Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global trends of cropland phosphorus use and sustainability challenges

Abstract

To meet the growing food demand while addressing the multiple challenges of exacerbating phosphorus (P) pollution and depleting P rock reserves1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, P use efficiency (PUE, the ratio of productive P output to P input in a defined system) in crop production needs to be improved. Although many efforts have been devoted to improving nutrient management practices on farms, few studies have examined the historical trajectories of PUE and their socioeconomic and agronomic drivers on a national scale1,2,6,7,11,16,17. Here we present a database of the P budget (the input and output of the crop production system) and PUE by country and by crop type for 1961–2019, and examine the substantial contribution of several drivers for PUE, such as economic development stages and crop portfolios. To address the P management challenges, we found that global PUE in crop production must increase to 68–81%, and recent trends indicate some meaningful progress towards this goal. However, P management challenges and opportunities in croplands vary widely among countries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the main cropland P budget terms used in this study.
Fig. 2: Historical P budget and PUE trends from 1961 to 2019.
Fig. 3: The relationships between income level and P surplus and between income level and PUE.
Fig. 4: PUE by crop group.
Fig. 5: P surplus rate by country.
Fig. 6: P surplus and P scarcity in 2010 and in 2050 under various scenarios.

Similar content being viewed by others

Data availability

All data are available in the article and its Supplementary information. Other raw data supporting the findings of this study are available at https://doi.org/10.5061/dryad.573n5tb74Source data are provided with this paper.

Code availability

The code used to perform analyses in this study was generated in MATLAB R2020b. Figures were created in Microsoft PowerPoint software, R 4.2.0, MATLAB R2020b, Adobe Acrobat Pro 2022.001.20169 and ArcGIS 10.8.1 (https://www.esri.com/). Maps in Supplementary Information were generated in Tableau 2020.2 using free map data from OpenStreetMap (https://www.openstreetmap.org/copyright). The MATLAB code needed to generate the results presented in the paper is available at https://doi.org/10.5061/dryad.573n5tb74. Additional code is available from the corresponding author upon reasonable request.

References

  1. Cordell, D. & White, S. Life's bottleneck: sustaining the world's phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39, 161–188 (2014).

    Article  Google Scholar 

  2. Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).

    Article  Google Scholar 

  3. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Sci. Data 9, 181–192 (2017).

    Article  ADS  Google Scholar 

  5. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Mogollón, J. M., Beusen, A. H. W., van Grinsven, H. J. M., Westhoek, H. & Bouwman, A. F. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob. Environ. Change 50, 149–163 (2018).

    Article  Google Scholar 

  7. Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 7, 40366 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fink, G., Alcamo, J., Flörke, M. & Reder, K. Phosphorus loadings to the world's largest lakes: sources and trends. Glob. Biogeochem. Cycles 32, 617–634 (2018).

    Article  ADS  CAS  Google Scholar 

  9. Mekonnen, M. M. & Hoekstra, A. Y. Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: a high-resolution global study. Water Resour. Res. 54, 345–358 (2018).

    Article  ADS  CAS  Google Scholar 

  10. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Brownlie, W. J. et al. Our Phosphorus Future (UK Centre for Ecology and Hydrology, 2022).

  12. Sharpley, A. et al. Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 42, 1308–1326 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Mohr, S. & Evans, G. Projections of future phosphorus production. Philica 2013, 380 (2013).

  14. Van Vuuren, D. P., Bouwman, A. F. & Beusen, A. H. W. Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Glob. Environ. Change 20, 428–439 (2010).

    Article  Google Scholar 

  15. Cooper, J., Lombardi, R., Boardman, D. & Carliell-Marquet, C. The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 57, 78–86 (2011).

    Article  Google Scholar 

  16. Lun, F. et al. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth System Sci. Data 10, 1–18 (2018).

    Article  ADS  Google Scholar 

  17. MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic phosphorus imbalances across the world's croplands. Proc. Natl Acad. Sci. USA 108, 3086–3091 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Zhang, X. et al. Quantifying nutrient budgets for sustainable nutrient management. Glob. Biogeochem. Cycles https://doi.org/10.1029/2018gb006060 (2020).

  20. Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).

    Article  Google Scholar 

  21. World Bank Open Data (World Bank, 2022); https://data.worldbank.org/

  22. Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).

    Article  Google Scholar 

  23. Dinda, S. Environmental Kuznets curve hypothesis: a survey. Ecol. Econ. 49, 431–455 (2004).

    Article  Google Scholar 

  24. Knorre, F., Wagner, M. & Grupe, M. Monitoring cointegrating polynomial regressions: theory and application to the environmental Kuznets curves for carbon and sulfur dioxide emissions. Econometrics 9, 12 (2021).

    Article  Google Scholar 

  25. Wagner, M. The environmental Kuznets curve, cointegration and nonlinearity. J. Appl. Econ. 30, 948–967 (2015).

    Article  MathSciNet  Google Scholar 

  26. Grabarczyk, P., Wagner, M., Frondel, M. & Sommer, S. A cointegrating polynomial regression analysis of the material Kuznets curve hypothesis. Resour. Policy 57, 236–245 (2018).

    Article  Google Scholar 

  27. Zhang, X., Mauzerall, D. L., Davidson, E. A., Kanter, D. R. & Cai, R. The economic and environmental consequences of implementing nitrogen-efficient technologies and management practices in agriculture. J. Environ. Qual. 44, 312–324 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Ju, X., Gu, B., Wu, Y. & Galloway, J. N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Change 41, 26–32 (2016).

    Article  Google Scholar 

  29. Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in china. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chianu, J. N., Chianu, J. N. & Mairura, F. Mineral fertilizers in the farming systems of sub-Saharan Africa. A review. Agron. Sustain. Dev. 32, 545–566 (2012).

    Article  CAS  Google Scholar 

  31. Vitousek, P. M. et al. Nutrient imbalances in agricultural development. Science 324, 1519–1520 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Herrero, M. et al. Farming and the geography of nutrient production for human use: a transdisciplinary analysis. Lancet Planet. Health 1, e33–e42 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ricciardi, V., Ramankutty, N., Mehrabi, Z., Jarvis, L. & Chookolingo, B. How much of the world's food do smallholders produce? Glob. Food Sec. 17, 64–72 (2018).

    Article  Google Scholar 

  34. Daum, T. et al. Perceived effects of farm tractors in four african countries, highlighted by participatory impact diagrams. Agron. Sustain. Dev. 40, 47 (2020).

    Article  Google Scholar 

  35. Kienzle, J., Ashburner, J. & Sims, B. Mechanization for Rural Development: A Review of Patterns and Progress from around the World (FAO, 2013).

  36. The Future of Food and Agriculture—Alternative Pathways to 2050 (FAO, 2018).

  37. Zhang, X. et al. Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth 4, 1262–1277 (2021).

    Article  ADS  Google Scholar 

  38. Phosphate Rock Statistics and Information (USGS, 2018); https://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/

  39. Powers, S. M. et al. Global opportunities to increase agricultural independence through phosphorus recycling. Earths Future 7, 370–383 (2019).

    Article  ADS  Google Scholar 

  40. Zhang, X. A plan for efficient use of nitrogen fertilizers. Nature 543, 322–323 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles https://doi.org/10.1002/2016gb005515 (2017).

  42. Roy, E. D. et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 16043 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Li, Y. et al. An analysis of china's fertilizer policies: impacts on the industry, food security, and the environment. J. Environ. Qual. 42, 972–981 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. The Global “4R” Nutrient Stewardship Framework. Developing Fertilizer Best Management Practices for Delivering Economic, Social, and Environmental Benefits (International Fertilizer Industry Association, 2009).

  45. Snyder, C. S., Davidson, E. A., Smith, P. & Venterea, R. T. Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions. Curr. Opin. Environ. Sustain. 9–10, 46–54 (2014).

    Article  Google Scholar 

  46. Burney, J. A., Davis, S. J. & Lobell, D. B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl Acad. Sci. USA 107, 12052–12057 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spiegal, S. et al. Manuresheds: advancing nutrient recycling in us agriculture. Agric. Syst. 182, 102813 (2020).

    Article  Google Scholar 

  48. Houlton, B. Z. et al. A world of cobenefits: solving the global nitrogen challenge. Earths Future 7, 865–872 (2019).

    Article  ADS  Google Scholar 

  49. FAOSTAT (FAO, 2022); http://www.fao.org/faostat/en/

  50. Plant Nutrition for Food Security: A Guide for Integrated Nutrient Management (FAO, 2006); http://www.fao.org/3/a0443e/a0443e00.htm

  51. USDA Nutrient Database for Standard Reference, Release 26 (USDA, 2013); https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/sr26-home-page/

  52. AUSNUT 2011–13 Food Nutrient Database (AUSNUT, 2013); http://www.foodstandards.gov.au/science/monitoringnutrients/ausnut/ausnutdatafiles/Pages/foodnutrient.aspx

  53. Gourley, C., Dougherty, W., Aarons, S. & Hannah, M. Accounting for Nutrients on Australian Dairy Farms Final Report (Victorian Government Department of Primary Industries, 2010).

  54. Consumption reports. IFASTAT https://www.ifastat.org/plant-nutrition (2020).

  55. IFA Data (IFA, 2018); http://ifadata.fertilizer.org/ucSearch.aspx

  56. Zhang, J. et al. Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century. Biogeosciences 14, 2055–2068 (2017).

    Article  ADS  Google Scholar 

  57. Sattari, S. Z., Bouwman, A. F., Giller, K. E. & van Ittersum, M. K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl Acad. Sci. USA 109, 6348–6353 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  PubMed  Google Scholar 

  59. Yao, G., Zhang, X., Davidson, E. A. & Taheripour, F. The increasing global environmental consequences of a weakening US–China crop trade relationship. Nat. Food 2, 578–586 (2021).

    Article  Google Scholar 

  60. Eagle, A. J. et al. The nitrogen balancing act: tracking the environmental performance of food production. BioScience 68, 194–203 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wagner, M. The carbon Kuznets curve: a cloudy picture emitted by bad econometrics? Resour. Energy Econ. 30, 388–408 (2008).

    Article  ADS  Google Scholar 

  62. Hong, S. H. & Wagner, M. Cointegrating Polynomial Regressions: Fully Modified Ols Estimation and Inference (Reihe Ökonomie, Institut für Höhere Studien, 2011).

Download references

Acknowledgements

We thank the OCP Research LLC for providing financial support and suggestions; F. Knorre for providing the code for the cointegration test, the non-cointegration test and the extended fully modified ordinary least squares estimator adapted for the cointegrating polynomial regression; D. Liang and V. Lyubchich for providing suggestions on statistical analyses; A. J. Elmore and K. Jackson for providing suggestions on map copyright; and K. Jackson for generating the main-text maps in ArcGIS. X.Z. is supported by the National Science Foundation (CNS-1739823, CBET-2047165, and CBET-2025826) and the Belmont Forum.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and T.Z. conceptualized the study. T.Z. coded the numerical analyses and analysed the data based on X.Z.’s previous work and suggestions from X.Z. and E.A.D. T.Z. wrote the paper. T.Z., X.Z. and E.A.D. edited the paper.

Corresponding author

Correspondence to X. Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Martin Meleberg, Thomas Nesme and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 P budget and PUE aggregated to 12 regions/countries and 11 crop groups in 2010 (averaged between 2008–2012) and projected for 2050 under three scenarios
Extended Data Table 2 Scenarios developed for projecting P surplus and P input in 2050

Supplementary information

Supplementary Information

This file contains Supplementary Notes 1–7, Figs. 1–14, Tables 1–32 and References.

Peer Review File

Supplementary Data 1

Phosphorus contents and ranges (minima and maxima in the literature) used in this study.

Supplementary Data 2

Phosphorus content ranges (minima and maxima), means and standard deviations used in the sensitivity test.

Supplementary Data 3

Phosphorus use efficiency (PUE) data used for scenario analysis (global 50th and 75th percentiles).

Source data

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, T., Zhang, X. & Davidson, E.A. Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81–87 (2022). https://doi.org/10.1038/s41586-022-05220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05220-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene