Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-range ordered porous carbons produced from C60

Abstract

Carbon structures with covalent bonds connecting C60 molecules have been reported1,2,3, but their production methods typically result in very small amounts of sample, which restrict the detailed characterization and exploration necessary for potential applications. We report the gram-scale preparation of a new type of carbon, long-range ordered porous carbon (LOPC), from C60 powder catalysed by α-Li3N at ambient pressure. LOPC consists of connected broken C60 cages that maintain long-range periodicity, and has been characterized by X-ray diffraction, Raman spectroscopy, magic-angle spinning solid-state nuclear magnetic resonance spectroscopy, aberration-corrected transmission electron microscopy and neutron scattering. Numerical simulations based on a neural network show that LOPC is a metastable structure produced during the transformation from fullerene-type to graphene-type carbons. At a lower temperature, shorter annealing time or by using less α-Li3N, a well-known polymerized C60 crystal forms owing to the electron transfer from α-Li3N to C60. The carbon K-edge near-edge X-ray absorption fine structure shows a higher degree of delocalization of electrons in LOPC than in C60(s). The electrical conductivity is 1.17 × 10−2 S cm−1 at room temperature, and conduction at T < 30  K appears to result from a combination of metallic-like transport over short distances punctuated by carrier hopping. The preparation of LOPC enables the discovery of other crystalline carbons starting from C60(s).

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Morphological and structural characterizations.
Fig. 2: Microstructure characterization.
Fig. 3: Simulations and in situ MAS-SSNMR.
Fig. 4: DOS, NEXAFS and electrical conductivity measurements.

Data availability

All data supporting the findings of this work are available within the paper and its Supplementary Information. Source data can be found at https://github.com/NiKun9/fullerene_evolutionSource data are provided with this paper.

Code availability

All density functional theory calculations were performed using VASP and Gaussian 09 software, which are commercially available at https://www.vasp.at/ and https://gaussian.com/. All structural search calculations based on neutral network potential were performed using LASP software, which is commercially available at http://www.lasphub.com and free for academic usage. The Raman off-resonance activity calculator is available at https://github.com/afonari/raman-sc.

References

  1. O’Keeffe, M. C60 zeolites? Nature 352, 674–674 (1991).

    Article  ADS  Google Scholar 

  2. Vanderbilt, D. & Tersoff, J. Negative-curvature fullerene analog of C60. Phys. Rev. Lett. 68, 511–513 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Okada, S., Saito, S. & Oshiyama, A. New metallic crystalline carbon: three dimensionally polymerized C60 fullerite. Phys. Rev. Lett. 83, 1986–1989 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Solid C60: a new form of carbon. Nature 347, 354–358 (1990).

    Article  ADS  Google Scholar 

  5. Quo, Y., Karasawa, N. & Goddard, W. A. Prediction of fullerene packing in C60 and C70 crystals. Nature 351, 464–467 (1991).

    Article  ADS  Google Scholar 

  6. Heiney, P. A. et al. Orientational ordering transition in solid C60. Phys. Rev. Lett. 66, 2911–2914 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Samara, G. et al. Pressure dependence of the orientational ordering in solid C60. Phys. Rev. Lett. 67, 3136–3139 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Iwasa, Y. et al. New phases of C60 synthesized at high pressure. Science 264, 1570–1572 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Nunez-Regueiro, M., Marques, L., Hodeau, J.-L., Béthoux, O. & Perroux, M. Polymerized fullerite structures. Phys. Rev. Lett. 74, 278–281 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Wang, G., Komatsu, K., Murata, Y. & Shiro, M. Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387, 583–586 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Margadonna, S. et al. Li4C60: a polymeric fulleride with a two-dimensional architecture and mixed interfullerene bonding motifs. J. Am. Chem. Soc. 126, 15032–15033 (2004).

    Article  CAS  Google Scholar 

  12. Stephens, P. W. et al. Polymeric fullerene chains in RbC60 and KC60. Nature 370, 636–639 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Zhao, Y., Poirier, D., Pechman, R. & Weaver, J. Electron stimulated polymerization of solid C60. Appl. Phys. Lett. 64, 577–579 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Rao, A. et al. Photoinduced polymerization of solid C60 films. Science 259, 955–957 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Hou, L. et al. Synthesis of a monolayer fullerene network. Nature 606, 507–510 (2022).

    Article  ADS  CAS  Google Scholar 

  16. Wang, L. et al. Long-range ordered carbon clusters: a crystalline material with amorphous building blocks. Science 337, 825–828 (2012).

    Article  ADS  CAS  Google Scholar 

  17. Zhang, S. et al. Discovery of carbon-based strongest and hardest amorphous material. Natl Sci. Rev. 9, nwab140 (2022).

    Article  CAS  Google Scholar 

  18. Shang, Y. et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature 599, 599–604 (2021).

    Article  ADS  CAS  Google Scholar 

  19. Tang, H. et al. Synthesis of paracrystalline diamond. Nature 599, 605–610 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Davydov, V. A. et al. Spectroscopic study of pressure-polymerized phases of C60. Phys. Rev. B 61, 11936–11945 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Okotrub, A. et al. Electronic structure and properties of rhombohedrally polymerized C60. J. Chem. Phys. 115, 5637–5641 (2001).

    Article  ADS  CAS  Google Scholar 

  22. Burger, B., Winter, J. & Kuzmany, H. Dimer and cluster formation in C60 photoreaction. Z. Phys. B 101, 227–233 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Yannoni, C., Johnson, R., Meijer, G., Bethune, D. & Salem, J. 13C NMR study of the C60 cluster in the solid state: molecular motion and carbon chemical shift anisotropy. J. Phys. Chem. 95, 9–10 (1991).

    Article  CAS  Google Scholar 

  24. Hiroyama, Y. & Kume, K. High resolution 13C NMR spectra in graphite chemical shift and diamagnetism. Solid State Commun. 65, 617–619 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Rachdi, F. et al. High resolution NMR studies of one and two dimensional polymerized C60. Appl. Phys. A 64, 295–299 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Gugenberger, F. et al. Glass transition in single-crystal C60 studied by high-resolution dilatometry. Phys. Rev. Lett. 69, 3774–3777 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Sundar, C. et al. Pressure-induced polymerization of fullerenes: a comparative study of C60 and C70. Phys. Rev. B 53, 8180–8183 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Juhás, P., Cherba, D., Duxbury, P., Punch, W. & Billinge, S. Ab initio determination of solid-state nanostructure. Nature 440, 655–658 (2006).

    Article  ADS  Google Scholar 

  29. Ni, K., Pan, F. & Zhu, Y. Structural evolution of C60 molecular crystal predicted by neural network potential. Adv. Funct. Mater. 32, 2203894 (2022).

  30. Huang, S., Shang, C., Zhang, X. & Liu, Z. Material discovery by combining stochastic surface walking global optimization with a neural network. Chem. Sci. 8, 6327–6337 (2017).

    Article  CAS  Google Scholar 

  31. Tycko, R. et al. 13C NMR spectroscopy of KxC60: phase separation, molecular dynamics, and metallic properties. Science 253, 884–886 (1991).

    Article  ADS  CAS  Google Scholar 

  32. Pennington, C. H. & Stenger, V. A. Nuclear magnetic resonance of C60 and fulleride superconductors. Rev. Mod. Phys. 68, 855–910 (1996).

    Article  ADS  CAS  Google Scholar 

  33. Pan, F. et al. Phase-changing in graphite assisted by interface charge injection. Nano Lett. 21, 5648–5654 (2021).

    Article  ADS  CAS  Google Scholar 

  34. Wågberg, T., Stenmark, P. & Sundqvist, B. Structural aspects of two-dimensional polymers: Li4C60, Na4C60 and tetragonal C60. Raman spectroscopy and X-ray diffraction. J. Phys. Chem. Solids 65, 317–320 (2004).

    Article  ADS  Google Scholar 

  35. Wågberg, T. & Johnels, D. 7Li and 23Na MAS solid state NMR studies of Na4C60 and Li4C60. J. Phys. Chem. Solids 67, 1091–1094 (2006).

    Article  ADS  Google Scholar 

  36. Aoyagi, S. et al. A layered ionic crystal of polar Li@C60 superatoms. Nat. Chem. 2, 678–683 (2010).

    Article  CAS  Google Scholar 

  37. Terminello, L. et al. Unfilled orbitals of C60 and C70 from carbon K-shell X-ray absorption fine structure. Chem. Phys. Lett. 182, 491–496 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Uher, C., Hockey, R. & Ben-Jacob, E. Pressure dependence of the c-axis resistivity of graphite. Phys. Rev. B 35, 4483–4488 (1987).

    Article  ADS  CAS  Google Scholar 

  39. Xu, J. et al. Multi-physics instrument: total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source. Nucl. Instrum. Methods Phys. Res. A 1013, 165642 (2021).

    Article  CAS  Google Scholar 

  40. Arnold, O. et al. Mantid-data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Methods Phys. Res. A 764, 156–166 (2014).

    Article  ADS  CAS  Google Scholar 

  41. Huang, S. D., Shang, C., Kang, P. L., Zhang, X. J. & Liu, Z. P. LASP: fast global potential energy surface exploration. WIREs Comput. Mol. Sci. 9, e1415 (2019).

    Article  CAS  Google Scholar 

  42. Zhang, X.-J., Shang, C. & Liu, Z.-P. From atoms to fullerene: stochastic surface walking solution for automated structure prediction of complex material. J. Chem. Theory Comput. 9, 3252–3260 (2013).

    Article  CAS  Google Scholar 

  43. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  ADS  CAS  Google Scholar 

  44. Hafner, J. Ab‐initio simulations of materials using VASP: density‐functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).

    Article  CAS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  Google Scholar 

  46. Ernzerhof, M. & Scuseria, G. E. ssessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999).

    Article  ADS  CAS  Google Scholar 

  47. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  48. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  49. Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

    Article  ADS  Google Scholar 

  50. Young, R. A. The Rietveld Method Vol. 5 (International Union of Crystallography, 1993).

  51. Yates, J. R., Pickard, C. J. & Mauri, F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B 76, 024401 (2007).

    Article  ADS  Google Scholar 

  52. Pickard, C. J. & Mauri, F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63, 245101 (2001).

    Article  ADS  Google Scholar 

  53. Plashkevych, O., Privalov, T., Ågren, H., Carravetta, V. & Ruud, K. On the validity of the equivalent cores approximation for computing X-ray photoemission and photoabsorption spectral bands. Chem. Phys. 260, 11–28 (2000).

    Article  CAS  Google Scholar 

  54. Li, X., Hua, W., Guo, J. & Luo, Y. Electronic structure of nitrogen-doped graphene in the ground and core-excited states from first-principles simulations. J. Phys. Chem. C 119, 16660–16666 (2015).

    Article  CAS  Google Scholar 

  55. Ma, Y. et al. Local structures of nitrogen-doped graphdiynes determined by computational X-ray spectroscopy. Carbon 149, 672–678 (2019).

    Article  CAS  Google Scholar 

  56. Frisch, M. et al. Gaussian 09, Revision D. 01 (Gaussian, 2009).

Download references

Acknowledgements

We thank Z. Qiao, Z. Li, Y. Luo and D. Proserpio for helpful discussion. This work is supported by National Key R&D Program of China 2020YFA0711502, Natural Science Foundation of China (grant nos. 51972299, 52003265, 52202052, 52273234, 52273239, 12004377, 11874350 and U2004214), the Key R&D Program of Jiangsu Province grant no. BE2021007-2 and Guangdong Provincial Key Laboratory grant no. 2019B121203002. R.S.R. is supported by the Institute for Basic Science (grant no. IBS-R019-D1). The Supercomputing Center of USTC is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., F.P. and K.N. designed the research. F.P. performed the material preparation and most regular characterizations. K.N. performed all the simulations. T.X. and L.S. performed the aberration-corrected transmission electron microscopy. H.C. and W. Yin performed the neutron diffraction and pair distribution function testing. Y.W. and K.G. performed the magic-angle-spinning solid-state 13C nuclear magnetic resonance spectroscopy and in situ testing. C.L. and D.Y. performed the electrical conductivity testing of LOPC. X.L. carried out the simulation of carbon K-edge near-edge X-ray absorption fine structure spectra. M.-L.L. and P.-H.T. performed the Raman testing. S.L. and X.W. assisted with the material preparation. W. Yan performed the carbon K-edge near-edge X-ray absorption fine structure spectra testing. Y.Z. and R.S.R. supervised the research, and provided many insightful remarks and suggestions. Y.Z., R.S.R., F.P. and K.N. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Rodney S. Ruoff or Yanwu Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature thanks Yongjun Tian, Thomas Wågberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs 1–31, Tables 1 and 2, captions to Supplementary Videos 1–4 and Appendix.

Peer Review File

Supplementary Video 1

Supplementary Video 2

Supplementary Video 3

Supplementary Video 4

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, F., Ni, K., Xu, T. et al. Long-range ordered porous carbons produced from C60. Nature (2023). https://doi.org/10.1038/s41586-022-05532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-022-05532-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing