Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional CeOx nanoglues for robust atomically dispersed catalysts

Abstract

Single-atom catalysts1 make exceptionally efficient use of expensive noble metals and can bring out unique properties1,2,3. However, applications are usually compromised by limited catalyst stability, which is due to sintering3,4. Although sintering can be suppressed by anchoring the metal atoms to oxide supports1,5,6, strong metal–oxygen interactions often leave too few metal sites available for reactant binding and catalysis6,7, and when exposed to reducing conditions at sufficiently high temperatures, even oxide-anchored single-atom catalysts eventually sinter4,8,9. Here we show that the beneficial effects of anchoring can be enhanced by confining the atomically dispersed metal atoms on oxide nanoclusters or ‘nanoglues’, which themselves are dispersed and immobilized on a robust, high-surface-area support. We demonstrate the strategy by grafting isolated and defective CeOx nanoglue islands onto high-surface-area SiO2; the nanoglue islands then each host on average one Pt atom. We find that the Pt atoms remain dispersed under both oxidizing and reducing environments at high temperatures, and that the activated catalyst exhibits markedly increased activity for CO oxidation. We attribute the improved stability under reducing conditions to the support structure and the much stronger affinity of Pt atoms for CeOx than for SiO2, which ensures the Pt atoms can move but remain confined to their respective nanoglue islands. The strategy of using functional nanoglues to confine atomically dispersed metals and simultaneously enhance their reactivity is general, and we anticipate that it will take single-atom catalysts a step closer to practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagrams illustrating the fabrication processes of functional CeOx nanoglue islands and CeOx/SiO2-supported Pt1 single-atom catalysts.
Fig. 2: Electron microscopy, XRD and XPS characterizations of CeOx nanoglue islands uniformly dispersed on high-surface-area SiO2.
Fig. 3: Identification of isolated Pt atoms on CeOx nanoglue islands.
Fig. 4: Evaluation of low-temperature CO oxidation activity and stability.

Similar content being viewed by others

Data availability

All data that led us to understand the results presented here are available with the Article or from corresponding author J.L. upon reasonable request. Source data are provided with this paper.

References

  1. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Gates, B. C. Atomically dispersed supported metal catalysts: seeing is believing. Trends Chem. 1, 99–110 (2019).

    Article  CAS  Google Scholar 

  3. Yang, X. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Duan, S., Wang, R. & Liu, J. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM. Nanotechnology 29, 204002 (2018).

    Article  ADS  PubMed  Google Scholar 

  5. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ren, Y. et al. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 10, 4500 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Pereira-Hernández, X. I. et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 10, 1358 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Wang, H. et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10, 3808 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Liang, J. et al. Heterogeneous catalysis in zeolites, mesoporous silica, and metal–organic frameworks. Adv. Mater. 29, 1701139 (2017).

    Article  Google Scholar 

  11. Lang, R. et al. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 120, 11986–12043 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38, 439–520 (1996).

    Article  CAS  Google Scholar 

  13. Vayssilov, G. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Ma, Z. & Dai, S. Stabilizing gold nanoparticles in solid supports. In Heterogeneous Gold Catalysts and Catalysis (eds Ma, Z. & Dai, S.) 1−26 (The Royal Society of Chemistry, 2014).

  15. Dai, Y. et al. A sinter-resistant catalytic system based on platinum nanoparticles supported on TiO2 nanofibers and covered by porous silica. Angew. Chem. Int. Ed. 49, 8165–8168 (2010).

    Article  CAS  Google Scholar 

  16. Joo, S. et al. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 8, 126–131 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Jeong, H. et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 3, 368–375 (2020).

    Article  CAS  Google Scholar 

  18. Wong, A., Liu, Q., Griffin, S., Nicholls, A. & Regalbuto, J. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 358, 1427–1430 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Bourikas, K. et al. Potentiometric mass titrations: experimental and theoretical establishment of a new technique for determining the point of zero charge (PZC) of metal (hydr)oxides. J. Phys. Chem. B 107, 9441–9451 (2003).

    Article  CAS  Google Scholar 

  20. Wu, Z. et al. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26, 16595–46606 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Kato, S. et al. Quantitative depth profiling of Ce3+ in Pt/CeO2 by in situ high-energy XPS in a hydrogen atmosphere. Phys. Chem. Chem. Phys. 17, 5078–5083 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Bruix, A. et al. Maximum noble‐metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).

    Article  CAS  Google Scholar 

  23. Zhu, H. et al. Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents. J. Catal. 225, 267–277 (2004).

    Article  CAS  Google Scholar 

  24. De Faria, L. A. & Trasatti, S. The point of zero charge of CeO2. J. Colloid Interface Sci. 167, 352–357 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Liu, J. Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: probing the catalytically active centers. Chinese J. Catal. 38, 1460–1472 (2017).

    Article  CAS  Google Scholar 

  26. Kottwitz, M. et al. Local structure and electronic state of atomically dispersed Pt supported on nanosized CeO2. ACS Catal. 9, 8738–8748 (2019).

    Article  CAS  Google Scholar 

  27. Maurer, F. et al. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat. Catal. 3, 824–833 (2020).

    Article  CAS  Google Scholar 

  28. Avakyan, L. A. et al. Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule? Phys. Chem. Chem. Phys. 18, 22108–22121 (2016).

    Article  Google Scholar 

  29. Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Daelman, N., Capdevila-Cortada, M. & López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215–1221 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Li, J. et al. Investigating the hybrid‐structure‐effect of CeO2‐encapsulated Au nanostructures on the transfer coupling of nitrobenzene. Adv. Mater. 30, 1704416 (2018).

    Article  Google Scholar 

  32. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  ADS  Google Scholar 

  33. Xu, Y. et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 371, 610–613 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  35. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Nolan, M. S. et al. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surf. Sci. 576, 217–229 (2005).

    Article  ADS  CAS  Google Scholar 

  38. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  39. Hoffman, A. S. et al. Beating heterogeneity of single-site catalysts: MgO-supported iridium complexes. ACS Catal. 8, 3489–3498 (2018).

    Article  CAS  Google Scholar 

  40. Hoffman, A. S. et al. In situ observation of phase changes of a silica-supported cobalt catalyst for the Fischer−Tropsch process by the development of a synchrotron compatible in situ/operando powder X-ray diffraction cell. J. Synchrotron Radiat. 25, 1673–1682 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Blanco, J. et al. Magnetic structures and cerium moment reduction in the CeNixPt1−x ferromagnetic Kondo lattices. J. Magn. Magn. Mater. 112, 51–57 (1992).

    Article  ADS  Google Scholar 

  42. Xie, P. et al. Nanoceria-supported single-atom platinum catalysts for direct methane conversion. ACS Catal. 8, 4044–4048 (2018).

    Article  CAS  Google Scholar 

  43. Kistler, J. D. et al. A single‐site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem. Int. Ed. 53, 8904–8907 (2014).

    Article  CAS  Google Scholar 

  44. Nan, B. et al. Effects of multiple platinum species on catalytic reactivity distinguished by electron microscopy and X-ray absorption spectroscopy techniques. J. Phys. Chem. C 121, 25805–25817 (2017).

    Article  CAS  Google Scholar 

  45. Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    Article  CAS  Google Scholar 

  46. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  ADS  CAS  Google Scholar 

  47. Lou, Y. et al. Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation. J. Am. Chem. Soc. 141, 19289–19295 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wan, J. et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30, 1705369 (2018).

    Article  Google Scholar 

  50. Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Yang, C. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Ma, G. et al. Stabilizing gold clusters by heterostructured transition-metal oxide–mesoporous silica supports for enhanced catalytic activities for CO oxidation. Chem. Commun. 48, 11413–11415 (2012).

    Article  CAS  Google Scholar 

  57. Alexeev, O., Shelef, M. & Gates, B. C. MgO-supported platinum–tungsten catalysts prepared from organometallic precursors: platinum clusters isolated on dispersed tungsten. J. Catal. 164, 1–15 (1996).

    Article  CAS  Google Scholar 

  58. Sun, G. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 9, 4454 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  59. DeRita, L. et al. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Jeong, H. et al. Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 7, 7097–7105 (2017).

    Article  CAS  Google Scholar 

  61. Dong, J. et al. Elucidation of the active sites in single-atom Pd1/CeO2 catalysts for low-temperature CO oxidation. ACS Catal. 10, 11356–11364 (2020).

    Article  Google Scholar 

  62. Solymosi, F. & Pásztor, M. An infrared study of the influence of CO chemisorption on the topology of supported rhodium. J. Phys. Chem. 89, 4789–4793 (1985).

    Article  CAS  Google Scholar 

  63. Shan, J. et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the National Science Foundation under grant no. 1955474 (CHE-1955474) and 1465057 (CHE-1465057). J. Zeng acknowledges support by National Key Research and Development Program of China (2021YFA1500500), National Science Fund for Distinguished Young Scholars (21925204), and NSFC (U19A2015). Y.W. acknowledges support by the US Department of Energy (DOE), Office of Science (SC), Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Catalysis Science program (DE-AC05-RL01830, FWP-47319). Y.C., C.-Y.F., and B.C.G. acknowledge the support of DOE SC grant DE-FG02-04ER15513. X.I.P.-H. thanks Fulbright Colombia and Colciencias for financial support provided to pursue a PhD degree and acknowledges the support of DOE SC Grant DE-FG02-05ER15712 and DOE EERE/VTO. X.L. and Y.C. acknowledge funding from the China Scholarship Council (CSC) (201706340130, 201806340062). The authors thank Y. Yu and N. Zhang for help in the revision stage. The authors acknowledge the use of facilities within the Eyring Materials Center and the John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University and thank the Stanford Synchrotron Radiation Lightsource (beamlines 4-1, 9-3) for providing beam time.

Author information

Authors and Affiliations

Authors

Contributions

J.L. conceived the concept, designed the studies and conducted the STEM experiments. X.L. designed the synthesis methods, conducted synthesis work, catalytic tests, DRIFTS experiments and other characterizations. X.I.P.-H. and Y.W. carried out CO DRIFTS experiments during the early stages of this project. Y.C., C.-W.P., C.-Y.F. and B.C.G. performed XAS experiments and analysed XANES and EXAFS data. J.X. conducted relevant experiments. J. Zhao conducted DFT calculations. J. Zeng provided suggestions on the research project. X.L. and J.L. wrote the manuscript. B.C.G., Y.W. and J.Z. revised the manuscript, and all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jie Zeng, Yong Wang, Bruce C. Gates or Jingyue Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Synthesis of CeOx nanoglue islands.

a,b, SEM backscattered electron images of the CeOx/SiO2 after solution reaction for 3 min (a) and 1 h (b). Bright features in b represent large agglomerates of CeO2 particles produced by Ce(OH)4 precipitation during the prolonged 1 h adsorption process. There were no CeO2 particles detectable in a, either at low or high image magnifications. The inset to a shows a photograph of the as-synthesized CeOx/SiO2 powders. c,d,e, High-resolution HAADF images of the Ce–SiO2 (prior to calcination) at various magnifications and defocus values. f,g, HAADF images show distribution and crystallite structure of the CeOx nanoglue islands after 600 °C calcination for 12 h. h,i, Size distribution of the as-synthesized CeOx nanoclusters along two perpendicular directions.

Extended Data Fig. 2 Characterizations of CeOx/SiO2, CeO2 NPs/SiO2 and CeO2.

a, XRD pattern of 12 wt% CeO2 NPs/SiO2 synthesized by impregnation method. b,c, HAADF images of 12 wt% CeO2 NPs/SiO2 in separate regions. The inset to b shows a photograph of the as-synthesized CeO2 NPs/SiO2 powders. d, Size distribution of CeO2 NPs in CeO2 NPs/SiO2 from HAADF images. e,f, HAADF images of pure CeO2 powders, which were fabricated by precipitation and calcination. g, Normalized Raman spectra of the as-synthesized CeOx/SiO2 and pure CeO2. h, High-resolution HAADF images of, and intensity linescans across, a crystalline CeOx nanocluster and a CeO2 nanoparticle. i, Ce 3d XPS data obtained for the 12 wt% CeO2 NPs/SiO2. Circles and black lines represent the data and the fit, respectively. j, H2-TPR profiles obtained on the CeOx/SiO2 and pure CeO2. TCD, thermal conductivity detector. k, XRD patterns of CeOx/SiO2 support after various treatments. Treatment conditions: black, calcined in air at 600 °C for 12 h; red, reduced in H2 at 600 °C for 24 h; blue, re-calcined in air at 600 °C for 12 h after reduction; and orange, calcined in air at 800 °C for 4 h. Prolonged H2 reduction at 600 °C modified the crystallinity of the CeOx nanoclusters, whereas re-calcination at 600 °C recovered the original structure of the CeOx nanoclusters.

Source data

Extended Data Fig. 3 Characterization of Pt/CeOx/SiO2.

a, ICP-MS measurements of Pt concentrations in the final catalysts. b, BET surface areas of various supports and the 0.4 wt% Pt/CeOx/SiO2 catalyst. The BET surface area of the SiO2 support did not change significantly after deposition of CeOx and Pt. c, Estimate of Pt loading levels (relative to the CeOx nanoclusters) in the CeOx/SiO2. d, Estimated specific surface area of CeOx in CeOx/SiO2 and CeO2 in CeO2 NPs/SiO2, and number density of Pt atoms on CeOx (CeO2) component. e, Plots of attainable wt% Pt loading (with respect to SiO2) versus the specific surface area of SiO2 for various sizes of CeOx nanoclusters and the distance between them, assuming that each CeOx nanocluster hosts only one Pt atom. D, average size (diameter) of CeOx nanoclusters; L, average distance between the edges of CeOx nanoclusters. Experimental parameters characterizing the 0.4 wt% Pt/CeOx/SiO2 were used for the plot (red). f, Plots of attainable wt% Pt loading (with respect to SiO2) versus specific surface area of SiO2 for CeOx nanoclusters (D = 2 nm, L = 9 nm) reported in this work. N, number of Pt atoms on each CeOx nanocluster. The red, black and blue lines represent 1, 2 and 5 Pt atoms, respectively, on each CeOx nanocluster. g,h,i, XPS data characterizing the as-synthesized 0.4 wt% Pt/CeOx/SiO2 catalyst.

Source data

Extended Data Fig. 4 Nature of Pt species in Pt/CeOx/SiO2 catalyst.

a,b,c, HAADF images of the as-synthesized 0.4 wt% Pt/CeOx/SiO2 catalyst. d, HAADF image of a high-loading Pt/CeOx/SiO2 catalyst, which was fabricated by impregnation and reduced in H2 at 300 °C for 1 h, shows presence of small Pt clusters. ej, EXAFS results characterizing the as-synthesized 0.4 wt% Pt/CeOx/SiO2. e, k1-weighted experimental EXAFS function (black solid line) and the sum of the calculated Pt–O, Pt–Olong and Pt–O–Ce contributions (red dashed line). f, Imaginary part and the magnitude of Fourier transform (k1-weighted) of the experimental EXAFS results (black solid line) and sum of the calculated Pt–O, Pt–Olong and Pt–O–Ce contributions (red dashed line). gi, Imaginary part and magnitude of Fourier transform (phase- and amplitude-corrected) of the experimental results (black solid line) and the calculated contributions (red dashed line) of the Pt–O shell (k1-weighted) (g), the Pt–Olong shell (k1-weighted) (h), and the Pt–O–Ce shell (k3-weighted) (i). j, Summary of the EXAFS parameters. CN, coordination number; R, distance between absorber and backscatterer atoms; Δσ2, disorder term; ΔE0, inner potential correction. Error bounds (accuracies) characterizing the structural parameters obtained by EXAFS spectroscopy are estimated to be CN, ±10%; R, ±0.02 Å; Δσ2, ±20%; ΔE0, ±20%.

Source data

Extended Data Fig. 5 Changes of Pt atoms on SiO2 or CeO2 supports under various treatment conditions.

a,b, Single Pt atoms (yellow circles) and small Pt clusters (yellow squares) were present in the as-synthesized Pt/SiO2 (synthesized by the SEA method using Pt(NH3)42+ ions in alkaline solution). c,d, After H2 reduction of the as-synthesized Pt/SiO2 at 300 °C for 1 h, Pt sintered to form various sizes of nanoparticles (c) although some small Pt clusters were observable (d). e,f, After calcination of the as-synthesized Pt/SiO2 at 500 °C for 1 h, larger Pt agglomerates (e) and many Pt nanoparticles (e,f) were formed. g,h, Atomic-resolution HAADF images of a 0.3 wt% Pt/CeO2 catalyst prepared by the SEA method. The Pt single atoms (yellow circles) on flat facets of CeO2 nanoparticles are clearly distinguishable. i,j, HAADF images of a 0.3 wt% Pt/CeO2 after reduction treatment (10 ml min−1 of H2/He at 300 °C for 1 h), clearly reveal formation of small Pt nanoparticles. During the H2-activation process, Pt atoms became mobile on CeO2 surfaces and sintered to form Pt clusters/nanoparticles (yellow squares). k, CO-DRIFTS spectrum of the reduced 0.3 wt% Pt/CeO2 indicates presence of Pt clusters/nanoparticles.

Source data

Extended Data Fig. 6 Design and characterization of model catalysts.

a, CO-DRIFTS spectra of 0.3 wt% Pt/SiO2, 4 wt% Cu/SiO2, and Cu-Pt/SiO2. b, TEM image of the reduced Cu-Pt/SiO2 catalyst. c, HAADF image of Cu nanoparticles in reduced Cu-Pt/SiO2, revealing Pt single atoms/clusters on/within Cu nanoparticles. d, Schematic diagram showing synthesis and formation of Pt-Cu species in Cu[(Pt/SiO2)@SiO2] sample. Platinum atoms migrated through the porous SiO2 shell to interact with Cu nanoparticles. e, TEM image of (CeO2/SiO2)@SiO2 shows the CeO2 nanoparticles as markers between the SiO2 core and the coated porous SiO2 shell. The thickness of the porous SiO2 shell was estimated to be ~10 nm. f, HAADF image of the Cu[(Pt/SiO2)@SiO2] catalyst. g, CO DRIFTS spectrum and h, HAADF image of Cu nanoparticles in the reduced Cu[(Pt/SiO2)@SiO2] catalyst (reduction conditions:10% H2, 400 °C for 3 h), clearly revealing Pt atoms on/within Cu nanoparticles. i, Schematic diagram showing synthesis and reduction processes of Cu[(Pt/CeO2)@SiO2] model catalyst. j, TEM images of Cu[(Pt/CeO2)@SiO2] and (Pt/CeO2)@SiO2 (inset). The Pt and Cu loadings were 0.3 wt% and 2 wt%, respectively. The thickness of the porous SiO2 shell was estimated to be ~6 nm. CO adsorption DRIFTS spectrum (k) and HAADF images (l) of Cu nanoparticles in the reduced Cu[(Pt/SiO2)@SiO2] catalyst (reduction conditions: 10% H2, 400 °C for 3 h) confirming the absence of Pt-Cu species.

Source data

Extended Data Fig. 7 Reduction of Pt/CeOx/SiO2 catalysts and investigation of PtxOy clusters.

a, HAADF image of the 0.4 wt% Pt1/CeOx/SiO2 after 300 °C reduction in H2 for 10 h shows the absence of detectable Pt clusters. b,c,d, CO adsorption DRIFTS spectra (recorded at 100 °C) characterize the reduced 0.4 wt% Pt1/CeOx/SiO2 (H2 at 400 °C for 3 h, 500 °C for 1 h or 600 °C for 1 h, respectively). e, DFT-predicted CO adsorption modes on Pt single atoms supported on CeOx clusters. fh, CO-DRIFTS spectra characterizing the PtxOy/CeOx/SiO2 sample at 100 °C (f), after cessation of O2 flow (g) and reduced PtxOy sample (10% H2/Ar, 300 °C, 1 h) (h), reveal transformation of the PtxOy species into metallic Pt clusters (2075 cm−1). i, Ce 3d XPS data characterizing the 0.4 wt% Pt1/CeOx/SiO2 after reduction in 10% H2 at 500 °C for 1 h. The percentage of Ce3+ was ~49% and no metallic Ce was observed. j, CO adsorption DRIFTS spectrum characterizing the 0.02 wt% Pt/CeO2 powder after reduction in H2 at 400 °C for 1 h. kp, EXAFS results characterizing PtxOy supported on CeOx/SiO2. k, k1-weighted experimental EXAFS function (black solid line) and the sum of the calculated Pt–O, Pt–O–Pt, and Pt–O–Ce contributions (red dashed line). l, Imaginary part and magnitude of Fourier transform (k1-weighted) of the EXAFS data (black solid line) and sum of the calculated Pt–O, Pt–O–Pt, and Pt–O–Ce contributions (red dashed line). mo, Imaginary part and magnitude of Fourier transform (phase- and amplitude-corrected) of the experimental results (black solid line) and the calculated contribution (fit; red dashed line) of the Pt–O shell (k1-weighted) (m), the Pt–O–Pt shell (k3-weighted) (n), and the Pt–O–Ce shell (k3-weighted) (o). p, Summary of the EXAFS parameters. CN, coordination number; R, distance between absorber and backscatterer atoms; Δσ2, disorder term; ΔE0, inner potential correction. Error bounds (accuracies) characterizing the structural parameters obtained by EXAFS spectroscopy are as stated in legend of Extended Data Fig. 4.

Source data

Extended Data Fig. 8 Pt clusters on CeO2 NPs/SiO2 and CeOx/SiO2.

a,b,c, HAADF images of the reduced 0.4 wt% Pt/CeO2 NPs/SiO2 (treated in H2 at 300 °C for 1 h) show Pt clusters. Images a and b were obtained from the same region with different electron beam defocus value. d, Comparison of CO-DRIFTS spectra characterizing the as-synthesized 0.4 wt% Pt/CeO2 NPs/SiO2 and CeO2 NPs/SiO2. The CeO2 NPs and SiO2 support did not adsorb CO, and only the two CO gas-phase peaks were observed. e, CO-DRIFTS spectra characterizing the reduced (reduction in H2 at 300 °C for 1 h) 0.4 wt% Pt/CeO2 NPs/SiO2. The peak at 2,086 cm−1 is assigned to CO adsorbed on Pt nanoclusters/nanoparticles. f, Schematic diagrams illustrate sintering of Pt atoms on CeO2 NPs under conditions of H2 activation treatment; Ce, O, Pt atoms and SiO2 support are shown in yellow, blue, red and grey, respectively. g, CO-DRIFTS spectra characterizing the 4 wt% Pt/CeOx/SiO2 catalyst after reduction in H2 at 300 °C for 3 h. h,i, HAADF images of the 4 wt% Pt/CeOx/SiO2 after reduction in H2 at 400 °C for 5 h and 500 °C for 12 h, respectively. j, Schematic diagrams illustrate movement of Pt atoms on each individual CeOx nanoclusters during the H2 activation process; Ce, O, Pt and SiO2 support are shown in yellow, blue, red and grey, respectively.

Source data

Extended Data Fig. 9 Characterization and CO oxidation performance of the as-synthesized and activated catalysts.

a,b, CO oxidation catalysis: light-off curves characterizing 0.3 wt% Pt/CeO2 (5 mg of catalyst mixed with 25 mg of SiO2) (a) and 0.4 wt% Pt/CeO2 NPs/SiO2 (30 mg) (b). Activation conditions: H2 at 300 °C for 1 h. c, Light-off curves of 4 wt% Pt/CeOx/SiO2 (3 mg of catalyst mixed with 27 mg of SiO2; pretreated in H2 at 400 °C for 3 h to form Pt clusters). dg, CO oxidation light-off data and CO-DRIFTS spectra characterizing 0.4 wt% Pt/CeOx/SiO2 (IMP) (d,e) and Pt/SiO2 (IMP) catalyst (f,g). h, Light-off temperatures T50 (50% CO conversion) of various catalysts: as-synthesized 0.4 wt% Pt/CeOx/SiO2 (A), activated 0.4 wt% Pt/CeOx/SiO2 (B), activated Pt/CeO2 (C), activated Pt/CeO2 NPs/SiO2 (D), activated 4 wt% Pt/CeOx/SiO2 (E), activated Pt/CeOx/SiO2 by impregnation (F) and activated Pt/SiO2 by impregnation (G). i, In situ Pt LIII XANES spectra of 0.4 wt% Pt/CeOx/SiO2 catalyst during activation in 10% H2/He. j, Ex situ Pt LIII XANES spectra collected at room temperature characterizing the 0.4 wt% Pt/CeOx/SiO2 catalyst before/after reduction at 300 °C for 1 h; data characterizing Pt foil are included for comparison. ko, EXAFS results characterizing the activated 0.4 wt% Pt/CeOx/SiO2 catalyst. k, k1-weighted experimental EXAFS function (black solid line) and the sum of the calculated Pt–O, Pt–Olong and Pt–O–Ce contributions (red dashed line). l, Imaginary part and the magnitude of Fourier transform (k1-weighted) of the experimental EXAFS results (black solid line) and sum of the calculated Pt–O, Pt–Olong and Pt–O–Ce contributions (red dashed line). mo, Imaginary part and magnitude of Fourier transform (phase- and amplitude-corrected) of the data (black solid line) and the calculated contribution (red dashed line) of the Pt–O shell (k1-weighted) (m), the Pt–Olong shell (k1-weighted) (n), and the Pt–O–Ce shell (k3-weighted) (o). p, Summary of the EXAFS parameters. CN, coordination number; R, distance between absorber and backscatterer atoms; Δσ2, disorder term; ΔE0, inner potential correction. q, Apparent activation energy (Ea) for CO oxidation characterizing the as-synthesized and reduced 0.4 wt% Pt1/CeOx/SiO2. r, Long-term stability test of the activated 0.4 wt% Pt1/CeOx/SiO2 at a reaction temperature of 140 °C. s, HAADF image of the 0.4 wt% Pt1/CeOx/SiO2 after stability test. t, Long-term stability test of the activated 0.3 wt% Pt/CeO2 at 140 °C.

Source data

Extended Data Fig. 10 CO-DRIFTS investigation of Pd and Rh atoms supported on CeOx/SiO2 and on CeO2.

a, As-synthesized 1.4 wt% Pd/CeOx/SiO2 and b, 0.4 wt% Pd/CeO2. c, Reduced Pd/CeOx/SiO2 and d, reduced Pd/CeO2. CO adsorption temperature, 25 °C. e,f, CO-DRIFTS of reduced 0.6 wt% Rh/CeOx/SiO2 (e) and 0.3 wt% Rh/CeO2 (f). Reduction conditions: 20 ml min−1 of 10% H2 at 400 °C for 1 h. The loadings of Pd and of Rh are reported with respect to the CeOx species.

Source data

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Pereira-Hernández, X.I., Chen, Y. et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 611, 284–288 (2022). https://doi.org/10.1038/s41586-022-05251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05251-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing