Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A kilonova following a long-duration gamma-ray burst at 350 Mpc

Abstract

Gamma-ray bursts (GRBs) are divided into two populations1,2; long GRBs that derive from the core collapse of massive stars (for example, ref. 3) and short GRBs that form in the merger of two compact objects4,5. Although it is common to divide the two populations at a gamma-ray duration of 2 s, classification based on duration does not always map to the progenitor. Notably, GRBs with short (2 s) spikes of prompt gamma-ray emission followed by prolonged, spectrally softer extended emission (EE-SGRBs) have been suggested to arise from compact object mergers6,7,8. Compact object mergers are of great astrophysical importance as the only confirmed site of rapid neutron capture (r-process) nucleosynthesis, observed in the form of so-called kilonovae9,10,11,12,13,14. Here we report the discovery of a possible kilonova associated with the nearby (350 Mpc), minute-duration GRB 211211A. The kilonova implies that the progenitor is a compact object merger, suggesting that GRBs with long, complex light curves can be spawned from merger events. The kilonova of GRB 211211A has a similar luminosity, duration and colour to that which accompanied the gravitational wave (GW)-detected binary neutron star (BNS) merger GW170817 (ref. 4). Further searches for GW signals coincident with long GRBs are a promising route for future multi-messenger astronomy.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Swift/BAT and Fermi/GBM gamma-ray light curves of GRB 211211A.
Fig. 2: The field of GRB 211211A in HST and Gemini North imaging.
Fig. 3: Afterglow and kilonova models fit to selected observations of the broadband counterpart of GRB 211211A.

Data availability

Most of the data generated or analysed during this study are included in the Extended Data Tables of this article. Gamma-ray and X-ray light curves may be downloaded from the UK Swift Science Data Centre and the online HEASARC archive at https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html. Any further data requests should be made to J.C.R.

Code availability

The kilonova model scripts are available at https://github.com/guillochon/MOSFiT. The scripts used to model the afterglow will be publicly available on publication of this manuscript. The Prospector stellar population modelling code is available at https://github.com/bd-j/prospector.

References

  1. Norris, J. P., Cline, T. L., Desai, U. D. & Teegarden, B. J. Frequency of fast, narrow γ-ray bursts. Nature 308, 434–435 (1984).

    Article  ADS  Google Scholar 

  2. Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017).

    Article  ADS  Google Scholar 

  5. Goldstein, A. et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. 848, L14 (2017).

    Article  ADS  Google Scholar 

  6. Norris, J. P. Implications of the lag-luminosity relationship for unified gamma-ray burst paradigms. Astrophys. J. 579, 386–403 (2002).

    Article  ADS  Google Scholar 

  7. Norris, J. P. & Bonnell, J. T. Short gamma-ray bursts with extended emission. Astrophys. J. 643, 266–275 (2006).

    Article  ADS  CAS  Google Scholar 

  8. Gehrels, N. et al. A new γ-ray burst classification scheme from GRB 060614. Nature 444, 1044–1046 (2006).

    Article  ADS  CAS  Google Scholar 

  9. Arcavi, I. et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551, 64–66 (2017).

    Article  ADS  Google Scholar 

  10. Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).

    Article  ADS  CAS  Google Scholar 

  11. Lipunov, V. M. et al. MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817. Astrophys. J. 850, 1 (2017).

    Article  Google Scholar 

  12. Tanvir, N. R. et al. The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys. J. 848, L27 (2017).

    Article  ADS  Google Scholar 

  13. Soares-Santos, M. The Dark Energy Survey and The Dark Energy Camera GW-EM Collaboration et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys. J. 848, L16 (2017).

    Article  ADS  Google Scholar 

  14. Valenti, S. et al. The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys. J. 848, L24 (2017).

    Article  ADS  Google Scholar 

  15. Stamatikos, M. et al. GRB 211211A: Swift-BAT refined analysis. GRB Coordinates Network, Circular Service, No. 31209 (2021).

  16. Mangan, J., Dunwoody, R. & Meegan, C.; Fermi GBM Team. GRB 211211A: Fermi GBM observation. GRB Coordinates Network, Circular Service, No. 31210 (2021).

  17. Kaneko, Y., Bostancí, Z. F., Göğüş, E. & Lin, L. Short gamma-ray bursts with extended emission observed with Swift/BAT and Fermi/GBM. Mon. Not. R. Astron. Soc. 452, 824–837 (2015).

    Article  ADS  CAS  Google Scholar 

  18. Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002).

    Article  ADS  Google Scholar 

  19. Lamb, G. P. et al. GRB jet structure and the jet break. Mon. Not. R. Astron. Soc. 506, 4163–4174 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. Lett. 851, L21 (2017).

    Article  ADS  Google Scholar 

  21. Nicholl, M. et al. Tight multimessenger constraints on the neutron star equation of state from GW170817 and a forward model for kilonova light-curve synthesis. Mon. Not. R. Astron. Soc. 505, 3016–3032 (2021).

    Article  ADS  CAS  Google Scholar 

  22. Sekiguchi, Y., Kiuchi, K., Kyutoku, K. & Shibata, M. Dynamical mass ejection from binary neutron star mergers: radiation-hydrodynamics study in general relativity. Phys. Rev. D 91, 064059 (2015).

    Article  ADS  Google Scholar 

  23. Metzger, B. D. & Fernández, R. Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger. Mon. Not. R. Astron. Soc. 441, 3444–3453 (2014).

    Article  ADS  Google Scholar 

  24. Bauswein, A., Goriely, S. & Janka, H.-T. Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers. Astrophys. J. 773, 78 (2013).

    Article  ADS  Google Scholar 

  25. Metzger, B. D., Thompson, T. A. & Quataert, E. A magnetar origin for the kilonova ejecta in GW170817. Astrophys. J. 856, 101 (2018).

    Article  ADS  Google Scholar 

  26. Piro, A. L. & Kollmeier, J. A. Evidence for cocoon emission from the early light curve of SSS17a. Astrophys. J. 855, 103 (2018).

    Article  ADS  Google Scholar 

  27. Gompertz, B. P., O’Brien, P. T., Wynn, G. A. & Rowlinson, A. Can magnetar spin-down power extended emission in some short GRBs? Mon. Not. R. Astron. Soc. 431, 1745–1751 (2013).

    Article  ADS  Google Scholar 

  28. Bernardini, M. G. et al. Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity. Mon. Not. R. Astron. Soc. 446, 1129–1138 (2015).

    Article  ADS  CAS  Google Scholar 

  29. Nugent, A. E. et al. Short GRB host galaxies II: a legacy sample of redshifts, stellar population properties, and implications for their neutron star merger origins. Preprint at https://arxiv.org/abs/2206.01764 (2022).

  30. Perley, D. A. et al. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: implications for the use of GRBs as tracers of cosmic star formation. Astrophys. J. 778, 128 (2013).

    Article  ADS  Google Scholar 

  31. Cano, Z. Gamma-ray burst supernovae as standardizable candles. Astrophys. J. 794, 121 (2014).

    Article  ADS  Google Scholar 

  32. Olivares, E. F. et al. The fast evolution of SN 2010bh associated with XRF 100316D. Astron. Astrophys. 539, A76 (2012).

    Article  Google Scholar 

  33. King, A., Olsson, E. & Davies, M. B. A new type of long gamma-ray burst. Mon. Not. R. Astron. Soc. 374, 34–36 (2007).

    Article  ADS  Google Scholar 

  34. Leibler, C. N. & Berger, E. The stellar ages and masses of short gamma-ray burst host galaxies: investigating the progenitor delay time distribution and the role of mass and star formation in the short gamma-ray burst rate. Astrophys. J. 725, 1202–1214 (2010).

    Article  ADS  Google Scholar 

  35. Lyman, J. D. et al. The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging. Mon. Not. R. Astron. Soc. 467, 1795–1817 (2017).

    ADS  CAS  Google Scholar 

  36. Metzger, B. D., Quataert, E. & Thompson, T. A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 385, 1455–1460 (2008).

    Article  ADS  CAS  Google Scholar 

  37. Metzger, B. D., Arcones, A., Quataert, E. & Martínez-Pinedo, G. The effects of r-process heating on fallback accretion in compact object mergers. Mon. Not. R. Astron. Soc. 402, 2771–2777 (2010).

    Article  ADS  CAS  Google Scholar 

  38. Desai, D., Metzger, B. D. & Foucart, F. Imprints of r-process heating on fall-back accretion: distinguishing black hole-neutron star from double neutron star mergers. Mon. Not. R. Astron. Soc. 485, 4404–4412 (2019).

    Article  ADS  CAS  Google Scholar 

  39. Fong, W., Berger, E., Margutti, R. & Zauderer, B. A. A decade of short-duration gamma-ray burst broadband afterglows: energetics, circumburst densities, and jet opening angles. Astrophys. J. 815, 102 (2015).

    Article  ADS  Google Scholar 

  40. von Kienlin, A. et al. The fourth Fermi-GBM gamma-ray burst catalog: a decade of data. Astrophys. J. 893, 46 (2020).

    Article  ADS  Google Scholar 

  41. Bennett, C. L., Larson, D., Weiland, J. L. & Hinshaw, G. The 1% concordance Hubble constant. Astrophys. J. 794, 135 (2014).

    Article  ADS  Google Scholar 

  42. Meegan, C. et al. The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791–804 (2009).

    Article  ADS  CAS  Google Scholar 

  43. Adriani, O. et al. Extended measurement of the cosmic-ray electron and positron spectrum from 11 GeV to 4.8 TeV with the calorimetric electron telescope on the International Space Station. Phys. Rev. Lett. 120, 261102 (2018).

    Article  ADS  CAS  Google Scholar 

  44. Tamura, T. et al. GRB 211211A: CALET Gamma-Ray Burst Monitor detection. GRB Coordinates Network, Circular Service, No. 31226 (2021).

  45. Vedrenne, G. et al. SPI: the spectrometer aboard INTEGRAL. Astron. Astrophys. 411, 63–70 (2003).

    Article  Google Scholar 

  46. Minaev, P. & Pozanenko, A.; GRB IKI FuN. GRB 211211A: redshift estimation and SPI-ACS/INTEGRAL detection. GRB Coordinates Network, Circular Service, No. 31230 (2021).

  47. Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).

    Article  ADS  Google Scholar 

  48. Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).

    Article  ADS  Google Scholar 

  49. Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    Article  ADS  CAS  Google Scholar 

  50. Gehrels, N. et al. Correlations of prompt and afterglow emission in Swift long and short gamma-ray bursts. Astrophys. J. 689, 1161–1172 (2008).

    Article  ADS  Google Scholar 

  51. Poole, T. S. et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008).

    Article  ADS  CAS  Google Scholar 

  52. Breeveld, A. A. et al. An updated ultraviolet calibration for the Swift/UVOT. AIP Conf. Proc. 1358, 373–376 (2011).

    Article  ADS  Google Scholar 

  53. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. ASP Conf. Ser. 376, 127–130 (2007).

    ADS  Google Scholar 

  54. Malesani, D. B. et al. GRB 211211A: NOT optical spectroscopy. GRB Coordinates Network, Circular Service, No. 31221 (2021).

  55. Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  56. Tody, D. IRAF in the nineties. ASP Conf. Ser. 52, 173–183 (1993).

    ADS  Google Scholar 

  57. Hodapp, K. W. et al. The Gemini Near-Infrared Imager (NIRI). Publ. Astron. Soc. Pac. 115, 1388–1406 (2003).

    Article  ADS  Google Scholar 

  58. Hook, I. M. et al. The Gemini–North Multi-Object Spectrograph: performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116, 425–440 (2004).

    Article  ADS  Google Scholar 

  59. McLeod, B. et al. MMT and Magellan infrared spectrograph. Publ. Astron. Soc. Pac. 124, 1318 (2012).

    Article  ADS  Google Scholar 

  60. Labrie, K., Anderson, K., Cárdenes, R., Simpson, C. & Turner, J. E. H. DRAGONS - Data Reduction for Astronomy from Gemini Observatory North and South. ASP Conf. Ser. 523, 321 (2019).

    ADS  Google Scholar 

  61. Paterson, K. POTPyRI: Pipeline for Optical/infrared Telescopes in Python for Reducing Images. https://github.com/CIERA-Transients/POTPyRI/.

  62. Lang, D., Hogg, D. W., Mierle, K., Blanton, M. & Roweis, S. Astrometry.net: blind astrometric calibration of arbitrary astronomical images. Astron. J. 139, 1782–1800 (2010).

    Article  ADS  Google Scholar 

  63. Seifert, W. et al. LUCIFER: a multimode NIR instrument for the LBT. Proc. SPIE 4841, 962–973 (2003).

    Article  ADS  Google Scholar 

  64. Fontana, A. et al. The Hawk-I UDS and GOODS Survey (HUGS): survey design and deep K-band number counts. Astron. Astrophys. 570, A11 (2014).

    Article  Google Scholar 

  65. Becker, A. HOTPANTS: High Order Transform of PSF ANd Template Subtraction. Astrophysics Source Code Library, record ascl:1504.004 (2015).

  66. Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).

    Article  ADS  Google Scholar 

  67. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article  ADS  Google Scholar 

  68. Kilpatrick, C. D. hst123. https://github.com/charliekilpatrick/hst123.

  69. Kilpatrick, C. D. et al. Hubble Space Telescope observations of GW170817: complete light curves and the properties of the galaxy merger of NGC 4993. Astrophys. J. 926, 49 (2022).

    Article  ADS  Google Scholar 

  70. Dolphin, A. DOLPHOT: stellar photometry. Astrophysics Source Code Library, record ascl:1608.013 (2016).

  71. Brown, W. R., Geller, M. J., Fabricant, D. G. & Kurtz, M. J. V- and R-band galaxy luminosity functions and low surface brightness galaxies in the century survey. Astron. J. 122, 714–728 (2001).

    Article  ADS  Google Scholar 

  72. Wolf, C. et al. The COMBO-17 survey: evolution of the galaxy luminosity function from 25 000 galaxies with 0.2 < z < 1.2. Astron. Astrophys. 401, 73–98 (2003).

    Article  ADS  Google Scholar 

  73. Willmer, C. N. A. et al. The Deep Evolutionary Exploratory Probe 2 galaxy redshift survey: the galaxy luminosity function to z ~ 1. Astrophys. J. 647, 853–873 (2006).

    Article  ADS  Google Scholar 

  74. Reddy, N. A. & Steidel, C. C. A steep faint-end slope of the UV luminosity function at z ~ 2–3: implications for the global stellar mass density and star formation in low-mass halos. Astrophys. J. 692, 778–803 (2009).

    Article  ADS  CAS  Google Scholar 

  75. Finkelstein, S. L. et al. The evolution of the galaxy rest-frame ultraviolet luminosity function over the first two billion years. Astrophys. J. 810, 71 (2015).

    Article  ADS  Google Scholar 

  76. McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    Article  ADS  Google Scholar 

  77. Fong, W. F. & Berger, E. The locations of short gamma-ray bursts as evidence for compact object binary progenitors. Astrophys. J. 776, 18 (2013).

    Article  ADS  Google Scholar 

  78. Blanchard, P. K., Berger, E. & Fong, W.-f The offset and host light distributions of long gamma-ray bursts: a new view From HST observations of Swift bursts. Astrophys. J. 817, 144 (2016).

    Article  ADS  Google Scholar 

  79. Fong, W.-f. et al. Short GRB host galaxies I: photometric and spectroscopic catalogs, host associations, and galactocentric offsets. Preprint at https://arxiv.org/abs/2206.01763 (2022).

  80. Fabricant, D. et al. Binospec: a wide-field imaging spectrograph for the MMT. Publ. Astron. Soc. Pac. 131, 075004 (2019).

    Article  ADS  Google Scholar 

  81. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  82. Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    Article  ADS  Google Scholar 

  83. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    Article  ADS  CAS  Google Scholar 

  84. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  85. Leja, J. et al. An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Astrophys. J. 877, 140 (2019).

    Article  ADS  CAS  Google Scholar 

  86. Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with prospector. Astrophys. J. Suppl. Ser. 254, 22 (2021).

    Article  ADS  CAS  Google Scholar 

  87. Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article  ADS  Google Scholar 

  88. Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    Article  ADS  Google Scholar 

  89. Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys. J. 712, 833–857 (2010).

    Article  ADS  CAS  Google Scholar 

  90. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  91. Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M. & Tremonti, C. A. The ages and metallicities of galaxies in the local universe. Mon. Not. R. Astron. Soc. 362, 41–58 (2005).

    Article  ADS  CAS  Google Scholar 

  92. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article  ADS  Google Scholar 

  93. Nugent, A. E. et al. The distant, galaxy cluster environment of the short GRB 161104A at z ~ 0.8 and a comparison to the short GRB host population. Astrophys. J. 904, 52 (2020).

    Article  ADS  CAS  Google Scholar 

  94. Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–232 (1998).

    Article  ADS  CAS  Google Scholar 

  95. Moustakas, J., Kennicutt, J., Robert, C. & Tremonti, C. A. Optical star formation rate indicators. Astrophys. J. 642, 775–796 (2006).

    Article  ADS  CAS  Google Scholar 

  96. Tacchella, S. et al. Fast, slow, early, late: quenching massive galaxies at z ~ 0.8. Astrophys. J. 926, 134

  97. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  CAS  Google Scholar 

  98. Blanchard, P. K. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VII. Properties of the host galaxy and constraints on the merger timescale. Astrophys. J. 848, L22 (2017).

    Article  ADS  Google Scholar 

  99. Levan, A. J. et al. The environment of the binary neutron star merger GW170817. Astrophys. J. 848, L28 (2017).

    Article  ADS  Google Scholar 

  100. Lamb, G. P. & Kobayashi, S. Electromagnetic counterparts to structured jets from gravitational wave detected mergers. Mon. Not. R. Astron. Soc. 472, 4953–4964 (2017).

    Article  ADS  CAS  Google Scholar 

  101. Lamb, G. P., Mandel, I. & Resmi, L. Late-time evolution of afterglows from off-axis neutron star mergers. Mon. Not. R. Astron. Soc. 481, 2581–2589 (2018).

    Article  ADS  CAS  Google Scholar 

  102. Pe’er, A. Dynamical model of an expanding shell. Astrophys. J. 752, L8 (2012).

    Article  ADS  Google Scholar 

  103. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  104. Gompertz, B. P. et al. A minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission. Nat. Astron. https://doi.org/10.1038/s41550-022-01819-4 (2022).

  105. Lamb, G. P. et al. Short GRB 160821B: a reverse shock, a refreshed shock, and a well-sampled kilonova. Astrophys. J. 883, 48 (2019).

    Article  ADS  CAS  Google Scholar 

  106. Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. 848, L17 (2017).

    Article  ADS  Google Scholar 

  107. Guillochon, J. et al. MOSFiT: modular open source fitter for transients. Astrophys. J. Suppl. Ser. 236, 6 (2018).

    Article  ADS  Google Scholar 

  108. Arnett, W. D. Type I supernovae. I. Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

    Article  ADS  CAS  Google Scholar 

  109. Nativi, L. et al. Can jets make the radioactively powered emission from neutron star mergers bluer? Mon. Not. R. Astron. Soc. 500, 1772–1783 (2021).

    Article  ADS  CAS  Google Scholar 

  110. Lippuner, J. & et, al Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disc ejecta from neutron star mergers. Mon. Not. R. Astron. Soc. 472, 904–918 (2017).

    Article  ADS  CAS  Google Scholar 

  111. Darbha, S. & Kasen, D. Inclination dependence of kilonova light curves from globally aspherical geometries. Astrophys. J. 897, 150 (2020).

    Article  ADS  Google Scholar 

  112. Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017).

    Article  ADS  CAS  Google Scholar 

  113. Arcavi, I. The first hours of the GW170817 kilonova and the importance of early optical and ultraviolet observations for constraining emission models. Astrophys. J. 855, 23 (2018).

    Article  Google Scholar 

  114. Radice, D., Perego, A., Bernuzzi, S. & Zhang, B. Long-lived remnants from binary neutron star mergers. Mon. Not. R. Astron. Soc. 481, 3670–3682 (2018).

    Article  ADS  CAS  Google Scholar 

  115. Ciolfi, R. & Kalinani, J. V. Magnetically driven baryon winds from binary neutron star merger remnants and the blue kilonova of 2017 August. Astrophys. J. 900, L35 (2020).

    Article  ADS  CAS  Google Scholar 

  116. Coughlin, M. W., Dietrich, T., Margalit, B. & Metzger, B. D. Multimessenger Bayesian parameter inference of a binary neutron star merger. Mon. Not. R. Astron. Soc. 489, 91–96 (2019).

    Article  ADS  Google Scholar 

  117. Dietrich, T. & Ujevic, M. Modeling dynamical ejecta from binary neutron star mergers and implications for electromagnetic counterparts. Class. Quantum Gravity 34, 105014 (2017).

    Article  ADS  MATH  Google Scholar 

  118. Gottlieb, O., Bromberg, O., Singh, C. B. & Nakar, E. The structure of weakly magnetized γ-ray burst jets. Mon. Not. R. Astron. Soc. 498, 3320–3333 (2020).

    Article  ADS  CAS  Google Scholar 

  119. Duffell, P. C., Quataert, E., Kasen, D. & Klion, H. Jet dynamics in compact object mergers: GW170817 likely had a successful jet. Astrophys. J. 866, 3 (2018).

    Article  ADS  Google Scholar 

  120. Matheson, T. et al. Photometry and spectroscopy of GRB 030329 and its associated supernova 2003dh: the first two months. Astrophys. J. 599, 394–407 (2003).

    Article  ADS  CAS  Google Scholar 

  121. Clocchiatti, A., Suntzeff, N. B., Covarrubias, R. & Candia, P. The ultimate light curve of SN 1998bw/GRB 980425. Astron. J. 141, 163 (2011).

    Article  ADS  Google Scholar 

  122. Cano, Z. et al. A trio of gamma-ray burst supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. Astron. Astrophys. 568, A9 (2014).

    Article  Google Scholar 

  123. Greiner, J. et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 523, 189–192 (2015).

    Article  ADS  CAS  Google Scholar 

  124. Cano, Z. et al. GRB 161219B/SN 2016jca: a low-redshift gamma-ray burst supernova powered by radioactive heating. Astron. Astrophys. 605, A107 (2017).

    Article  Google Scholar 

  125. Waxman, E., Ofek, E. O. & Kushnir, D. Strong NIR emission following the long duration GRB 211211A: dust heating as an alternative to a kilonova. Preprint at https://arxiv.org/abs/2206.10710 (2022).

  126. Santini, P. et al. The evolution of the dust and gas content in galaxies. Astron. Astrophys. 562, A30 (2014).

    Article  Google Scholar 

  127. Calura, F. et al. The dust-to-stellar mass ratio as a valuable tool to probe the evolution of local and distant star-forming galaxies. Mon. Not. R. Astron. Soc. 465, 54–67 (2017).

    Article  ADS  CAS  Google Scholar 

  128. Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84 (2017).

    Article  ADS  Google Scholar 

  129. Ukwatta, T. N. et al. Spectral lags and the lag–luminosity relation: an investigation with Swift BAT gamma-ray bursts. Astrophys. J. 711, 1073–1086 (2010).

    Article  ADS  CAS  Google Scholar 

  130. Ukwatta, T. N. et al. The lag–luminosity relation in the GRB source frame: an investigation with Swift BAT bursts. Mon. Not. R. Astron. Soc. 419, 614–623 (2012).

    Article  ADS  Google Scholar 

  131. Hannam, M. et al. Simple model of complete precessing black-hole-binary gravitational waveforms. Phys. Rev. Lett. 113, 151101 (2014).

    Article  ADS  Google Scholar 

  132. Khan, S. et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys. Rev. D 93, 044007 (2016).

    Article  ADS  Google Scholar 

  133. Dietrich, T., Bernuzzi, S. & Tichy, W. Closed-form tidal approximants for binary neutron star gravitational waveforms constructed from high-resolution numerical relativity simulations. Phys. Rev. D 96, 121501 (2017).

    Article  ADS  Google Scholar 

  134. Ashton, G. et al. BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. Ser. 241, 27 (2019).

    Article  ADS  CAS  Google Scholar 

  135. LIGO Scientific Collaboration. LIGO Algorithm Library - LALSuite. free software (GPL) (2018).

  136. Andreoni, I. et al. Follow up of GW170817 and its electromagnetic counterpart by Australian-led observing programmes. Publ. Astron. Soc. Aust. 34, e069 (2017).

    Article  ADS  Google Scholar 

  137. Díaz, M. C. et al. Observations of the first electromagnetic counterpart to a gravitational-wave source by the TOROS collaboration. Astrophys. J. 848, L29 (2017).

    Article  ADS  Google Scholar 

  138. Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358, 1570–1574 (2017).

    Article  ADS  CAS  Google Scholar 

  139. Evans, P. A. et al. Swift and NuSTAR observations of GW170817: detection of a blue kilonova. Science 358, 1565–1570 (2017).

    Article  ADS  CAS  Google Scholar 

  140. Hu, L. et al. Optical observations of LIGO source GW 170817 by the Antarctic Survey Telescopes at Dome A, Antarctica. Sci. Bull. 62, 1433–1438 (2017).

    Article  Google Scholar 

  141. Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).

    Article  ADS  CAS  Google Scholar 

  142. Pozanenko, A. S. et al. GRB 170817A associated with GW170817: multi-frequency observations and modeling of prompt gamma-ray emission. Astrophys. J. 852, L30 (2018).

    Article  ADS  Google Scholar 

  143. Shappee, B. J. et al. Early spectra of the gravitational wave source GW170817: evolution of a neutron star merger. Science 358, 1574–1578 (2017).

    Article  ADS  CAS  Google Scholar 

  144. Smartt, S. J. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79 (2017).

    Article  ADS  CAS  Google Scholar 

  145. Troja, E. et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71–74 (2017).

    Article  ADS  Google Scholar 

  146. Utsumi, Y. et al. J-GEM observations of an electromagnetic counterpart to the neutron star merger GW170817. Publ. Astron. Soc. Jpn. 69, 101 (2017).

    Article  ADS  Google Scholar 

  147. Rastinejad, J. C. et al. Probing kilonova ejecta properties using a catalog of short gamma-ray burst observations. Astrophys. J. 916, 89 (2021).

    Article  ADS  CAS  Google Scholar 

  148. Siegel, D. M. GW170817—the first observed neutron star merger and its kilonova: implications for the astrophysical site of the r-process. Eur. Phys. J. A 55, 203 (2019).

    Article  ADS  CAS  Google Scholar 

  149. Barnes, J., Kasen, D., Wu, M.-R. & Martínez-Pinedo, G. Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys. J. 829, 110 (2016).

    Article  ADS  Google Scholar 

  150. Troja, E. et al. The afterglow and kilonova of the short GRB 160821B. Mon. Not. R. Astron. Soc. 489, 2104–2116 (2019).

    ADS  CAS  Google Scholar 

  151. Fong, W. et al. The broadband counterpart of the short GRB 200522A at z = 0.5536: a luminous kilonova or a collimated outflow with a reverse shock? Astrophys. J. 906, 127 (2021).

    Article  ADS  CAS  Google Scholar 

  152. Fox, D. B. et al. The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts. Nature 437, 845–850 (2005).

    Article  ADS  CAS  Google Scholar 

  153. Berger, E., Fong, W. & Chornock, R. An r-process kilonova associated with the short-hard GRB 130603B. Astrophys. J. 774, L23 (2013).

    Article  ADS  Google Scholar 

  154. Tanvir, N. R. et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547–549 (2013).

    Article  ADS  CAS  Google Scholar 

  155. O’Connor, B. et al. A tale of two mergers: constraints on kilonova detection in two short GRBs at z ~ 0.5. Mon. Not. R. Astron. Soc. 502, 1279–1298 (2021).

    ADS  Google Scholar 

  156. Ito, N. et al. GRB 211211A: MITSuME Akeno optical observation. GRB Coordinates Network, Circular Service, No. 31217 (2021).

  157. Xiao, S. et al. The quasi-periodically oscillating precursor of a long gamma-ray burst from a binary neutron star merger. Preprint at https://arxiv.org/abs/2205.02186 (2022).

  158. Kumar, H. et al. GRB 211211A: HCT and GIT optical follow up observations. GRB Coordinates Network, Circular Service, No. 31227 (2021).

  159. Strausbaugh, R. & Cucchiara, A. GRB 211211A: LCO optical observations. GRB Coordinates Network, Circular Service, No. 31214 (2021).

  160. Mao, J., Xin, Y.-X. & Bai, J.-M. GRB 211211A: GMG upper limit. GRB Coordinates Network, Circular Service, No. 31232 (2021).

  161. Gupta, R. et al. GRB 211211A: observations with the 3.6m Devasthal Optical Telescope. GRB Coordinates Network, Circular Service, No. 31299 (2021).

  162. Moskvitin, A., Spiridonova, O., Belkin, S., Pozanenko, A. & Pankov, N.; GRB IKI FuN. GRB 211211A: SAO RAS optical observations. GRB Coordinates Network, Circular Service, No. 31234 (2021).

  163. Mei, A. et al. GeV emission from a compact binary merger. Nature https://doi.org/10.1038/s41586-022-05350-5404-7 (2022).

Download references

Acknowledgements

We thank S. Kattner, S. Self, J. Hinz and I. Chilingarian at the MMT and J. Andrews and K. Chiboucas at Gemini Observatory for their assistance in obtaining observations. We thank A. von Kienlin for providing the GBM hardness versus duration data. We thank P. Schmidt and G. Pratten for assistance with the LIGO S/R calculations. The Fong group at Northwestern acknowledges support by the National Science Foundation under grant nos. AST-1814782 and AST-1909358 and CAREER grant no. AST-2047919. W.F. gratefully acknowledges support by the David and Lucile Packard Foundation. A.J.L. and D.B.M. are supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725246). M.N. and B.P.G. are supported by the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 948381). M.N. acknowledges a Turing Fellowship. G.P.L. is supported by the UK Science and Technology Facilities Council grant ST/S000453/1. A.R. and E.M. acknowledge support from the INAF research project ‘LBT - Supporto Arizona Italia’. J.F.A.F. acknowledges support from the Spanish Ministerio de Ciencia, Innovación y Universidades through the grant PRE2018-086507. D.A.K. and J.F.A.F. acknowledge support from Spanish National Research Project RTI2018-098104-J-I00 (GRBPhot). W. M. Keck Observatory and MMT Observatory access was supported by Northwestern University and the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration (NASA). The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We wish to recognize and acknowledge the very important cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution. On the basis of observations obtained at the international Gemini Observatory (programme ID GN2021B-Q-109), a programme of NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation on behalf of the Gemini Observatory partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil) and Korea Astronomy and Space Science Institute (Republic of Korea). Processed using the Gemini IRAF package and DRAGONS (Data Reduction for Astronomy from Gemini Observatory North and South). This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This research is based on observations made with the NASA/ESA Hubble Space Telescope obtained from the Space Telescope Science Institute, which is operated by the AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with programme no. 16923. This work is partly based on observations made with the Gran Telescopio Canarias, installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Partly based on observations collected at the Calar Alto Astronomical Observatory, operated jointly by Instituto de Astrofísica de Andalucía (CSIC) and Junta de Andalucía. Partly based on observations made with the Nordic Optical Telescope, under programme 64-502, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, respectively, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias. The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona Board of Regents; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, The Leibniz Institute for Astrophysics Potsdam and Heidelberg University; The Ohio State University, representing OSU, University of Notre Dame, University of Minnesota and University of Virginia.

Author information

Authors and Affiliations

Authors

Contributions

J.C.R. is Principal Investigator of the MMT observations (shared Principal Investigator with N.S. on MMIRS follow-up) and the HST programme. J.C.R. reduced and analysed most of the optical-NIR data and led the writing. B.P.G. identified the source as a possible merger, analysed the high-energy observations, provided modelling support and contributed to the text. A.J.L. analysed observations, provided analysis and co-wrote the text. W.F. is Principal Investigator of the Gemini and VLA programmes and provided input on analysis and text. M.N. performed the kilonova and the Ni-powered transient modelling, and contributed text. G.P.L. identified the source as a possible merger, devised the joint kilonova and afterglow modelling method, and modelled the afterglow. D.B.M. is Principal Investigator of the NOT follow-up, and reduced and analysed observations. A.E.N. reduced the Keck spectrum and performed stellar population modelling. S.R.O. analysed the Swift/UVOT observations. N.R.T. provided input and rates analysis. A.d.U.P., D.A.K., J.F.A.F. and C.C.T. executed and reduced the CAHA and GTC observations. C.D.K. reduced and analysed the HST observations. C.J.M. calculated the GW observability. B.D.M., R.C. and M.E.R. provided input on modelling and analysis. A.R. and E.M. executed and reduced the LBT observation. G.S. executed and reduced the radio observation. J.J., D.J.S. and N.S. contributed MMT follow-up time and provided input on the scientific interpretation. L.I. and J.P.U.F. contributed to reduction of the NOT observations. A.E.N., P.K.B., C.D.K. and H.M.S. executed the Keck spectrum. E.B., R.C., B.E.C., M.D.P., T.L., K.P. and A.R.E. are co-investigators of the programmes used in this work and/or provided input on the scientific interpretation.

Corresponding author

Correspondence to Jillian C. Rastinejad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 Optical-NIR observations of the counterpart and host galaxy of GRB 211211A
Extended Data Table 2 Swift/UVOT photometry of the counterpart to GRB 211211A
Extended Data Table 3 Afterglow modelling parameters

Extended Data Fig. 1 The host of GRB 211211A is a low-mass, actively star-forming galaxy in the local universe.

a, The 2D NOT/ALFOSC spectra of the afterglow and host of GRB 211211A. b, Keck/DEIMOS 1D spectrum (blue) and 1σ uncertainty (dot-dashed blue line) compared with the arbitrarily scaled NOT/ALFOSC afterglow spectrum (red) and Prospector model spectrum (grey). We highlight the strong emission lines in the observed host spectrum, none of which are detected in the 1D or 2D afterglow spectrum. c, The observed host photometry (blue circles) and 3σ uncertainties (blue lines), Prospector model photometry (black squares) and Prospector model spectrum (grey line). The Prospector-derived SED matches the observed photometry, spectral continuum and spectral line strengths well.

Extended Data Fig. 2 Temporal evolution of the UV through NIR SED of the counterparts to GRB 211211A and GW170817.

Circles or squares represent detections, whereas triangles represent upper limits. For both GRB 211211A (solid lines) and GW170817 (dashed lines), the counterparts’ SEDs at 4–5.1 days post-burst (dark blue and purple) demonstrate a notable reddening compared with those at earlier epochs.

Extended Data Fig. 3 Corner plot showing posterior distributions for the basic kilonova model.

This model consists of three ejecta components and a fraction ζ of the blue (low-lanthanide) ejecta that is heated by shocks from the GRB jet. The final parameter is a white-noise term for modelling systematics in the data. The labelled 1σ error bars are statistical only; we estimate further systematic error of about 50% on these parameters (see Methods).

Extended Data Fig. 4 Light curve fit using the binary-based kilonova model21.

The dashed lines show a model for AT 2017gfo evaluated at the same redshift, z = 0.076.

Extended Data Fig. 5 Corner plot showing posterior distributions for the binary-based kilonova model.

The model consists of three ejecta components whose masses, velocities and opacities depend on the chirp mass and binary mass ratio (q) and the fraction of ejecta lost through disk (ε) and magnetic (α) winds. A fraction ζ of the blue (low-lanthanide) ejecta is heated by shocks from the GRB jet over a timescale tshock. The final parameter is a white-noise term for modelling systematics in the data. The labelled 1σ error bars are statistical only; we estimate further systematic error of about 50% on these parameters (see Methods).

Extended Data Fig. 6 Light curve fit using a 56Ni-powered model.

This provides a poor fit, as the single radioactive component is unable to cool quickly enough to match the early UV and longer-term NIR emission. The best-fitting parameters require an unrealistic composition of 100% 56Ni and an ejecta velocity pushing against the upper bound of the prior at 0.4c.

Extended Data Fig. 7 The optical and NIR light curves of GRB 211211A have similar luminosities and decay rates compared with past kilonovae and kilonova candidates.

The rest-frame i-band (a) and K-band (b) light curves of GRB 211211A (purple diamonds), GW170817/AT 2017gfo (grey points, ref. 20 and references therein) and previous short GRB kilonova upper limits (yellow triangles) and detections (yellow circles105,147,150,151). As there are no other rest-frame K-band kilonova light curves beyond AT 2017gfo, we plot rest-frame J-band and H-band short GRB kilonova observations for comparison (open circles and triangles105,147,150,151,152,153,154,155). At z = 0.076, the K-band counterpart to GRB 211211A is of similar luminosity to AT 2017gfo and fades on similar timescales.

Extended Data Fig. 8 The ejecta mass and velocities estimated for GRB 211211A compared with those of past kilonovae and kilonova candidates.

Best-fit ejecta and velocity estimates (including 1σ errors) of the red (a), purple (b) and blue (c) kilonova components of GRB 211211A (purple boxes; Methods section ‘Kilonova model’). We also plot ejecta mass and velocity estimates for two-component models of AT 2017gfo (red boxes; compiled in ref. 148 and references therein), a three-component model of AT 2017gfo (red stars21) and previous short GRB kilonovae (labelled yellow boxes105,149). As two-component models of AT 2017gfo do not distinguish between the ‘purple’ and ‘red’ components included in our analysis, we plot past two-component ‘red’ estimates on both corresponding panels. We plot the dynamical ejecta estimates for GRB 160821B on the red and blue panels and the disk mass on the purple panel. We plot the total estimate for GRB 130603B on all panels. Our estimates for GRB 211211A fall within the range of AT 2017gfo and past kilonova candidates. As ejecta mass and velocity estimates are highly model-dependent, we note that the most robust comparison is between the three-component estimates for AT 2017gfo (stars) and our results for GRB 211211A.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rastinejad, J.C., Gompertz, B.P., Levan, A.J. et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 612, 223–227 (2022). https://doi.org/10.1038/s41586-022-05390-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05390-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing