Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Distributed quantum sensing with mode-entangled spin-squeezed atomic states

Abstract

Quantum sensors are used for precision timekeeping, field sensing and quantum communication1,2,3. Comparisons among a distributed network of these sensors are capable of, for example, synchronizing clocks at different locations4,5,6,7,8. The performance of a sensor network is limited by technical challenges as well as the inherent noise associated with the quantum states used to realize the network9. For networks with only spatially localized entanglement at each node, the noise performance of the network improves at best with the square root of the number of nodes10. Here we demonstrate that spatially distributed entanglement between network nodes offers better scaling with network size. A shared quantum nondemolition measurement entangles a clock network with up to four nodes. This network provides up to 4.5 decibels better precision than one without spatially distributed entanglement, and 11.6 decibels improvement as compared to a network of sensors operating at the quantum projection noise limit. We demonstrate the generality of the approach with atomic clock and atomic interferometer protocols, in scientific and technologically relevant configurations optimized for intrinsically differential comparisons of sensor outputs.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Atomic sensor sequence.
Fig. 2: Differential phase shift detection.
Fig. 3: Clock network sensitivity.
Fig. 4: Interferometer performance.

Data availability

The datasets generated and analysed during this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The code used for the analysis is available from the corresponding author upon reasonable request.

References

  1. Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).

    Article  CAS  Google Scholar 

  2. McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Guo, X. et al. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 16, 281–284 (2020).

    Article  CAS  Google Scholar 

  4. Zhao, S.-R. et al. Field demonstration of distributed quantum sensing without post-selection. Phys. Rev. X 11, 031009 (2021).

    CAS  Google Scholar 

  5. Zhang, Z. & Zhuang, Q. Distributed quantum sensing. Quantum Sci. Tech. 6, 043001 (2021).

    Article  ADS  Google Scholar 

  6. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced positioning and clock synchronization. Nature 412, 417–419 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Beloy, K. et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591, 564–569 (2021).

    Article  ADS  Google Scholar 

  8. Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article  ADS  PubMed  Google Scholar 

  10. Zheng, X. et al. Differential clock comparisons with a multiplexed optical lattice clock. Nature 602, 425–430 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Overstreet, C., Asenbaum, P., Curti, J., Kim, M. & Kasevich, M. A. Observation of a gravitational Aharonov–Bohm effect. Science 375, 226–229 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  12. Liu, L.-Z. et al. Distributed quantum phase estimation with entangled photons. Nat. Photonics 15, 137–142 (2021).

    Article  ADS  CAS  Google Scholar 

  13. Xia, Y. et al. Demonstration of a reconfigurable entangled radio-frequency photonic sensor network. Phys. Rev. Lett. 124, 150502 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Lu, H. et al. Experimental quantum network coding. npj Quantum Inf. 5, 89 (2019).

  15. Bodine, M. I. et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2, 033395 (2020).

    Article  CAS  Google Scholar 

  16. Matsukevich, D. N. et al. Entanglement of remote atomic qubits. Phys. Rev. Lett. 96, 030405 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Simon, J., Tanji, H., Ghosh, S. & Vuletić, V. Single-photon bus connecting spin-wave quantum memories. Nat. Phys. 3, 765–769 (2007).

    Article  CAS  Google Scholar 

  19. Muralidharan, S. et al. Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016).

  20. Gündoğan, M.et al. Proposal for space-borne quantum memories for global quantum networking. npj Quantum Inf. 7, 128 (2021).

  21. Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article  Google Scholar 

  22. Polzik, E. S. & Ye, J. Entanglement and spin squeezing in a network of distant optical lattice clocks. Phys. Rev. A 93, 021404 (2016).

    Article  ADS  Google Scholar 

  23. Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Orientation-dependent entanglement lifetime in a squeezed atomic clock. Phys. Rev. Lett. 104, 250801 (2010).

  24. Gessner, M., Pezzè, L. & Smerzi, A. Sensitivity bounds for multiparameter quantum metrology. Phys. Rev. Lett. 121, 130503 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhuang, Q., Zhang, Z. & Shapiro, J. H. Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A 97, 032329 (2018).

    Article  ADS  CAS  Google Scholar 

  26. Eckert, K. et al. Differential atom interferometry beyond the standard quantum limit. Phys. Rev. A 73, 013814 (2006).

    Article  ADS  Google Scholar 

  27. Nichol, B. C. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022).

  28. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

  29. Fadel, M., Zibold, T., Décamps, B. & Treutlein, P. Spatial entanglement patterns and Einstein–Podolsky–Rosen steering in Bose–Einstein condensates. Science 360, 409–413 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  30. Lange, K. et al. Entanglement between two spatially separated atomic modes. Science 360, 416–418 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  31. Kunkel, P. et al. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science 360, 413–416 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  32. Anders, F. et al. Momentum entanglement for atom interferometry. Phys. Rev. Lett. 127, 140402 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  33. Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  35. Malia, B. K., Martínez-Rincón, J., Wu, Y., Hosten, O. & Kasevich, M. A. Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit. Phys. Rev. Lett. 125, 043202 (2020).

  36. Fadel, M., Yadin, B., Mao, Y., Byrnes, T. & Gessner, M. Multiparameter quantum metrology and mode entanglement with spatially split nonclassical spin states. Preprint at https://arxiv.org/abs/2201.11081 (2022).

  37. Gessner, M., Smerzi, A. & Pezzè, L. Multiparameter squeezing for optimal quantum enhancements in sensor networks. Nat. Commun. 11, 3817 (2020).

  38. Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Chaudhary, M. et al. Stroboscopic quantum nondemolition measurements for enhanced entanglement generation between atomic ensembles. Phys. Rev. A 105, 022443 (2022).

    Article  ADS  CAS  Google Scholar 

  40. Abe, M. et al. Matter-wave atomic gradiometer interferometric sensor (MAGIS-100). Quantum Sci. Tech. 6, 044003 (2021).

    Article  ADS  Google Scholar 

  41. Zhan, M.-S. et al. ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna. Int. J. Mod. Phys. D 29, 1940005 (2019).

    Article  ADS  Google Scholar 

  42. Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, 6501 (2018).

  43. Safronova, M. S., Porsev, S. G., Sanner, C. & Ye, J. Two clock transitions in neutral Yb for the highest sensitivity to variations of the fine-structure constant. Phys. Rev. Lett. 120, 173001 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Tino, G. M. Testing gravity with cold atom interferometry: results and prospects. Quantum Sci. Tech. 6, 024014 (2021).

    Article  ADS  Google Scholar 

  45. Jing, Y., Fadel, M., Ivannikov, V. & Byrnes, T. Split spin-squeezed Bose–Einstein condensates. New J. Phys. 21, 093038 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. Parazzoli, L. P., Hankin, A. M. & Biedermann, G. W. Observation of free-space single-atom matter wave interference. Phys. Rev. Lett. 109, 230401 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Malitesta, M., Smerzi, A. & Pezzè, L. Distributed quantum sensing with squeezed-vacuum light in a configurable network of Mach–Zehnder interferometers Preprint at https://arxiv.org/abs/2109.09178 (2021).

  48. Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Malia, B. K. Integration of Spin Squeezed States Into Free Space Atomic Sensors. PhD thesis, Stanford Univ. (2021).

Download references

Acknowledgements

We acknowledge support from Department of Energy award DE-SC0019174-0001, the Department of Energy Q-NEXT NQI, a Vannevar Bush Faculty Fellowship and NSF QLCI Award OMA – 2016244.

Author information

Authors and Affiliations

Authors

Contributions

B.K.M., Y.W. and J.M.-R. designed, constructed and characterized the experiment. B.K.M. and Y.W. performed data collection and analysis. M.A.K. supervised the research. All authors contributed to the manuscript.

Corresponding author

Correspondence to Mark A. Kasevich.

Ethics declarations

Competing interests

M.A.K. serves as Chief Scientist, Consulting and is a shareholder of AOSense, Inc. All other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Augusto Smerzi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Apparatus.

The atoms (black circle) are localized near the centre of the cavity. The Raman lasers enter the vacuum chamber at a 45° angle to the cavity axis. The reflected light from the probe laser is used in the homodyne detection.

Extended Data Fig. 2 Mode separation.

Contrast of the collective fluorescent measurement as a function of separation time between two 0.33 μs Raman π pulses. Solid curve is an exponential fit to the data with a decay rate of 0.46 μs. Note that T = 0 corresponds to a single pulse with a total time of 2π. Error bars represent a 95% confidence interval.

Source Data

Extended Data Fig. 3 Interferometer sequence timing.

Space time diagram in the inertial frame of a single-mode interferometer. Solid (dashed) lines represent the trajectory of the spin down (up) state. White (grey) waves represent the finite time of the microwave (Raman) pulses.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malia, B.K., Wu, Y., Martínez-Rincón, J. et al. Distributed quantum sensing with mode-entangled spin-squeezed atomic states. Nature (2022). https://doi.org/10.1038/s41586-022-05363-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-022-05363-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing