Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-hysteresis shape-memory ceramics designed by multimode modelling


Zirconia ceramics exhibit a martensitic phase transformation that enables large strains of order 10%, making them prospects for shape-memory and superelastic applications at high temperature1,2,3,4,5. Similarly to other martensitic materials, this transformation strain can be engineered by carefully alloying to produce a more commensurate transformation with reduced hysteresis (difference in transformation temperature on heating and cooling)6,7,8,9,10,11. However, such ‘lattice engineering’ in zirconia is complicated by additional physical constraints: there is a secondary need to manage a large transformation volume change12, and to achieve transformation temperatures high enough to avoid kinetic barriers6. Here we present a method of augmenting the lattice engineering approach to martensite design to address these additional constraints, incorporating modern computational thermodynamics and data science tools to span complex multicomponent spaces for which no data yet exist. The result is a new zirconia composition with record low hysteresis of 15 K, which is about ten times less transformation hysteresis compared to typical values (and approximately five times less than the best values reported so far). This finding demonstrates that zirconia ceramics can exhibit hysteresis values of the order of those of widely deployed shape-memory alloys, paving the way for their use as viable high-temperature shape-memory materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multifaceted modelling approach combining machine learning, computational thermodynamics and lattice engineering to predict shape-memory characteristics of new ZrO2-based compositions.
Fig. 2: Effect of various dopants on Ms, volume change (ΔV/V) and λ2 in the binary systems for ZrO2 shape-memory ceramics with correspondence C.
Fig. 3: Characterization of preferred compositions in the ZrO2-TiO2-AlO1.5 system.
Fig. 4: Low thermal hysteresis in the present ZrO2-based shape-memory ceramics.

Data availability

The training dataset for the ML models used in this work is available at Additional data related to this work are available from the authors upon request.


  1. Swain, M. V. Shape memory behaviour in partially stabilized zirconia ceramics. Nature 322, 234–236 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Lai, A., Du, Z., Gan, C. L. & Schuh, C. A. Shape memory and superelastic ceramics at small scales. Science 341, 1505–1508 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Zeng, X., Du, Z., Schuh, C. A. & Gan, C. L. Enhanced shape memory and superelasticity in small-volume ceramics: a perspective on the controlling factors. MRS Commun. 7, 747–754 (2017).

    Article  CAS  Google Scholar 

  4. Du, Z., Zhou, X., Ye, P., Zeng, X. & Gan, C. L. Shape-memory actuation in aligned zirconia nanofibers for artificial muscle applications at elevated temperatures. ACS Appl. Nano Mater. 3, 2156–2166 (2020).

    Article  CAS  Google Scholar 

  5. Lai, A. & Schuh, C. A. Direct electric-field induced phase transformation in paraelectric zirconia via electrical susceptibility mismatch. Phys. Rev. Lett. 126, 15701 (2021).

    Article  ADS  CAS  Google Scholar 

  6. Pang, E. L., Olson, G. B. & Schuh, C. A. The mechanism of thermal transformation hysteresis in ZrO2-CeO2 shape-memory ceramics. Acta Mater. 213, 116972 (2021).

    Article  CAS  Google Scholar 

  7. Gu, H. et al. Exploding and weeping ceramics. Nature 599, 416–420 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Jetter, J. et al. Tuning crystallographic compatibility to enhance shape memory in ceramics. Phys. Rev. Mater. 3, 093603 (2019).

    Article  CAS  Google Scholar 

  9. Song, Y., Chen, X., Dabade, V., Shield, T. W. & James, R. D. Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 85–88 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Cui, J. et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286–290 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zarnetta, R. et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20, 1917–1923 (2010).

    Article  CAS  Google Scholar 

  12. Pang, E. L., Olson, G. B. & Schuh, C. A. Role of grain constraint on the martensitic transformation in ceria-doped zirconia. J. Am. Ceram. Soc. 104, 1156–1168 (2020).

    Article  Google Scholar 

  13. Christian, J. W., Olson, G. B. & Cohen, M. Classification of displacive transformations: what is a martensitic transformation? J. Phys. IV 5, C8-3–C8-10 (1995).

    Google Scholar 

  14. Krauss, G. Martensite in steel: strength and structure. Mater. Sci. Eng. A 273–275, 40–57 (1999).

    Article  Google Scholar 

  15. Bhattacharya, K. Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect (Oxford Univ. Press, 2003).

  16. Kelly, P. M. & Francis Rose, L. R. The martensitic transformation in ceramics—its role in transformation toughening. Prog. Mater Sci. 47, 463–557 (2002).

    Article  CAS  Google Scholar 

  17. Wechsler, W. S., Lieberman, D. S. & Read, T. A. On the theory of the formation of martensite. Trans. AIME 197, 1503–1515 (1953).

    Google Scholar 

  18. Bowles, J. S. & Mackenzie, J. K. The crystallography of martensite transformations I. Acta Metall. 2, 129–137 (1954).

    Article  CAS  Google Scholar 

  19. Mackenzie, J. K. & Bowles, J. S. The crystallography of martensite transformations II. Acta Metall. 2, 138–147 (1954).

    Article  CAS  Google Scholar 

  20. Bowles, J. S. & Mackenzie, J. K. The crystallography of martensite transformations III. Face-centred cubic to body-centred tetragonal transformations. Acta Metall. 2, 224–234 (1954).

    Article  CAS  Google Scholar 

  21. Ball, J. M. & James, R. D. Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, X., Srivastava, V., Dabade, V. & James, R. D. Study of the cofactor conditions: conditions of supercompatibility between phases. J. Mech. Phys. Solids 61, 2566–2587 (2013).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  23. Zhang, Z., James, R. D. & Müller, S. Energy barriers and hysteresis in martensitic phase transformations. Acta Mater. 57, 4332–4352 (2009).

    Article  ADS  CAS  Google Scholar 

  24. Delville, R. et al. Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos. Mag. 90, 177–195 (2010).

    Article  ADS  CAS  Google Scholar 

  25. Meng, X. L., Li, H., Cai, W., Hao, S. J. & Cui, L. S. Thermal cycling stability mechanism of Ti50.5Ni33.5Cu11.5Pd4.5 shape memory alloy with near-zero hysteresis. Scr. Mater. 103, 30–33 (2015).

    Article  CAS  Google Scholar 

  26. Pop-Ghe, P., Stock, N. & Quandt, E. Suppression of abnormal grain growth in K0.5Na0.5NbO3: phase transitions and compatibility. Sci. Rep. 9, 19775 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang, Y. G. et al. Tuning the hysteresis of a metal-insulator transition via lattice compatibility. Nat. Commun. 11, 3539 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wegner, M., Gu, H., James, R. D. & Quandt, E. Correlation between phase compatibility and efficient energy conversion in Zr-doped barium titanate. Sci. Rep. 10, 3496 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gopakumar, A. M., Balachandran, P. V., Xue, D., Gubernatis, J. E. & Lookman, T. Multi-objective optimization for materials discovery via adaptive design. Sci. Rep. 8, 3738 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Y. et al. Machine learning assisted multi-objective optimization for materials processing parameters: a case study in Mg alloy. J. Alloys Compd. 844, 156159 (2020).

    Article  CAS  Google Scholar 

  31. Kriven, W. M., Fraser, W. L. & Kennedy, S. W. in Science and Technology of Zirconia, Advances in Ceramics Vol. 3 (eds. Heuer, A. H. & Hobbs, L. W.) 82–97 (American Ceramic Society, 1981).

  32. Lukas, H. L., Fries, S. G. & Sundman, B. Computational Thermodynamics: The Calphad Method (Cambridge Univ. Press, 2007).

  33. Saenko, I., Ilatovskaia, M., Savinykh, G. & Fabrichnaya, O. Experimental investigation of phase relations and thermodynamic properties in the ZrO2–TiO2 system. J. Am. Ceram. Soc. 101, 386–399 (2018).

    Article  CAS  Google Scholar 

  34. Wang, C., Zinkevich, M. & Aldinger, F. The zirconia-hafnia system: DTA measurements and thermodynamic calculations. J. Am. Ceram. Soc. 89, 3751–3758 (2006).

    Article  CAS  Google Scholar 

  35. Park, J. et al. Thermodynamic assessment of the ZrO2-TiO2 system. Korean J. Ceram. 7, 11–15 (2001).

    Google Scholar 

  36. Xue, D. et al. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trehern, W., Ortiz-Ayala, R., Atli, K. C., Arroyave, R. & Karaman, I. Data-driven shape memory alloy discovery using artificial intelligence materials selection (AIMS) framework. Acta Mater. 228, 117751 (2022).

    Article  CAS  Google Scholar 

  38. Pang, E. L., McCandler, C. A. & Schuh, C. A. Reduced cracking in polycrystalline ZrO2-CeO2 shape-memory ceramics by meeting the cofactor conditions. Acta Mater. 177, 230–239 (2019).

    Article  ADS  CAS  Google Scholar 

  39. Gu, H., Bumke, L., Chluba, C., Quandt, E. & James, R. D. Phase engineering and supercompatibility of shape memory alloys. Mater. Today 21, 265–277 (2018).

    Article  CAS  Google Scholar 

  40. Chluba, C. et al. Ultralow-fatigue shape memory alloy films. Science 348, 1004–1007 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Bannister, M. J. & Barnes, J. M. Solubility of TiO2 in ZrO2. J. Am. Ceram. Soc. 69, C269–C271 (1986).

    Article  CAS  Google Scholar 

  42. Evirgen, A. et al. Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater. 121, 374–383 (2016).

    Article  ADS  CAS  Google Scholar 

  43. Miyazaki, S. in Shape Memory Alloys (eds Fremond, M. & Miyazaki, S.) 69–147 (Springer, 1996).

  44. Kainuma, R., Takahashi, S. & Ishida, K. Ductile shape memory alloys of the Cu-Al-Mn system. J. Phys. IV 5, 961–966 (1995).

    CAS  Google Scholar 

  45. Maki, T. Microstructure and mechanical behaviour of ferrous martensite. Mater. Sci. Forum 56–58, 157–168 (1990).

    Google Scholar 

  46. Balachandran, P. V., Broderick, S. R. & Rajan, K. Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning. Proc. R. Soc. A 467, 2271–2290 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 54 (2017).

    Article  ADS  Google Scholar 

  48. Xue, D. et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater. 125, 532–541 (2017).

    Article  ADS  CAS  Google Scholar 

  49. Meredig, B. & Wolverton, C. Dissolving the periodic table in cubic zirconia: data mining to discover chemical trends. Chem. Mater. 26, 1985–1991 (2014).

    Article  CAS  Google Scholar 

  50. Xue, D. et al. Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning. Proc. Natl Acad. Sci. USA 113, 13301–13306 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuan, R. et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv. Mater. 30, 1702884 (2018).

    Article  Google Scholar 

Download references


The authors thank S. Patala and C. Houser for useful discussions, as well as D. Schwalbe-Koda, J. Paras and H. Oh for preliminary calculations, which helped guide this work. This work was sponsored by the US Army Research Office under grant W911NF-21-2-0159, and in part by the US Army Research Office through the Institute for Soldier Nanotechnologies, under cooperative agreement number W911NF-18-2-0048. This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the NSF under award number DMR-1419807. E.L.P. acknowledges support from the NSF Graduate Research Fellowship Program under grant number DGE-1745302.

Author information

Authors and Affiliations



E.L.P, C.A.S. and G.B.O developed the research theme and contributed to the design of the workflow. E.L.P. wrote all code, performed all calculations and conducted all experiments. E.L.P, C.A.S and G.B.O. analysed the data, discussed the results, made joint decisions about directions pursued and contributed to writing and reviewing the manuscript.

Corresponding author

Correspondence to Christopher A. Schuh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Dezhen Xue and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, figures, tables and references.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, E.L., Olson, G.B. & Schuh, C.A. Low-hysteresis shape-memory ceramics designed by multimode modelling. Nature 610, 491–495 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing