Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Climate versus tectonics as controls on river profiles

The Original Article was published on 21 December 2022

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NCI classified by aridity in tectonic v. non-tectonic regions.


  1. Seybold, H., Berghuijs, W. R., Prancevic, J. P. & Kirchner, J. W. Climate versus tectonics as controls on river profiles. Nature (2022).

  2. Chen, S.-A., Michaelides, K., Grieve, S. W. D. & Singer, M. B. Aridity is expressed in river topography globally. Nature 573, 573–577 (2019).

    Article  ADS  CAS  Google Scholar 

  3. Chen, S.-A., Michaelides, K., Bliss Singer, M. & Grieve, S. W. D. Global longitudinal profile database. Queen Mary University of London (2019).

  4. Ahnert, F. Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins. Am. J. Sci. 268, 243–263 (1970).

    Article  ADS  Google Scholar 

  5. Anderson, R. S. & Anderson, S. P. Geomorphology: The Mechanics and Chemistry of Landscapes (Cambridge Univ. Press, 2010).

  6. Hack, J. T. Studies of Longitudinal Stream Profiles in Virginia and Maryland (Geological Survey Professional Paper 294-B) (US Geological Survey, 1957).

  7. Chen, S.-A. Author Correction: Aridity is expressed in river topography globally. Nature 608, E31 (2022).

  8. Leopold, L. B., Emmett, W. W. & Myrick, R. M. Hillslope Processes in a Semiarid Area New Mexico (US Geological Survey Professional Paper 352-G) (US Geological Survey, 1966).

  9. Vogel, J. C. Evidence of past climatic change in the Namib Desert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 355–366 (1989).

    Article  Google Scholar 

  10. Hassan, M. A. Characteristics of gravel bars in ephemeral streams. J. Sediment. Res. 75, 29–42 (2005).

    Article  ADS  Google Scholar 

  11. Powell, D. M., Laronne, J. B., Reid, I. & Barzilai, R. The bed morphology of upland single-thread channels in semi-arid environments: evidence of repeating bedforms and their wider implications for gravel-bed rivers. Earth Surf. Process. Landf. 37, 741–753 (2012).

    Article  ADS  Google Scholar 

  12. Michaelides, K. & Singer, M. B. Impact of coarse sediment supply from hillslopes to the channel in runoff-dominated, dryland fluvial systems. J. Geophys. Res. 119, (2014).

  13. Singer, M. B. & Michaelides, K. How is topographic simplicity maintained in ephemeral dryland channels? Geology 42, 1091–1094 (2014).

    Article  ADS  Google Scholar 

  14. Michaelides, K., Hollings, R., Singer, M. B., Nichols, M. H. & Nearing, M. A. Spatial and temporal analysis of hillslope–channel coupling and implications for the longitudinal profile in a dryland basin. Earth Surf. Process. Landf. 43, 1608–1621 (2018).

    Article  ADS  Google Scholar 

  15. Bishop, P. Long-term landscape evolution: linking tectonics and surface processes. Earth Surf. Process. Landf. 32, 329–365 (2007).

    Article  ADS  Google Scholar 

  16. Whipple, K. X. & Tucker, G. E. Implications of sediment-flux-dependent river incision models for landscape evolution. J. Geophys. Res. (2002).

  17. Getraer, A. & Maloof, A. C. Climate-driven variability in runoff erosion encoded in stream network geometry. Geophys. Res. Lett. 48, e2020GL091777 (2021).

    Article  ADS  Google Scholar 

  18. Pagani, M. et al. Global Earthquake Model (GEM) Seismic Hazard Map. GEM (2018).

  19. Leonard, J. S. & Whipple, K. X. Influence of spatial rainfall gradients on river longitudinal profiles and the topographic expression of spatially and temporally variable climates in mountain landscapes. J. Geophys. Res. Earth Surf. 126, e2021JF006183 (2021).

    Article  ADS  Google Scholar 

  20. Sklar, L. S. & Dietrich, W. E. Implications of the saltation–abrasion bedrock incision model for steady-state river longitudinal profile relief and concavity. Earth Surf. Process. Landf. 33, 1129–1151 (2008).

    Article  ADS  Google Scholar 

  21. Sólyom, P. B. & Tucker, G. E. Effect of limited storm duration on landscape evolution, drainage basin geometry, and hydrograph shapes. J. Geophys. Res. 109, F03012 (2004).

    ADS  Google Scholar 

  22. Zaprowski, B. J., Pazzaglia, F. J. & Evenson, E. B. Climatic influences on profile concavity and river incision. J. Geophys. Res. 110, F03004 (2005).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations



K.M. wrote the Reply and all other authors provided edits. S.-A.C. produced Fig. 1.

Corresponding author

Correspondence to Katerina Michaelides.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michaelides, K., Chen, SA., Grieve, S. et al. Reply to: Climate versus tectonics as controls on river profiles. Nature 612, E15–E17 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics