Red: \(\left|+X\right\rangle \) initial state. Orange: \(\left|+Y\right\rangle \) initial state. The dashed line indicates the demagnetized value with N = N0/2. d, Correlation dynamics compared between the exact XYY model (shaded bands) and a Floquet drive with a 58 μs π-pulse time (points). Top: nearest-neighbor correlations. Middle: next-nearest neighbor correlations. Bottom: next-next-nearest neighbor correlations.

Source data

Extended Data Fig. 6 π-pulse fidelity.

a, Microwave pulse sequence to measure the error in the π-pulse time. An even number of π-pulses interspersed with hold times τ are used to rotate the spins from \(\left|\uparrow \right\rangle \) to \(\left|\downarrow \right\rangle \) and back. b, Fraction of molecules remaining in \(\left|\uparrow \right\rangle \) versus number of π-pulses N. The dashed line marks N/N0 = 1 indicating perfect π-pulses. Error bars are s.e.m.

Source data

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christakis, L., Rosenberg, J.S., Raj, R. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64–69 (2023). https://doi.org/10.1038/s41586-022-05558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05558-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing