Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of chiral orbital currents in a colossal magnetoresistance material

Abstract

Colossal magnetoresistance (CMR) is an extraordinary enhancement of the electrical conductivity in the presence of a magnetic field. It is conventionally associated with a field-induced spin polarization that drastically reduces spin scattering and electric resistance. Ferrimagnetic Mn3Si2Te6 is an intriguing exception to this rule: it exhibits a seven-order-of-magnitude reduction in ab plane resistivity that occurs only when a magnetic polarization is avoided1,2. Here, we report an exotic quantum state that is driven by ab plane chiral orbital currents (COC) flowing along edges of MnTe6 octahedra. The c axis orbital moments of ab plane COC couple to the ferrimagnetic Mn spins to drastically increase the ab plane conductivity (CMR) when an external magnetic field is aligned along the magnetic hard c axis. Consequently, COC-driven CMR is highly susceptible to small direct currents exceeding a critical threshold, and can induce a time-dependent, bistable switching that mimics a first-order ‘melting transition’ that is a hallmark of the COC state. The demonstrated current-control of COC-enabled CMR offers a new paradigm for quantum technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical properties in magnetic fields and phase diagram.
Fig. 2: Response of physical properties to d.c. currents and magnetic fields.
Fig. 3: a axis IV characteristic.
Fig. 4: Time-dependent bistable switching and the COC.

Similar content being viewed by others

Data availability

The data that support the findings of this work are available from the corresponding authors upon request.

References

  1. Ni, Y. et al. Colossal magnetoresistance via avoiding fully polarized magnetization in the ferrimagnetic insulator Mn3Si2Te6. Phys. Rev. B 103, L161105 (2021).

    Article  CAS  ADS  Google Scholar 

  2. Seo, J. et al. Colossal angular magnetoresistance in ferrimagnetic nodal-line semiconductors. Nature 599, 576–581 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171–8199 (1997).

    Article  CAS  ADS  Google Scholar 

  4. Millis, A. J., Shraiman, B. I. & Mueller, R. Dynamic Jahn–Teller effect and colossal magnetoresistance in La1–xSrxMnO3. Phys. Rev. Lett. 77, 175–178 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Salamon, M. B. & Jaime, M. The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583 (2001).

    Article  CAS  ADS  Google Scholar 

  6. Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, 2002).

  7. Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–848 (2006).

    Article  CAS  ADS  Google Scholar 

  8. Majumdar, P. & Littlewood, P. Magnetoresistance in Mn pyrochlore: electrical transport in a low carrier density ferromagnet. Phys. Rev. Lett. 81, 1314–1317 (1998).

    Article  CAS  ADS  Google Scholar 

  9. Shimakawa, Y., Kubo, Y. & Manako, T. Giant magnetoresistance in Tl2Mn2O7 with the pyrochlore structure. Nature 379, 53–55 (1996).

    Article  CAS  ADS  Google Scholar 

  10. Rosa, P. et al. Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator. npj Quantum Mater. 5, 52 (2020).

    Article  CAS  ADS  Google Scholar 

  11. Yin, J. et al. Large negative magnetoresistance in the antiferromagnetic rare-earth dichalcogenide, EuTe2. Phys. Rev. Mater. 4, 013405 (2020).

    Article  CAS  ADS  Google Scholar 

  12. Perfetti, L. et al. Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ by time-resolved photoelectron spectroscopy. Phys. Rev. Lett. 99, 197001 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Varma, C. M. Theory of the pseudogap state of the cuprates. Phys. Rev. B 73, 155113 (2006).

    Article  ADS  Google Scholar 

  14. Varma, C. M. Pseudogap in cuprates in the loop-current ordered state. J. Phys. Condens. Matter 26, 505701 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Pershoguba, S. S., Kechedzhi, K. & Yakovenko, V. M. Proposed chiral texture of the magnetic moments of unit-cell loop currents in the pseudogap phase of cuprate superconductors. Phys. Rev. Lett. 111, 047005 (2013).

    Article  PubMed  ADS  Google Scholar 

  16. Pershoguba, S. S., Kechedzhi, K. & Yakovenko, V. M. Erratum: proposed chiral texture of the magnetic moments of unit-cell loop currents in the pseudogap phase of cuprate. Phys. Rev. Lett. 113, 129901 (2014).

    Article  ADS  Google Scholar 

  17. Scagnoli, V. et al. Observation of orbital currents in CuO. Science 332, 696–698 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Di Matteo, S. & Norman, M. R. Orbital currents, anapoles, and magnetic quadrupoles in CuO. Phys. Rev. B 85, 235143 (2012).

    Article  ADS  Google Scholar 

  19. Yakovenko, V. M. Tilted loop currents in cuprate superconductors. Physica B 460, 159–164 (2015).

    Article  CAS  ADS  Google Scholar 

  20. Bourges, P., Bounoua, D. & Sidis, Y. Loop currents in quantum matter. Comp. Rend. Phys. 22, 7–31 (2021).

  21. Zhao, L. et al. Evidence of an odd-parity hidden order in a spin-orbit coupled correlated iridates. Nat. Phys. 12, 32–36 (2015).

    Article  Google Scholar 

  22. Jeong, J., Sidis, Y., Louat, A., Brouet, V. & Bourges, P. Time-reversal symmetry breaking hidden order in Sr2(Ir,Rh)O4. Nat. Commun. 8, 15119 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Murayama, H. et al. Bond directional anapole order in a spin-orbit coupled mott insulator Sr2Ir1-xRhxO4. Phys. Rev. X 11, 011021 (2021).

    MathSciNet  CAS  Google Scholar 

  24. Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the Kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).

    Article  CAS  Google Scholar 

  26. Teng, X. et al. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature 609, 490–495 (2022).

  27. Guo, C. et al. Field-tuned chiral transport in charge-ordered CsV3Sb5. Preprint at https://arxiv.org/abs/2203.09593.

  28. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. May, A. F. et al. Magnetic order and interactions in ferrimagnetic Mn3Si2Te6. Phys. Rev. B 95, 174440 (2017).

    Article  ADS  Google Scholar 

  32. Liu, Y. & Petrovic, C. Critical behavior and magnetocaloric effect in Mn3Si2Te6. Phys. Rev. B 98, 064423 (2018).

    Article  CAS  ADS  Google Scholar 

  33. Ye, F. et al. Magnetic structure and spin fluctuation in colossal magnetoresistance ferrimagnet Mn3Si2Te6. arXiv:2209.13664 (2022).

  34. Cao, G. et al. Electrical control of structural and physical properties via strong spin-orbit interactions in Sr2IrO4. Phys. Rev. Lett. 120, 017201 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Zhao, H. et al. Nonequilibrium orbital transitions via applied electrical current in calcium ruthenates. Phys. Rev. B 100, 241104(R) (2019).

    Article  ADS  Google Scholar 

  36. Jeong, D. S. et al. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012).

    Article  PubMed  ADS  Google Scholar 

  37. Meijer, G. I. Who wins the nonvolatile memory race? Science 319, 1625–1626 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Giaever, I. & Megerle, K. Study of superconductors by electron tunneling. Phys. Rev. 122, 1101–1111 (1961).

    Article  CAS  ADS  Google Scholar 

  39. Tang, Y. et al. Orientation of the intra-unit-cell magnetic moment in the high-Tc superconductor HgBa2CuO4+δ. Phys. Rev. B 98, 214418 (2018).

    Article  CAS  ADS  Google Scholar 

  40. Pershoguba, S. S. & Yakovenko, V. M. Optical control of topological memory based on orbital magnetization. Phys. Rev. B 105, 064423 (2022).

    Article  CAS  ADS  Google Scholar 

  41. Nandkishore, R. & Levitov, L. Polar Kerr effect and time reversal symmetry breaking in bilayer graphene. Phys. Rev. Lett. 107, 097402 (2011).

    Article  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

G.C. thanks M. Lee, R. Nandkishore, X. Chen, M. Hermele, D. Singh, D. Reznik, D. Dessau and N. Clark for useful discussions. I.K. thanks E. Berg, M. Mourigal, B. Uchoa, C. Varma and Z. Wang for useful discussions. This work is supported by National Science Foundation via grants no. DMR 1903888 and DMR 2204811. The theoretical part of this work is in part performed at Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611. The work at the Spallation Neutron Source at the Oak Ridge Natinoal Laboratory is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. conducted measurements of the physical properties and data analysis; Y.N. grew the single crystals, characterized the crystal structure of the crystals, measured magnetization with applied currents and contributed to the data analysis; H.Z. conducted measurements of crystal and physical properties including the magnetostriction and the data analysis; F.Y. determined the magnetic structure of Mn3Si2Te6 using neutron diffraction and contributed to the data analysis; S.H. contributed to the theoretical analysis including detailed configurations of chiral orbital currents presented in the figures; L.D. contributed to the data analysis and paper writing; I.K. proposed the theoretical argument, formed the theoretical discussion and contributed to paper writing; G.C. initiated and directed this work, analyzed the data, constructed the figures and wrote the paper.

Corresponding authors

Correspondence to Itamar Kimchi or Gang Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Lan Wang, Victor Yakovenko and Meng Wang for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Resistivity at low temperatures for Mn3Si2Te6 and transport and magnetic properties for Mn3(Si1-xGex)2Te6, Mn3Si2(Te1-ySey)6.

a, The temperature dependence of the a-axis resistivity ρa at low temperatures (data in brown), and ln (ρa) versus T−1 (data in blue). Note that ρa does not follow an activation law and or a simple power law at low temperatures. b, c, The magnetic field dependence of the a-axis magnetoresistance ratio defined by ρa(H)/ρa(0) (b) and the easy a-axis magnetization Ma (c) for Mn3(Si1-xGex)2Te6 (red), Mn3Si2(Te1-ySey)6 (blue) and undoped compound (black), respectively. Inset in b schematic illustration of the unit cell expansion and contraction due to Ge doping (red) and Se doping (blue), respectively.

Extended Data Fig. 2 Additional I-V characteristic.

a, Comparison of the I-V characteristic at H || a axis and H || c axis: the a-axis I-V characteristic at 10 K for H = 0 (red), μoH = 14 T along the a axis (green) and the c axis (blue). Note that the regime where ΔV/ΔI = 0 emerges only when H || c axis. b, The I-V characteristic at μoH||c = 14 T for various temperatures. Note the regime ΔVI = 0 persists up to 70 K. c, The I-V characteristic at I || c axis for various temperatures. Note that the I-V characteristic is qualitatively similar to that for I || a axis but the first-order switching at IC is weaker.

Extended Data Fig. 3 Additional time-dependent bistable switching data.

a, Time-dependent bistable switching at 10 K with 1,800 s elapsed. b, Time-dependent bistable switching at 50 K and μoH||c = 14 T. c, d, Time-dependent bistable switching for I || c axis at 10 K for H = 0 (c) and μoH = 14 T (d).

Extended Data Fig. 4 Chiral orbital current parameters of Ψa in the Mn1 (a) and Mn2 (b) planes.

a, Three independent currents (orange, purple, and cerulean) run along Te-Te bonds in the Mn1 plane and are symmetry allowed magnetic space group. b, Three more independent currents (cyan, magenta, and yellow) run along Te-Te bonds in the Mn2 plane. These currents are not linearly independent of the COC of Fig. 4g in the main text. The sum of the orange, purple, and cerulean COC in a gives rise to the difference of the red and blue COC of Fig. 4g in the main text. Moreover, the sum of the cyan, magenta, and yellow COC in b gives the difference of the blue and twice purple COC of Fig. 4g. Bonds with two arrows of the same colour indicate that the current magnitude is doubled on that edge. In total, the COC state is parametrized by eight independent loop currents.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ni, Y., Zhao, H. et al. Control of chiral orbital currents in a colossal magnetoresistance material. Nature 611, 467–472 (2022). https://doi.org/10.1038/s41586-022-05262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05262-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing