Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topological lattices realized in superconducting circuit optomechanics

Abstract

Cavity optomechanics enables the control of mechanical motion through the radiation-pressure interaction1, and has contributed to the quantum control of engineered mechanical systems ranging from kilogramme-scale Laser Interferometer Gravitational-wave Observatory (LIGO) mirrors to nanomechanical systems, enabling ground-state preparation2,3, entanglement4,5, squeezing of mechanical objects6, position measurements at the standard quantum limit7 and quantum transduction8. Yet nearly all previous schemes have used single- or few-mode optomechanical systems. By contrast, new dynamics and applications are expected when using optomechanical lattices9, which enable the synthesis of non-trivial band structures, and these lattices have been actively studied in the field of circuit quantum electrodynamics10. Superconducting microwave optomechanical circuits2 are a promising platform to implement such lattices, but have been compounded by strict scaling limitations. Here we overcome this challenge and demonstrate topological microwave modes in one-dimensional circuit optomechanical chains realizing the Su–Schrieffer–Heeger model11,12. Furthermore, we realize the strained graphene model13,14 in a two-dimensional optomechanical honeycomb lattice. Exploiting the embedded optomechanical interaction, we show that it is possible to directly measure the mode functions of the hybridized modes without using any local probe15,16. This enables us to reconstruct the full underlying lattice Hamiltonian and directly measure the existing residual disorder. Such optomechanical lattices, accompanied by the measurement techniques introduced, offer an avenue to explore collective17,18, quantum many-body19 and quench20 dynamics, topological properties9,21 and, more broadly, emergent nonlinear dynamics in complex optomechanical systems with a large number of degrees of freedom22,23,24.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optomechanical lattices composed of superconducting circuit optomechanical systems.
Fig. 2: Superconducting circuit optomechanical chain realizing the 1D SSH model.
Fig. 3: Optomechanical mode-shape measurement and Hamiltonian reconstruction of a topological SSH chain.
Fig. 4: 2D superconducting circuit optomechanical honeycomb lattice realizing the strained graphene model.

Similar content being viewed by others

Data availability

The data used to produce the plots within this paper are available on Zenodo (https://doi.org/10.5281/zenodo.6987358). All other data used in this study are available from the corresponding author on reasonable request.

Code availability

The code used to produce the plots within this paper is available on Zenodo (https://doi.org/10.5281/zenodo.6987358).

References

  1. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  2. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  CAS  ADS  Google Scholar 

  3. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  CAS  ADS  Google Scholar 

  4. Kotler, S. et al. Direct observation of deterministic macroscopic entanglement. Science 372, 622–625 (2021).

    Article  CAS  ADS  Google Scholar 

  5. Ockeloen-Korppi, C. et al. Stabilized entanglement of massive mechanical oscillators. Nature 556, 478–482 (2018).

    Article  CAS  ADS  Google Scholar 

  6. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    Article  MathSciNet  CAS  MATH  ADS  Google Scholar 

  7. Teufel, J. D., Donner, T., Castellanos-Beltran, M., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4, 820–823 (2009).

    Article  CAS  ADS  Google Scholar 

  8. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Article  CAS  Google Scholar 

  9. Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).

    Google Scholar 

  10. Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16, 268–279 (2020).

    Article  CAS  Google Scholar 

  11. Asbóth, J. K., Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators. Lecture Notes in Physics Vol. 919, 997 (Springer, 2016).

  12. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  13. Pereira, V. M., Neto, A. C. & Peres, N. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).

    Article  ADS  Google Scholar 

  14. Naumis, G. G., Barraza-Lopez, S., Oliva-Leyva, M. & Terrones, H. Electronic and optical properties of strained graphene and other strained 2d materials: a review. Rep. Prog. Phys. 80, 096501 (2017).

    Article  ADS  Google Scholar 

  15. Underwood, D. et al. Imaging photon lattice states by scanning defect microscopy. Phys. Rev. X 6, 021044 (2016).

    Google Scholar 

  16. Wang, H. et al. Mode structure in superconducting metamaterial transmission-line resonators. Phys. Rev. Appl.11, 054062 (2019).

    Article  CAS  ADS  Google Scholar 

  17. Heinrich, G., Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011).

    Article  ADS  Google Scholar 

  18. Xuereb, A., Genes, C. & Dantan, A. Strong coupling and long-range collective interactions in optomechanical arrays. Phys. Rev. Lett. 109, 223601 (2012).

    Article  ADS  Google Scholar 

  19. Ludwig, M. & Marquardt, F. Quantum many-body dynamics in optomechanical arrays. Phys. Rev. Lett. 111, 073603 (2013).

    Article  ADS  Google Scholar 

  20. Raeisi, S. & Marquardt, F. Quench dynamics in one-dimensional optomechanical arrays. Phys. Rev. A 101, 023814 (2020).

    Article  CAS  ADS  Google Scholar 

  21. Zangeneh-Nejad, F. & Fleury, R. Topological optomechanically induced transparency. Opt. Lett. 45, 5966 (2020).

    Article  CAS  ADS  Google Scholar 

  22. Akram, U., Munro, W., Nemoto, K. & Milburn, G. Photon-phonon entanglement in coupled optomechanical arrays. Phys. Rev. A 86, 042306 (2012).

    Article  ADS  Google Scholar 

  23. Sanavio, C., Peano, V. & Xuereb, A. Nonreciprocal topological phononics in optomechanical arrays. Phys. Rev. B 101, 085108 (2020).

    Article  CAS  ADS  Google Scholar 

  24. Tomadin, A., Diehl, S., Lukin, M. D., Rabl, P. & Zoller, P. Reservoir engineering and dynamical phase transitions in optomechanical arrays. Phys. Rev. A 86, 033821 (2012).

    Article  ADS  Google Scholar 

  25. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  ADS  Google Scholar 

  26. Palomaki, T., Harlow, J., Teufel, J., Simmonds, R. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013).

    Article  CAS  ADS  Google Scholar 

  27. Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018).

    Article  CAS  ADS  Google Scholar 

  28. Roque, T. F., Peano, V., Yevtushenko, O. M. & Marquardt, F. Anderson localization of composite excitations in disordered optomechanical arrays. New J. Phys. 19, 013006 (2017).

    Article  Google Scholar 

  29. Ren, H. et al. Topological phonon transport in an optomechanical system. Nat. Commun. 13, 3476 (2022).

  30. Safavi-Naeini, A. H. et al. Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Phys. Rev. Lett. 112, 153603 (2014).

    Article  ADS  Google Scholar 

  31. Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Article  ADS  Google Scholar 

  32. Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).

    Article  CAS  Google Scholar 

  33. Surjadi, J. U. et al. Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. 21, 1800864 (2019).

    Article  CAS  Google Scholar 

  34. Cicak, K. et al. Low-loss superconducting resonant circuits using vacuum-gap-based microwave components. Appl. Phys. Lett. 96, 093502 (2010).

    Article  ADS  Google Scholar 

  35. de Lépinay, L. M., Ockeloen-Korppi, C. F., Woolley, M. J. & Sillanpää, M. A. Quantum mechanics–free subsystem with mechanical oscillators. Science 372, 625–629 (2021).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Tóth, L. D., Bernier, N. R., Nunnenkamp, A., Feofanov, A. K. & Kippenberg, T. J. A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nat. Phys. 13, 787–793 (2017).

    Article  Google Scholar 

  37. Pirkkalainen, J.-M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211–215 (2013).

    Article  CAS  ADS  Google Scholar 

  38. Reed, A. et al. Faithful conversion of propagating quantum information to mechanical motion. Nat. Phys. 13, 1163–1167 (2017).

    Article  CAS  Google Scholar 

  39. Bernier, N. R. et al. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. https://doi.org/10.1038/s41467-017-00447-1 (2017).

  40. Mirhosseini, M. et al. Superconducting metamaterials for waveguide quantum electrodynamics. Nat. Commun. 9, 1 (2018).

    Article  CAS  ADS  Google Scholar 

  41. Kim, E. et al. Quantum electrodynamics in a topological waveguide. Phys. Rev. X 11, 011015 (2021).

    CAS  Google Scholar 

  42. Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301 (2008).

    Article  CAS  Google Scholar 

  43. Rechtsman, M. C. et al. Topological creation and destruction of edge states in photonic graphene. Phys. Rev. Lett. 111, 103901 (2013).

    Article  ADS  Google Scholar 

  44. Delplace, P., Ullmo, D. & Montambaux, G. Zak phase and the existence of edge states in graphene. Phys. Rev. B 84, 195452 (2011).

    Article  ADS  Google Scholar 

  45. Morvan, A., Féchant, M., Aiello, G., Gabelli, J., & Estève, J. Bulk properties of honeycomb lattices of superconducting microwave resonators. Phys. Rev. Res. 4, 013085 (2022).

  46. Li, L., Xu, Z. & Chen, S. Topological phases of generalized su-schrieffer-heeger models. Phys. Rev. B 89, 085111 (2014).

    Article  ADS  Google Scholar 

  47. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  CAS  ADS  Google Scholar 

  48. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    Article  CAS  ADS  Google Scholar 

  49. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).

    Article  CAS  ADS  Google Scholar 

  50. Yanay, Y. & Clerk, A. A. Reservoir engineering with localized dissipation: dynamics and prethermalization. Phys. Rev. Res. 2, 023177 (2020).

    Article  CAS  Google Scholar 

  51. Zippilli, S. & Vitali, D. Dissipative engineering of gaussian entangled states in harmonic lattices with a single-site squeezed reservoir. Phys. Rev. Lett. 126, 020402 (2021).

    Article  MathSciNet  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank O. Yazyev and P. Delplace for critical discussions with respect to the topological properties of strained graphene. We thank T. Sugiyama for discussions on the Hamiltonian reconstruction. This work was supported by the EU H2020 research and innovation programme under grant no. 101033361 (QuPhon), and by the European Research Council (ERC) grant no. 835329 (ExCOM-cCEO). This work was also supported by the Swiss National Science Foundation (SNSF) under grant Nos. NCCR-QSIT: 51NF40_185902 and 204927. All devices were fabricated in the Center of MicroNanoTechnology (CMi) at EPFL.

Author information

Authors and Affiliations

Authors

Contributions

A.Y. conceived the experiment. A.Y. and A.B. designed and simulated devices. S.K. provided the theoretical support with the assistance of A.Y. and J.P. A.Y. and A.B. performed the numerical analysis. A.Y. developed the fabrication process with the assistance of M.C. and T.V. M.C. and A.Y. fabricated the samples. The measurement technique was implemented by A.Y., A.B. and S.K. The data were collected by A.B. and S.K., with the assistance of A.Y. The data analysis was performed by A.B., A.Y. and S.K. The manuscript was written by A.Y., S.K. and A.B. with the assistance of T.J.K. and all the other authors. T.J.K. supervised the study.

Corresponding author

Correspondence to Tobias J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Vittorio Peano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Fabrication process.

a, b, Etching a trench in a silicon wafer (325 nm depth). c, Aluminum deposition of the bottom plate (100 nm). d, Patterning of Al. e, SiO2 sacrificial layer deposition (3 μm). f, CMP planarization. g, Landing on the substrate using IBE etching. h, Top Al layer deposition and patterning (200 nm). i, Releasing the structure using HF vapour. Owing to compressive stresses, the top plate will buckle up. j, At cryogenic temperatures, the drumhead shrinks and flattens owing to the temperature-induced tensile stress.

Extended Data Fig. 2 Charecterization of 24-site 2D hanycomb lattice.

a, Optomechanically induced transparency (OMIT) responce of the 2D device measured on the highest microwave bulk mode. Increasing the trench radius results in a slight shift of the mechanical frequencies. b, Microwave resonance frequencies of the device, design targets (orange), and measured values (blue).

Extended Data Fig. 3 Modeshapes of 24-site 2D honeycomb lattice.

The amplitude of the modeshape \(| {\psi }_{i}^{k}| \) is encoded in the area of the circles. Only for modes that share the same colour bar can the size and colour of the circles be compared. Highlighted in purple are the four edge modes.

Extended Data Fig. 4 Hamiltonian reconstruction of 24-site 2D honeycomb lattice.

The reconstructed Hamiltonian of 24 site 2D honeycomb device (left) and the designed Hamiltonian including second nearest-neighbour couplings (right). The diagonal elements represent an individual site’s resonance frequency deviation from the average bare cavity frequency.

Supplementary information

Supplementary Information

Supplementary Sections 1–8 and references.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssefi, A., Kono, S., Bancora, A. et al. Topological lattices realized in superconducting circuit optomechanics. Nature 612, 666–672 (2022). https://doi.org/10.1038/s41586-022-05367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05367-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing