Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coupled ferroelectricity and superconductivity in bilayer Td-MoTe2

Abstract

Achieving electrostatic control of quantum phases is at the frontier of condensed matter research. Recent investigations have revealed superconductivity tunable by electrostatic doping in twisted graphene heterostructures and in two-dimensional semimetals such as WTe2 (refs. 1,2,3,4,5). Some of these systems have a polar crystal structure that gives rise to ferroelectricity, in which the interlayer polarization exhibits bistability driven by external electric fields6,7,8. Here we show that bilayer Td-MoTe2 simultaneously exhibits ferroelectric switching and superconductivity. Notably, a field-driven, first-order superconductor-to-normal transition is observed at its ferroelectric transition. Bilayer Td-MoTe2 also has a maximum in its superconducting transition temperature (Tc) as a function of carrier density and temperature, allowing independent control of the superconducting state as a function of both doping and polarization. We find that the maximum Tc is concomitant with compensated electron and hole carrier densities and vanishes when one of the Fermi pockets disappears with doping. We argue that this unusual polarization-sensitive two-dimensional superconductor is driven by an interband pairing interaction associated with nearly nested electron and hole Fermi pockets.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Electronic properties of bilayer Td-MoTe2.
Fig. 2: Coupled ferroelectricity and superconductivity in bilayer Td-MoTe2.
Fig. 3: Doping-dependent superconducting properties of bilayer Td-MoTe2.
Fig. 4: Fermi surface nesting and superconductivity in MoTe2.

Data availability

Datasets used to construct plots and support other findings in this article are available from the corresponding authors upon request.

References

  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  Google Scholar 

  2. Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    Article  ADS  CAS  Google Scholar 

  3. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article  ADS  CAS  Google Scholar 

  4. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    Article  ADS  CAS  Google Scholar 

  6. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  ADS  CAS  Google Scholar 

  7. De la Barrera, S. C. et al. Direct measurement of ferroelectric polarization in a tunable semimetal. Nat. Commun. 12, 5298 (2021).

    Article  ADS  Google Scholar 

  8. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  ADS  CAS  Google Scholar 

  9. Rabe, K. M., Dawber, M., Lichtensteiger, C., Ahn, C. H. & Triscone, J.-M. in Physics of Ferroelectrics 1–30 (Springer, 2007).

  10. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  ADS  CAS  Google Scholar 

  11. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

  12. Liu, Y., Liu, S., Li, B., Yoo, W. J. & Hone, J. Identifying the transition order in an artificial ferroelectric van der Waals heterostructure. Nano Lett. 22, 1265–1269 (2022).

  13. Sando, D., Barthélémy, A. & Bibes, M. BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter 26, 473201 (2014).

    Article  ADS  CAS  Google Scholar 

  14. Ye, J. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010).

    Article  ADS  CAS  Google Scholar 

  15. Hamill, A. et al. Two-fold symmetric superconductivity in few-layer NbSe2. Nat. Phys. 17, 949–954 (2021).

    Article  CAS  Google Scholar 

  16. Rhodes, D. A. et al. Enhanced superconductivity in monolayer Td-MoTe2. Nano Lett. 21, 2505–2511 (2021).

    Article  ADS  CAS  Google Scholar 

  17. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article  ADS  Google Scholar 

  18. Deng, K. et al. Experimental observation of topological Fermi arcs in type-IIWeyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    Article  CAS  Google Scholar 

  19. Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

    Article  ADS  CAS  Google Scholar 

  20. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

    Article  ADS  CAS  Google Scholar 

  21. Wang, W. et al. Evidence for an edge supercurrent in the Weyl superconductor MoTe2. Science 368, 534–537 (2020).

    Article  ADS  CAS  Google Scholar 

  22. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  Google Scholar 

  23. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article  CAS  Google Scholar 

  24. Liu, X. et al. Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2. Nanoscale 11, 18575–18581 (2019).

    Article  CAS  Google Scholar 

  25. Sondheimer, E. & Wilson, A. H. The theory of the magneto-resistance effects in metals. Proc. R. Soc. Lond. A 190, 435–455 (1947).

    Article  ADS  MATH  Google Scholar 

  26. Chen, F. et al. Extremely large magnetoresistance in the type-II Weyl semimetal MoTe2. Phys. Rev. B 94, 235154 (2016).

    Article  ADS  Google Scholar 

  27. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    Article  ADS  CAS  Google Scholar 

  28. Zandt, T., Dwelk, H., Janowitz, C. & Manzke, R. Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2. J. Alloys Compd 442, 216–218 (2007).

    Article  CAS  Google Scholar 

  29. Hussey, N., Buhot, J. & Licciardello, S. A tale of two metals: contrasting criticalities in the pnictides and hole-doped cuprates. Rep. Progr. Phys. 81, 052501 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Greene, R. L., Mandal, P. R., Poniatowski, N. R. & Sarkar, T. The strange metal state of the electron-doped cuprates. Ann. Rev. Condens. Matter Phys. 11, 213–229 (2020).

    Article  ADS  CAS  Google Scholar 

  31. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    Article  ADS  CAS  Google Scholar 

  32. Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

    Article  ADS  CAS  Google Scholar 

  33. Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).

    Article  ADS  CAS  Google Scholar 

  34. Zhai, B., Li, B., Wen, Y., Wu, F. & He, J. Prediction of ferroelectric superconductors with reversible superconducting diode effect. Phys. Rev. B 106, L140505 (2022).

  35. Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article  ADS  CAS  Google Scholar 

  36. Ji, S., Granas, O. & Weissenrieder, J. Manipulation of stacking order in Td-WTe2 by ultrafast optical excitation. ACS Nano 15, 8826–8835 (2021).

    Article  CAS  Google Scholar 

  37. Gan, Y. et al. Bandgap opening in MoTe2 thin flakes induced by surface oxidation. Front. Phys. 15, 33602 (2020).

    Article  ADS  Google Scholar 

  38. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  CAS  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  42. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  ADS  CAS  Google Scholar 

  43. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  44. Brown, B. E. The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268–274 (1966).

    Article  CAS  Google Scholar 

  45. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  46. Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  ADS  CAS  MATH  Google Scholar 

  47. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012).

    Article  ADS  CAS  Google Scholar 

  48. Graser, S., Maier, T., Hirschfeld, P. & Scalapino, D. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides. N. J. Phys. 11, 025016 (2009).

    Article  Google Scholar 

  49. Christensen, M. H., Kang, J., Andersen, B. M. & Fernandes, R. M. Spin-driven nematic instability of the multiorbital Hubbard model: Application to iron-based superconductors. Phys. Rev. B 93, 085136 (2016).

    Article  ADS  Google Scholar 

  50. Python Tight Binding (PythTB) (2021); http://physics.rutgers.edu/pythtb/

Download references

Acknowledgements

We thank A. Millis for discussions. The experimental portion of this research was primarily supported by the NSF MRSEC program through Columbia University in the Center for Precision-Assembled Quantum Materials under award no. DMR-2011738 (fabrication, measurements and data analysis). A.S., T.B. and R.M.F. (theoretical modelling) were supported by the National Science Foundation through the University of Minnesota MRSEC (grant no. DMR-2011401). D.A.R. and Z.L. (growth, measurements and data analysis) were supported by the University of Wisconsin-Madison, Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation. D.A.R. was partially supported by the NSF MRSEC program through the University of Wisconsin-Madison under award no. DMR-1720415. A.N.P. acknowledges salary support from the NSF via grant no. DMR-2004691, from AFOSR via grant no. FA9550-21-1-0378 by the ARO-MURI program with award no. W911NF-21-1-0327. K.W. and T.T. acknowledge support from the Element Strategy Initiative conducted by the MEXT, Japan (grant no. JPMXP0112101001) and JSPS KAKENHI (grant nos. 19H05790, 20H00354 and 21H05233).

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed by D.A.R., A.J. and A.N.P. Devices were fabricated by A.J., D.A.R. and Z.L. C.R.D., A.J. and D.A.R. performed the measurements and analysed the data. A.S. developed theoretical models and performed calculations supervised by T.B. and R.F.M. T.T. and K.W. supplied hBN single crystals. D.A.R. and J.C.H. synthesized MoTe2 single crystals. D.A.R., A.J. and A.N.P. wrote the manuscript with the input of all other authors.

Corresponding authors

Correspondence to Abhay N. Pasupathy or Daniel A. Rhodes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Yoichi Yanase, Kenji Yasuda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Superconducting dome observed in two other devices at D = 0 V/nm.

Limitations due to the dielectric strength of the hBN in these devices precluded us from reaching higher doping and, consequently, the formation of a complete superconducting dome.

Extended Data Fig. 2 Doping dependent T-linear behaviour of  bilayer Td - MoTe2.

a, Colour plot of resistance vs temperature and doping. Doping dependent superconducting critical temperature (from Fig. 3a) is superimposed on the colour plot with the associated temperature scale on the right axis. b, Diagram indicating regions of T2 and T-linear behaviour. c,Rxx versus temperature for various dopings, as indicated at the top of each curve in values of 1013 cm−2. Blue (red) dashed lines indicate quadratic (linear) fits to the data.

Extended Data Fig. 3 T-linear behaviour observed in D3.

a, Colour plot of resistance vs temperature and doping. Doping dependent superconducting critical temperature (from Extended Data Fig. 2) is superimposed on the colour plot. b,Rxx versus temperature for various dopings. Blue (red) dashed lines indicate quadratic (linear) fits to the data.

Supplementary information

Supplementary Information

This file contains eight figures and a table that are used as supporting information for the main text figures and explanations.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jindal, A., Saha, A., Li, Z. et al. Coupled ferroelectricity and superconductivity in bilayer Td-MoTe2. Nature 613, 48–52 (2023). https://doi.org/10.1038/s41586-022-05521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05521-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing