Abstract
A kagome lattice naturally features Dirac fermions, flat bands and van Hove singularities in its electronic structure. The Dirac fermions encode topology, flat bands favour correlated phenomena such as magnetism, and van Hove singularities can lead to instabilities towards long-range many-body orders, altogether allowing for the realization and discovery of a series of topological kagome magnets and superconductors with exotic properties. Recent progress in exploring kagome materials has revealed rich emergent phenomena resulting from the quantum interactions between geometry, topology, spin and correlation. Here we review these key developments in this field, starting from the fundamental concepts of a kagome lattice, to the realizations of Chern and Weyl topological magnetism, to various flat-band many-body correlations, and then to the puzzles of unconventional charge-density waves and superconductivity. We highlight the connection between theoretical ideas and experimental observations, and the bond between quantum interactions within kagome magnets and kagome superconductors, as well as their relation to the concepts in topological insulators, topological superconductors, Weyl semimetals and high-temperature superconductors. These developments broadly bridge topological quantum physics and correlated many-body physics in a wide range of bulk materials and substantially advance the frontier of topological quantum matter.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Imaging real-space flat band localization in kagome magnet FeSn
Communications Materials Open Access 22 February 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Syôzi, I. Statistics of kagomé lattice. Prog. Theor. Phys. 6, 306–308 (1951). Introduction of the kagome lattice to quantum physics.
Onsager, L. et al. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944).
Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).
Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
Heisenberg, W. Zur Theorie des Ferromagnetismus. Z. Phys. 49, 619–636 (1928).
Stoner, E. C. Collective electron ferromagnetism. Proc. R. Soc. Lond. Ser. A 165, 372–414 (1938).
Mielke, A. Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. A 24, L73 (1991). Identification of electronic structure in a kagome lattice.
Anderson, P. W. More is different. Science 177, 393–396 (1972).
Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).
Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Hasan, M. Z., Xu, S.-Y. & Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys. Scr. 2015, 014001 (2015).
Keimer, B., Kivelson, S., Norman, M., Uchida, M. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065 (2000).
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).
Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).
Guo, H. M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).
Tang, E., Mei, J. W. & Wen, X. G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).
Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015). Prediction of a kagome Chern magnet.
Halperin, B. I. Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn J. Appl. Phys. 26, 1913–1919 (1987).
Weyl, H. Elektron und gravitation. I. Z. Phys. 56, 330–352 (1929).
Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).
Qi, X.-L. Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators. Phys. Rev. Lett. 107, 126803 (2011).
Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).
Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).
Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).
Zhu, W., Gong, S.-S., Zeng, T.-S., Fu, L. & Sheng, D. S. Interaction-driven spontaneous quantum Hall effect on a kagome lattice. Phys. Rev. Lett. 117, 096402 (2016).
Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).
Ko, W.-H., Lee, P. A. & Wen, X.-G. Doped kagome system as exotic superconductor. Phys. Rev. B 79, 214502 (2009). Prediction of time-reversal-symmetry-breaking kagome superconductivity.
Kida, T. et al. The giant anomalous Hall effect in the ferromagnet Fe3Sn2—a frustrated kagome metal. J. Phys. Condens. Matter 23, 112205 (2011). Observation of giant anomalous Hall effect in a kagome ferromagnet.
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a noncollinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). Observation of room-temperature giant anomalous Hall effect in a kagome antiferromagnet.
Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).
Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018). Observation of massive Dirac fermions in a kagome ferromagnetic metal.
Yin, J. X. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018). Observation of spin–orbit tunability, Berry curvature response and electronic nematicity in a kagome magnet.
Fenner, L. A., Dee, A. A. & Wills, A. S. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe3Sn2. J. Phys. Condens. Matter 21, 452202 (2009).
Hou, Z. et al. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy. Adv. Mater. 29, 1701144 (2017).
Wang, Q., Yin, Q. & Lei, H. Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2. Chin. Phys. B 29, 017101 (2020).
Li, Y. et al. Magnetic-field control of topological electronic response near room temperature in correlated kagome magnets. Phys. Rev. Lett. 123, 196604 (2019).
Ye, L. et al. de Haas–van Alphen effect of correlated Dirac states in kagome metal Fe3Sn2. Nat. Commun. 10, 4870 (2019).
Tanaka, H. et al. Three-dimensional electronic structure in ferromagnetic Fe3Sn2 with breathing kagome bilayers. Phys. Rev. B 101, 161114(R) (2020).
Fang, S. Ferromagnetic helical nodal line and Kane–Mele spin–orbit coupling in kagome metal Fe3Sn2. Phys. Rev. B 105, 035107 (2022).
Venturini, G., ElIdrissi, B. C. & Malaman, B. Magnetic properties of RMn6Sn6 (R = Sc, Y, Gd–Tm, Lu) compounds with HfFe6Ge6 type structure. J. Magn. Magn. Mater. 94, 35–42 (1991).
Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020). Observation of a quantum-limit kagome Chern magnet with topological edge state.
Ma, W. et al. Rare earth engineering in RMn6Sn6 (R = Gd–Tm, Lu) topological kagome magnets. Phys. Rev. Lett. 126, 246602 (2021).
Xu, X. et al. Topological charge–entropy scaling in kagome Chern magnet TbMn6Sn6. Nat. Commun. 13, 1197 (2022).
Zhang, H. et al. Exchange-biased topological transverse thermoelectric effects in a kagome ferrimagnet. Nat. Commun. 13, 1091 (2022).
Mott, N. F. et al. The Theory of the Properties of Metals and Alloys (Courier Dover Publications, 1958).
Wiedemann, G. & Franz, R. Relative conductivity of solids. Ann. Phys. Chem. 89, 497–531 (1853).
Asaba, T. et al. Anomalous Hall effect in the kagome ferrimagnet GdMn6Sn6. Phys. Rev. B 101, 174415 (2020).
Ghimire, N. J. et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. Sci. Adv. 6, eabe2680 (2020).
Li, M. et al. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6. Nat. Commun. 12, 3129 (2021).
Wang, Q. et al. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic kagome antiferromagnetic compound YMn6Sn6. Phys. Rev. B 103, 014416 (2021).
Peng, S. et al. Realizing kagome band structure in two-dimensional kagome surface states of RV6Sn6 (R=Gd, Ho). Phys. Rev. Lett. 127, 266401 (2021).
Li, H. et al. Manipulation of Dirac band curvature and momentum-dependent g factor in a kagome magnet. Nat. Phys. 18, 644–649 (2022). Momentum-resolved g factor in a kagome antiferromagnet.
Riberolles, S. X. M. et al. Low temperature competing magnetic energy scales in the topological ferrimagnet TbMn6Sn6. Phys. Rev. X 12, 021043 (2022).
Chen, D. et al. Large anomalous Hall effect in the kagome ferromagnet LiMn6Sn6. Phys. Rev. B 103, 144410 (2021).
Siegfried, P. E. et al. Magnetization-driven Lifshitz transition and charge-spin coupling in the kagome metal YMn6Sn6. Commun. Phys. 5, 58 (2022).
Armitage, N. P., Mele, E. J. & Vishwannath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Hasan, M. Z. et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat. Rev. Mater. 6, 784–803 (2021).
Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).
Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017). Prediction of kagome Weyl materials.
Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).
Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn 51, 2478–2486 (1982).
Weihrich, R., Anusca, I. & Zabel, M. Half-antiperovskites: structure and type–antitype relations of shandites M3/2As (M = Co, Ni; A = In, Sn). Z. Anorg. Allg. Chem. 631, 1463–1470 (2005).
Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019). Observation of topological flat-band and orbital magnetization in a kagome magnet.
Zhang, S. S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046401 (2020). Observation of many-body resonance in a topological kagome magnet.
Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).
Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).
Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon 12, 73–78 (2018).
Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).
Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020). Proposal for spintronic application of a kagome Weyl magnet.
Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann–Franz law. Sci. Adv. 6, eaaz3522 (2020).
Chaudhary, G., Burkov, A. A. & Heinonen, O. G. Magnetism and magnetotransport in the kagome antiferromagnet Mn3Ge. Phys. Rev. B 105, 085108 (2022).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).
Guguchia, Z. et al. Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet. Nat. Commun. 11, 559 (2020).
Liu, D. F. et al. Magnetic Weyl semimetal phase in a kagomé crystal. Science 365, 1282–1285 (2019).
Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019). Quasiparticle scattering of the surface Fermi arc states in a kagome magnet.
Yin, J.-X. et al. Spin–orbit quantum impurity in a topological magnet. Nat. Commun. 11, 4415 (2020).
Belopolski, I. et al. Signatures of Weyl fermion annihilation in a correlated kagome magnet. Phys. Rev. Lett. 127, 256403 (2021).
Liu, D. et al. Direct observation of the spin–orbit coupling effect in magnetic Weyl semimetal Co3Sn2S2. npj Quantum Mater. 7, 11 (2022). Momentum–resolved spin–orbit gap in a kagome Weyl magnet.
Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).
Si, Q. & Steglich, F. Heavy fermions and quantum phase transitions. Science 329, 1161–1166 (2010).
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Liu, Z. H. et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nat. Commun. 11, 4002 (2020).
Yin, J. X. et al. Fermion–boson many-body interplay in a frustrated kagome paramagnet. Nat. Commun. 11, 4003 (2020).
Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).
Meier, W. R. et al. Flat bands in the CoSn-type compounds. Phys. Rev. B 102, 075148 (2020).
Xie, Y. et al. Spin excitations in metallic kagome lattice FeSn and CoSn. Commun. Phys. 4, 240 (2021).
Huang, H. et al. Flat-band-induced anomalous anisotropic charge transport and orbital magnetism in kagome metal CoSn. Phys. Rev. Lett. 128, 096601 (2022).
Wan, S., Lu, H. & Huang, L. Temperature dependence of correlated electronic states in the archetypal kagome metal CoSn. Phys. Rev. B 105, 155131 (2022).
Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Phys. Rev. Lett. 121, 096401 (2018). Kagome flat-band-induced emergent ferromagnetism.
Sales, B. C. et al. Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Phys. Rev. Mater. 3, 114203 (2019).
Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).
Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).
Vanderbilt, D. in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).
Xing, Y. et al. Localized spin–orbit polaron in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 5613 (2020).
Lin, Z. et al. Dirac fermions in antiferromagnetic FeSn kagome lattices with combined space inversion and time-reversal symmetry. Phys. Rev. B 102, 155103 (2020).
Inoue, H. et al. Molecular beam epitaxy growth of antiferromagnetic kagome metal FeSn. Appl. Phys. Lett. 115, 072403 (2019).
Han, M. et al. Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn. Nat. Commun. 12, 5345 (2021).
Matthias, B. T., Suhl, H. & Corenzwit, E. Ferromagnetic superconductors. Phys. Rev. Lett. 1, 449 (1958).
Mielke, C. III et al. Local spectroscopic evidence for a nodeless magnetic kagome superconductor CeRu2. J. Phys. Condens. Matter 34, 485601 (2022).
Ku, H. C., Meisner, G. P., Acker, F. & Johnston, D. C. Superconducting and magnetic properties of new ternary borides with the CeCo3B2-type structure. Solid State Commun. 35, 91 (1980).
Mielke, C.III. et al. Nodeless kagome superconductivity in LaRu3Si2. Phys. Rev. Mater. 5, 034803 (2021).
Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).
Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020). Observation of superconductivity in AV3Sb5 compounds.
Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).
Yin, Q. et al. Superconductivity and normal-state properties of kagome metal RbV3Sb5 single crystals. Chin. Phys. Lett. 38, 037403 (2021).
Jiang, Y. X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021). Observation of 2 × 2 charge-density-wave order with magnetic response in a kagome superconductor.
Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).
Ishioka, J. et al. Chiral charge-density waves. Phys. Rev. Lett. 105, 176401 (2010).
van Wezel, J. Chirality and orbital order in charge density waves. Europhys. Lett. 96, 67011 (2011).
Hildebrand, B. et al. Local real-space view of the achiral 1T-TiSe2 2 × 2 × 2 charge density wave. Phys. Rev. Lett. 120, 136404 (2018).
Xu, S. Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).
Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).
Zhao, H. et al. Cascade of correlated electron states in a kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).
Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021). Observation of pair density wave in a kagome superconductor.
Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).
Miao, H. et al. Geometry of the charge density wave in the kagome metal AV3Sb5. Phys. Rev. B 104, 195132 (2021).
Ratcliff, N. et al. Coherent phonon spectroscopy and interlayer modulation of charge density wave order in the kagome metal CsV3Sb5. Phys. Rev. Mater. 5, L111801 (2021).
Uykur, E. et al. Optical detection of the density-wave instability in the kagome metal KV3Sb5. npj Quantum Mater. 7, 16 (2022).
Xie, Y. et al. Electron–phonon coupling in the charge density wave state of CsV3Sb5. Phys. Rev. B 105, L140501 (2022).
Liu, G. et al. Observation of anomalous amplitude modes in the kagome metal CsV3Sb5. Nat. Commun. 13, 3461 (2022).
Luo, J. et al. Possible star-of-David pattern charge density wave with additional modulation in the kagome superconductor CsV3Sb5. npj Quantum Mater. 7, 30 (2022).
Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265–270 (2022).
Shumiya, N. et al. Intrinsic nature of chiral charge order in the kagome superconductor RbV3Sb5. Phys. Rev. B 104, 035131 (2021).
Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).
Ortiz, B. R. et al. Fermi surface mapping and the nature of charge-density-wave order in the kagome superconductor CsV3Sb5. Phys. Rev. X 11, 041030 (2021).
Ni, S. et al. Anisotropic superconducting properties of kagome metal CsV3Sb5. Chin. Phys. Lett. 38, 057403 (2021).
Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).
Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).
Liu, Z. et al. Charge-density-wave-induced bands renormalization and energy gaps in a kagome superconductor RbV3Sb5. Phys. Rev. X 11, 041010 (2021).
Nakayama, K. et al. Multiple energy scales and anisotropic energy gap in the charge-density-wave phase of the kagome superconductor CsV3Sb5. Phys. Rev. B 104, L161112 (2021).
Cho, S. et al. Emergence of new van Hove singularities in the charge density wave state of a topological kagome metal RbV3Sb5. Phys. Rev. Lett. 127, 236401 (2021).
Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and Landau theory. Phys. Rev. B 104, 035142 (2021).
Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B 104, 214513 (2021).
Luo, H. et al. Electronic nature of charge density wave and electron–phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).
Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).
Song, D. et al. Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5. Sci. China Phys. Mech. Astron. 65, 247462 (2022).
Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, abl4108 (2022).
Neupert, T. et al. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).
Kenney, E., Ortiz, B., Wang, C., Wilson, S. & Graf, M. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter 33, 235801 (2021).
Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).
Yu, F. H. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).
Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).
Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 217601 (2021).
Lin, Y.-P. & Nandkishore, R. M. Complex charge density waves at van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 (A=K, Rb, Cs). Phys. Rev. B 104, 045122 (2021).
Mielke, C. III. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022). Evidence for time-reversal-symmetry-breaking charge order via a magnetic-moment-sensitive probe.
Guguchia, Z. et al. Tunable nodal kagome superconductivity in charge ordered RV3Sb5. Preprint at https://arxiv.org/abs/2202.07713 (2022).
Khasanov, R. et al. Charge order breaks time-reversal symmetry in CsV3Sb5. Phys. Rev. Res. 4, 023244 (2022).
Xu, Y. et al. Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors. Nat. Phys. https://doi.org/10.1038/s41567-022-01805-7 (2022).
Guo, C. et al. Switchable chiral transport in charge-ordered CsV3Sb5. Nature 611, 461–466 (2022).
Teng, X.-K. et al. Discovery of charge density wave in a correlated kagome lattice antiferromagnet. Nature 609, 490–495 (2022).
Yin, J.-X. et al. Discovery of charge order and corresponding edge state in kagome magnet FeGe. Phys. Rev. Lett. 129, 166401 (2022).
Mazin, I. I. et al. Theoretical prediction of a strongly correlated Dirac metal. Nat. Commun. 5, 4261 (2014).
Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).
Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).
Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5. Phys. Rev. B 103, L220504 (2021).
Song, Y. et al. Competition of superconductivity and charge density wave in selective oxidized CsV3Sb5 thin flakes. Phys. Rev. Lett. 127, 237001 (2021).
Chen, X. et al. Highly robust reentrant superconductivity in CsV3Sb5 under pressure. Chin. Phys. Lett. 38, 057402 (2021).
Zhu, C. C. et al. Double-dome superconductivity under pressure in the V-based kagome metals AV3Sb5 (A=Rb and K). Phys. Rev. B 105, 094507 (2022).
Oey, Y. et al. Fermi level tuning and double-dome superconductivity in the kagome metals CsV3Sb5−xSnx. Phys. Rev. Mater. 6, L041801 (2022).
Li, Y. et al. Tuning the competition between superconductivity and charge order in kagome superconductor Cs(V1-xNbx)3Sb5. Phys. Rev. B 105, L180507 (2022).
Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).
Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).
Gupta, R. et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. npj Quantum Mater. 7, 49 (2022).
Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 177001 (2021).
Xu, H.-S. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 187004 (2021).
Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).
Gu, Y. et al. Gapless excitations inside the fully gapped kagome superconductors AV3Sb5. Phys. Rev. B 105, L100502 (2022).
Lou, R. et al. Charge-density-wave-induced peak–dip–hump structure and the multiband superconductivity in a kagome superconductor CsV3Sb5. Phys. Rev. Lett. 128, 036402 (2022).
Keimer, B. & Moore, J. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).
Gao, Z.-A. Design and synthesis of a single-layer ferromagnetic metal−organic framework with topological nontrivial gaps. J. Phys. Chem. C 124, 27017–27023 (2020).
Fuchs, M. et al. Kagome metal–organic frameworks as a platform for strongly correlated electrons. J. Phys. Mater. 3, 025001 (2020).
Asaba, T. et al. Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet. Sci. Adv. 7, abf1467 (2021).
Chen, T. et al. Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. Sci. Adv. 8, abk1480 (2022).
Muechler, L. et al. Emerging chiral edge states from the confinement of a magnetic Weyl semimetal in Co3Sn2S2. Phys. Rev. B 101, 115106 (2020).
Howard, S. et al. Evidence for one-dimensional chiral edge states in a magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 12, 4269 (2021).
Regnault, N. et al. Catalogue of flat-band stoichiometric materials. Nature 603, 824–828 (2022).
Rhim, J. W., Kim, K. & Yang, B. J. Quantum distance and anomalous Landau levels of flat bands. Nature 584, 59–63 (2020).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).
Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl Acad. Sci. USA 115, 10938–10942 (2018).
Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S=1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).
He, Y.-C., Zaletel, M. P., Oshikawa, M. & Pollmann, F. Signatures of dirac cones in a DMRG study of the kagome Heisenberg model. Phys. Rev. X 7, 031020 (2017).
Laughlin, R. B. Superconducting ground state of noninteracting particles obeying fractional statistics. Phys. Rev. Lett. 60, 2677–2680 (1988).
Kalmeyer, V. & Laughlin, R. B. Theory of the spin liquid state of the Heisenberg antiferromagnet. Phys. Rev. B 39, 11879–11899 (1989).
Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).
Czajka, P. et al. Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3. Nat. Phys. 17, 915–919 (2021).
Di Sante, D. et al. Turbulent hydrodynamics in strongly correlated kagome metals. Nat. Commun. 11, 3997 (2020).
Lima, F. C. Double flat bands in kagome twisted bilayers. Phys. Rev. B 100, 155421 (2019).
Scheer, M. G., Gu, K. & Lian, B. Magic angles in twisted bilayer graphene near commensuration: towards a hypermagic regime. Phys. Rev. B 106, 115418 (2022).
Acknowledgements
We thank our research collaborators for various discussions on kagome physics. M.Z.H. acknowledges support from the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Science Center and Princeton University; visiting scientist support at Berkeley Lab (Lawrence Berkeley National Laboratory) during the early phases of this work; support from the Gordon and Betty Moore Foundation (GBMF9461) for the STM and the theory work; and support from the US DOE under the Basic Energy Sciences programme (grant number DOE/BES DE-FG-02-05ER46200) for the theory and angle-resolved photoemission spectroscopy work. B.L. is supported by the Alfred P. Sloan Foundation, the National Science Foundation through Princeton University’s Materials Research Science and Engineering Center DMR-2011750; and the National Science Foundation under award DMR-2141966. J.-X.Y. acknowledges support from Princeton University, as well as the support from South University of Science and Technology of China principal research grant (number Y01202500). M.Z.H. also acknowledges visiting scientist support from Stanford University during the last phase of this work.
Author information
Authors and Affiliations
Contributions
All authors discussed the content of the manuscript, and reviewed and edited the entire manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Domenico Di Sante, Madhav Ghimire and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yin, JX., Lian, B. & Hasan, M.Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022). https://doi.org/10.1038/s41586-022-05516-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-022-05516-0
This article is cited by
-
Imaging real-space flat band localization in kagome magnet FeSn
Communications Materials (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.