Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoexcited nitroarenes for the oxidative cleavage of alkenes

Abstract

The oxidative cleavage of alkenes is an integral process that converts feedstock materials into high-value synthetic intermediates1,2,3. The most viable method to achieve this in one chemical step is with ozone4,5,6,7; however, this poses technical and safety challenges owing to the explosive nature of ozonolysis products8,9. Here we report an alternative approach to achieve oxidative cleavage of alkenes using nitroarenes and purple-light irradiation. We demonstrate that photoexcited nitroarenes are effective ozone surrogates that undergo facile radical [3+2] cycloaddition with alkenes. The resulting ‘N-doped’ ozonides are safe to handle and lead to the corresponding carbonyl products under mild hydrolytic conditions. These features enable the controlled cleavage of all types of alkenes in the presence of a broad array of commonly used organic functionalities. Furthermore, by harnessing electronic, steric and mediated polar effects, the structural and functional diversity of nitroarenes has provided a modular platform to obtain site selectivity in substrates containing more than one alkene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Excited nitroarenes as ozone surrogates.
Fig. 2: Mechanistic experiments.
Fig. 3: Scope of the process.
Fig. 4: Achieving alkene selectivity.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (D.L.) upon reasonable request.

References

  1. Baumann, H. et al. Natural fats and oils—renewable raw materials for the chemical industry. Angew. Chem. Int. Ed. 27, 41–62 (1988).

    Article  ADS  Google Scholar 

  2. Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).

    Article  CAS  Google Scholar 

  3. Köckritz, A. & Martin, A. Oxidation of unsaturated fatty acid derivatives and vegetable oils. Eur. J. Lipid Sci. Technol. 110, 812–824 (2008).

    Article  Google Scholar 

  4. Bailey P. S. Ozonization in Organic Chemistry Vol. 1. (Academic Press, 1978).

  5. Fisher, T. J. & Dussault, P. H. Alkene ozonolysis. Tetrahedron 73, 4233–4258 (2017).

    Article  CAS  Google Scholar 

  6. Surburg, H. & Panten, J. Common Fragrance and Flavor Materials (Wiley-VHC, 2006).

  7. Caron, S., Dugger, R. W., Ruggeri, S. G., Ragan, J. A. & Ripin, D. H. B. Large-scale oxidations in the pharmaceutical industry. Chem. Rev. 106, 2943–2989 (2006).

    Article  CAS  Google Scholar 

  8. Allian, A. in Managing Hazardous Reactions and Compounds in Process Chemistry (eds Pesti, J. A. & Abdel-Magid, A. F.) 353–382 (ACS, 2014).

  9. Kula, J. Safer ozonolysis reactions: a compilation of laboratory experience. Chem. Health Saf. 6, 21–22 (1999).

    Article  CAS  Google Scholar 

  10. Van Ornum, S. G., Champeau, R. M. & Pariza, R. Ozonolysis applications in drug synthesis. Chem. Rev. 106, 2990–3001 (2006).

    Article  Google Scholar 

  11. Gabric, A., Hodnik, Z. & Pajk, S. Oxidation of drugs during drug product development: problems and solutions. Pharamaceutics 14, 325 (2000).

    Article  Google Scholar 

  12. Hoelderich, W. F. & Kollmer, F. Oxidation reactions in the synthesis of fine and intermediate chemicals using environmentally benign oxidants and the right reactor system. Pure Appl.Chem. 72, 1273–1287 (2000).

    Article  CAS  Google Scholar 

  13. High-Throughput Screening in Drug Discovery (ed. Hüser, J.) Vol. 35 (Wiley-VCH, 2006).

  14. Spannring, P., Bruijnincx, P. C. A., Weckhuysen, B. M. & Klein Gebbink, R. J. M. Transition metal-catalyzed oxidative double bond cleavage of simple and bio-derived alkenes and unsaturated fatty acids. Catal. Sci. Technol. 4, 2182–2209 (2014).

    Article  CAS  Google Scholar 

  15. Yang, D. & Zhang, C. Ruthenium-catalyzed oxidative cleavage of alkenes to aldehydes. J. Org. Chem. 14, 4814–4818 (2001).

    Article  Google Scholar 

  16. Yu, W., Mei, Y., Kang, Y., Hua, Z. & Jin, Z. Improved procedure for the oxidative cleavage of alkenes by OsO4–NaIO4. Org. Lett. 6, 3217–3219 (2004).

    Article  CAS  Google Scholar 

  17. Maithani, M., Raturi, R., Sharma, P., Gupta, V. & Bansal, P. Elemental impurities in pharmaceutical products adding fuel to the fire. Regul. Toxicol. Pharmacol. 108, 104435 (2019).

    Article  CAS  Google Scholar 

  18. Urgoitia, G., SanMartin, R., Herrero, M. T. & Domínguez, E. Aerobic cleavage of alkenes and alkynes into carbonyl and carboxyl compounds. ACS Catal. 7, 3050–3060 (2017).

    Article  CAS  Google Scholar 

  19. Huang, Z. et al. Oxidative cleavage of alkenes by O2 with a non-heme manganese catalyst. J. Am. Chem. Soc. 143, 10005–10013 (2021).

    Article  CAS  Google Scholar 

  20. Ranganathan, S., Ranganathan, D., Ramachandran, P. V., Mahanty, M. K. & Bamezai, S. A chemical and thermochemical study of non-observed symmetry allowed reactions. Tetrahedron 37, 4171–4184 (1981).

    Article  CAS  Google Scholar 

  21. Leitich, J. 1,3,2-Dioxazolidines by thermal 1,3-cycloaddition of nitro groups to strained alkenes. Angew. Chem. Int. Ed. 15, 372–373 (1976).

    Article  Google Scholar 

  22. Buchi, G. & Ayer, D. E. Light catalyzed organic reactions. IV. The oxidation of alkenes with nitrobenzene. J. Am. Chem. Soc. 78, 689–690 (1956).

    Article  CAS  Google Scholar 

  23. De Mayo, P., Charlton, J. L. & Liao, C. C. Photochemical synthesis. XXXV. Addition of aromatic nitro compounds to alkenes. J. Am. Chem. Soc. 93, 2463–2471 (1971).

    Article  Google Scholar 

  24. Okada, K., Saito, Y. & Oda, M. Photochemical reaction of polynitrobenzenes with adamantylideneadamantane: the X-ray structure analysis and chemical properties of the dispiro N-(2,4,6-trinitrophenyl)-1,3,2-dioxazolidine product. J. Chem. Soc. Chem. Commun. 1731–1732 (1992).

  25. D’Auria, M., Esposito, V. & Mauriello, G. Photochemical reactivity of aromatic and heteroaromatic nitroderivatives in the presence of arylalkenes. Tetrahedron 52, 14253–14272 (1996).

    Article  Google Scholar 

  26. Lu, C. et al. Intramolecular reductive cyclization of o-nitroarenes via biradical recombination. Org. Lett. 21, 1438–1443 (2019).

    Article  CAS  Google Scholar 

  27. Gang, L. et al. Light-promoted C–N coupling of aryl halides with nitroarenes. Angew. Chem. Int. Ed. 133, 5290–5294 (2021).

    Article  ADS  Google Scholar 

  28. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    Article  CAS  Google Scholar 

  29. Albini, A., Bettinetti, G. & Minola, G. Photodecomposition of some para-substituted 2-pyrazolylphenyl azides. substituents affect the phenylnitrene S-T gap more than the barrier to ring expansion. J. Am. Chem. Soc. 121, 3104–3113 (1999).

    Article  CAS  Google Scholar 

  30. Carra, C., Bally, T. & Albini, A. Role of conformation and electronic structure in the chemistry of ground and excited state o-pyrazolylphenylnitrenes. J. Am. Chem. Soc. 127, 5552–5562 (2005).

    Article  CAS  Google Scholar 

  31. Partridge, K. M., Guzei, I. A. & Yoon, T. P. Carbonyl imines from oxaziridines: generation and cycloaddition of N–O=C dipoles. Angew. Chem. Int. Ed. 49, 930–934 (2010).

    Article  CAS  Google Scholar 

  32. Zhao, E., Zhou, F. & Zhao, Y. Lewis acids promoted 3 + 2 cycloaddition of oxaziridines and cyclic allylic alcohols through carbonyl imine intermediates. J. Org. Chem. 84, 4282–4293 (2019).

    Article  CAS  Google Scholar 

  33. Murahashi, S.-I. & Imada, Y. Synthesis and transformations of nitrones for organic synthesis. Chem. Rev. 119, 4684–4716 (2019).

  34. Hurley, R. & Testa, A. C. Photochemical n → π* excitation of nitrobenzene. J. Am. Chem. Soc. 88, 4330–4332 (1966).

    Article  CAS  Google Scholar 

  35. Hurley, R. & Testa, A. C. Nitrobenzene photochemistry. II. Protonation in the excited state. J. Am. Chem. Soc. 89, 6917–6919 (1967).

    Article  CAS  Google Scholar 

  36. Bietti, M. Activation and deactivation strategies promoted by medium effects for selective aliphatic C–H bond functionalization. Angew. Chem. Int. Ed. 57, 16618–16637 (2018).

    Article  CAS  Google Scholar 

  37. Strieth-Kalthoff, F. & Glorius, F. Triplet energy transfer photocatalysis: unlocking the next level. Chem 6, 1888–1903 (2020).

    Article  CAS  Google Scholar 

  38. Huisgen, R. 1,3-Dipolar cycloadditions. 76. Concerted nature of 1,3-dipolar cycloadditions and the question of diradical intermediates. J. Org. Chem. 41, 403–419 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.L. thanks EPSRC for a Fellowship (EP/P004997/1) and a grant (EP/V046799/1), the European Research Council for a research grant (758427), the Leverhulme Trust for additional support (Philip Leverhulme Prize to D.L.). We acknowledge I. J. Vitorica-Yrezabal (University of Manchester) for solving the X-ray crystal structure of 4, and N. S. Sheikh for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and D.L. designed the project; M.S. directed the work; M.S., A.R. and C.H. performed all synthetic and mechanistic experiments. M.S. and D.L. wrote the manuscript.

Corresponding authors

Correspondence to Marco Simonetti or Daniele Leonori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Martins Oderinde and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–26—see Contents page for details.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruffoni, A., Hampton, C., Simonetti, M. et al. Photoexcited nitroarenes for the oxidative cleavage of alkenes. Nature 610, 81–86 (2022). https://doi.org/10.1038/s41586-022-05211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05211-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing