Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulating surface potential maximizes voltage in all-perovskite tandems

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Abstract

The open circuit voltage (VOC) deficit in perovskite solar cells (PSCs) is greater in wide bandgap (>1.7 eV) cells than in ~1.5 eV perovskites.1,2 Quasi-Fermi level splitting (QFLS) measurements reveal VOC-limiting recombination at the electron transport layer (ETL) contact.3-5 This, we find, stems from inhomogeneous surface potential and poor perovskite-ETL energetic alignment. Common monoammonium surface treatments fail to address this; instead we introduce diammonium molecules to modify the perovskite surface states and achieve a more uniform spatial distribution of surface potential. Using 1,3-propane diammonium (PDA), QFLS increases by 90 meV, enabling 1.79 eV PSCs with a certified 1.33 V VOC, and > 19% power conversion efficiency (PCE). Incorporating this layer into a monolithic all-perovskite tandem, we report a record VOC of 2.19 V (89% of the detailed balance VOC limit) and > 27% PCE (26.3% certified quasi-steady-state). These tandems retain more than 86% of their initial PCE after 500 hrs operation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfa Yan or Edward H. Sargent.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–24, Supplementary Tables 1–4, Supplementary Notes 1 and 2 and Supplementary References.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Maxwell, A., Li, C. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature (2022). https://doi.org/10.1038/s41586-022-05541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-022-05541-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing