Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable itinerant spin dynamics with polar molecules

Abstract

Strongly interacting spins underlie many intriguing phenomena and applications1,2,3,4 ranging from magnetism to quantum information processing. Interacting spins combined with motion show exotic spin transport phenomena, such as superfluidity arising from pairing of spins induced by spin attraction5,6. To understand these complex phenomena, an interacting spin system with high controllability is desired. Quantum spin dynamics have been studied on different platforms with varying capabilities7,8,9,10,11,12,13. Here we demonstrate tunable itinerant spin dynamics enabled by dipolar interactions using a gas of potassium-rubidium molecules confined to two-dimensional planes, where a spin-1/2 system is encoded into the molecular rotational levels. The dipolar interaction gives rise to a shift of the rotational transition frequency and a collision-limited Ramsey contrast decay that emerges from the coupled spin and motion. Both the Ising and spin-exchange interactions are precisely tuned by varying the strength and orientation of an electric field, as well as the internal molecular state. This full tunability enables both static and dynamical control of the spin Hamiltonian, allowing reversal of the coherent spin dynamics. Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics using the strong, tunable dipolar interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A 2D itinerant spin system with polar molecules.
Fig. 2: Dynamical decoupling and tunable dipolar interactions between molecules.
Fig. 3: Reversal of the spin dynamics.
Fig. 4: Dipolar collisional decoherence.

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. Manousakis, E. The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides. Rev. Mod. Phys. https://doi.org/10.1103/RevModPhys.63.1 (1991).

    Article  Google Scholar 

  2. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  3. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    Article  CAS  ADS  Google Scholar 

  4. Nielsen, M. A. & Chuang, I. Quantum computation and quantum information. Am. J. Phys. 70, 558–559 (2002).

    Article  ADS  Google Scholar 

  5. Levin, K. & Hulet, R. G. in Ultracold Bosonic and Fermionic Gases (eds. Levin, K. et al.) Vol. 5, 69–94 (Elsevier, 2012).

  6. Sobirey, L. et al. Observation of superfluidity in a strongly correlated two-dimensional Fermi gas. Science 372, 844–846 (2021).

    Article  CAS  ADS  Google Scholar 

  7. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  CAS  Google Scholar 

  8. Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016).

    Article  CAS  ADS  Google Scholar 

  9. Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 25001 (2021).

    Article  CAS  Google Scholar 

  10. Zu, C. et al. Emergent hydrodynamics in a strongly interacting dipolar spin ensemble. Nature 597, 45–50 (2021).

    Article  CAS  ADS  Google Scholar 

  11. Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. (in the press).

  12. Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Preprint at https://doi.org/10.48550/ARXIV.2207.09328 (2022).

  13. Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article  CAS  ADS  Google Scholar 

  14. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Article  CAS  Google Scholar 

  15. Barnett, R., Petrov, D., Lukin, M. & Demler, E. Quantum magnetism with multicomponent dipolar molecules in an optical lattice. Phys. Rev. Lett. 96, 190401 (2006).

    Article  ADS  Google Scholar 

  16. Hazzard, K. R. A., Manmana, S. R., Foss-Feig, M. & Rey, A. M. Far-from-equilibrium quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 110, 75301 (2013).

    Article  ADS  Google Scholar 

  17. Mishra, T., Greschner, S. & Santos, L. Polar molecules in frustrated triangular ladders. Phys. Rev. A 91, 43614 (2015).

    Article  ADS  Google Scholar 

  18. Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    Article  CAS  MATH  ADS  Google Scholar 

  19. Gorshkov, A. V. et al. Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A 84, 33619 (2011).

    Article  ADS  Google Scholar 

  20. Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405–410 (2018).

    Article  CAS  Google Scholar 

  21. Kwasigroch, M. P. & Cooper, N. R. Bose-Einstein condensation and many-body localization of rotational excitations of polar molecules following a microwave pulse. Phys. Rev. A 90, 21605 (2014).

    Article  ADS  Google Scholar 

  22. Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    Article  CAS  ADS  Google Scholar 

  23. Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    Article  CAS  ADS  Google Scholar 

  24. Li, J.-R. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144–1148 (2021).

    Article  CAS  Google Scholar 

  25. Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779–782 (2021).

    Article  CAS  ADS  Google Scholar 

  26. Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).

    Article  CAS  ADS  Google Scholar 

  27. Mueller, S. et al. Stability of a dipolar Bose-Einstein condensate in a one-dimensional lattice. Phys. Rev. A 84, 053601 (2011).

    Article  ADS  Google Scholar 

  28. Fersterer, P. et al. Dynamics of an itinerant spin-3 atomic dipolar gas in an optical lattice. Phys. Rev. A 100, 033609 (2019).

    Article  CAS  ADS  Google Scholar 

  29. Natale, G. et al. Bloch oscillations and matter-wave localization of a dipolar quantum gas in a one-dimensional lattice. Commun. Phys. 5, 227 (2022).

    Article  Google Scholar 

  30. Bilitewski, T. et al. Dynamical generation of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett. 126, 113401 (2021).

    Article  CAS  ADS  Google Scholar 

  31. Tobias, W. G. et al. Reactions between layer-resolved molecules mediated by dipolar spin exchange. Science 375, 1299–1303 (2022).

    Article  CAS  ADS  Google Scholar 

  32. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article  CAS  ADS  Google Scholar 

  33. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article  CAS  ADS  Google Scholar 

  34. Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).

    Article  CAS  ADS  Google Scholar 

  35. Seeβelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).

    Article  ADS  Google Scholar 

  36. Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    Article  CAS  ADS  Google Scholar 

  37. Gullion, T., Baker, D. B. & Conradi, M. S. New, compensated Carr-Purcell sequences. J. Magn. Reson. 89, 479–484 (1990).

    CAS  ADS  Google Scholar 

  38. Geier, S. et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374, 1149–1152 (2021).

    Article  CAS  ADS  Google Scholar 

  39. Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article  CAS  Google Scholar 

  40. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    Article  CAS  Google Scholar 

  41. Guardado-Sanchez, E. et al. Probing the quench dynamics of antiferromagnetic correlations in a 2D quantum ising spin system. Phys. Rev. X 8, 21069 (2018).

    CAS  Google Scholar 

  42. Shenker, S. H. & Stanford, D. Black holes and the butterfly effect. J. High Energy Phys. 2014, 67 (2014).

    Article  MATH  Google Scholar 

  43. Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).

    Article  MATH  Google Scholar 

  44. Braumüller, J. et al. Probing quantum information propagation with out-of-time-ordered correlators. Nat. Phys. 18, 172–178 (2022).

    Article  Google Scholar 

  45. Green, A. M. et al. Experimental measurement of out-of-time-ordered correlators at finite temperature. Phys. Rev. Lett. 128, 140601 (2022).

    Article  CAS  ADS  Google Scholar 

  46. Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 53601 (2016).

    Article  ADS  Google Scholar 

  47. Colombo, S. et al. Time-reversal-based quantum metrology with many-body entangled states. Nat. Phys. 18, 925–930 (2022).

    Article  CAS  Google Scholar 

  48. Gilmore, K. A. et al. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals. Science 373, 673–678 (2021).

    Article  CAS  ADS  Google Scholar 

  49. Bohn, J. L., Cavagnero, M. & Ticknor, C. Quasi-universal dipolar scattering in cold and ultracold gases. New J. Phys. 11, 55039 (2009).

    Article  Google Scholar 

  50. Ticknor, C. Quasi-two-dimensional dipolar scattering. Phys. Rev. A 81, 42708 (2010).

    Article  ADS  Google Scholar 

  51. Karman, T., Yan, Z. Z. & Zwierlein, M. Resonant and first-order dipolar interactions between ultracold 1Σ molecules in static and microwave electric fields. Phys. Rev. A 105, 13321 (2022).

    Article  CAS  ADS  Google Scholar 

  52. Martin, M. J. et al. A quantum many-body spin system in an optical lattice clock. Science 341, 632–636 (2013).

    Article  CAS  MATH  ADS  Google Scholar 

  53. Bruun, G. M. & Taylor, E. Quantum phases of a two-dimensional dipolar Fermi gas. Phys. Rev. Lett. 101, 245301 (2008).

    Article  CAS  ADS  Google Scholar 

  54. Lee, H., Matveenko, S. I., Wang, D.-W. & Shlyapnikov, G. V. Fulde-Ferrell-Larkin-Ovchinnikov state in bilayer dipolar systems. Phys. Rev. A 96, 61602 (2017).

    Article  ADS  Google Scholar 

  55. Peter, D., Müller, S., Wessel, S. & Büchler, H. P. Anomalous behavior of spin systems with dipolar interactions. Phys. Rev. Lett. 109, 25303 (2012).

    Article  CAS  ADS  Google Scholar 

  56. Koschorreck, M., Pertot, D., Vogt, E. & Köhl, M. Universal spin dynamics in two-dimensional Fermi gases. Nat. Phys. 9, 405–409 (2013).

    Article  CAS  Google Scholar 

  57. Syzranov, S. V., Wall, M. L., Gurarie, V. & Rey, A. M. Spin–orbital dynamics in a system of polar molecules. Nat. Commun. 5, 5391 (2014).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator. Additional support is acknowledged from the National Science Foundation grant no. QLCI OMA-2016244, the National Science Foundation grant no. Phys-1734006, and the National Institute of Standards and Technology. J.S.H. acknowledges support from the National Research Council postdoctoral fellowship. C.M. acknowledges the NDSEG Graduate Fellowship. We thank T. Bilitewski and A. M. Rey for inspirational discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.-R.L., K.M., C.M., A.N.C., W.G.T., J.S.H. and J.Y. all performed the experiments, analysed the data and contributed to interpreting the results and writing the manuscript.

Corresponding authors

Correspondence to Jun-Ru Li or Jun Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Guido Pupillo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 A typical molecular number distribution measured via layer-resolved spectroscopy.

Grey circles are the experimental measurements. Black solid line is a fit to a summation of equally spaced Gaussian functions with a global Gaussian envelope. The width of each narrow Gaussian peak is assumed to be the same. The data is taken at |E| = 1.02 kV/cm and α = 36° (magic condition) to reduce broadening of the single-layer transition linewidth due to differential polarizability.

Extended Data Fig. 2 Noise suppression of the dynamical decoupling sequence.

Data is taken at |E| = 1.02 kV/cm and α = 0°. We use X-echo only, which provides similar performance to XY8 in terms of rejecting noise in Δ. Each data point is extracted from 10 repetitions. The dashed line is the noise floor of our measurement.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JR., Matsuda, K., Miller, C. et al. Tunable itinerant spin dynamics with polar molecules. Nature 614, 70–74 (2023). https://doi.org/10.1038/s41586-022-05479-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05479-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing