Abstract
Understanding cell state transitions and purposefully controlling them is a longstanding challenge in biology. Here we present cell state transition assessment and regulation (cSTAR), an approach for mapping cell states, modelling transitions between them and predicting targeted interventions to convert cell fate decisions. cSTAR uses omics data as input, classifies cell states, and develops a workflow that transforms the input data into mechanistic models that identify a core signalling network, which controls cell fate transitions by influencing whole-cell networks. By integrating signalling and phenotypic data, cSTAR models how cells manoeuvre in Waddington’s landscape1 and make decisions about which cell fate to adopt. Notably, cSTAR devises interventions to control the movement of cells in Waddington’s landscape. Testing cSTAR in a cellular model of differentiation and proliferation shows a high correlation between quantitative predictions and experimental data. Applying cSTAR to different types of perturbation and omics datasets, including single-cell data, demonstrates its flexibility and scalability and provides new biological insights. The ability of cSTAR to identify targeted perturbations that interconvert cell fates will enable designer approaches for manipulating cellular development pathways and mechanistically underpinned therapeutic interventions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
Data availability
Mass spectrometry proteomics data have been uploaded to the PRIDE database (accession number PXD028943). The RPPA data for SKMEL-133 cell line29 are available at http://projects.sanderlab.org/pertbio/. The scRNA-seq data for EMT in A549, DU145, MCF7 and OVCA420 cell lines31 are available at the NCBI Gene Expression Omnibus under accession GSE147405. The CYTOF data for EMT in Py2T cell line32 are available at https://community.cytobank.org/cytobank/experiments#project-id=1296.
Code availability
All codes for the data analysis, network reconstruction and modelling are available at https://github.com/OleksiiR/cSTAR_Nature.
References
Waddington, C. H. Organisers and Genes (Univ. Press, 1940).
Brackston, R. D., Lakatos, E. & Stumpf, M. P. H. Transition state characteristics during cell differentiation. PLoS Comput. Biol. 14, e1006405 (2018).
Wang, J., Zhang, K., Xu, L. & Wang, E. Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl Acad. Sci. USA 108, 8257–8262 (2011).
Hormoz, S. et al. Inferring cell-state transition dynamics from lineage trees and endpoint single-cell measurements. Cell Syst. 3, 419–433.e418 (2016).
Kholodenko, B. N. et al. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl Acad. Sci. USA 99, 12841 (2002).
Xicoy, H., Wieringa, B. & Martens, G. J. The SH-SY5Y cell line in Parkinson's disease research: a systematic review. Mol. Neurodegener. 12, 10 (2017).
Schramm, A. et al. Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Lett. 228, 143–153 (2005).
Aygun, N. Biological and genetic features of neuroblastoma and their clinical importance. Curr. Pediatr. Rev. 14, 73–90 (2018).
Haken, H. Synergetics: Introduction and Advanced Topics (Springer, 2004).
Rickles, D., Hawe, P. & Shiell, A. A simple guide to chaos and complexity. J. Epidemiol. Commun. Health 61, 933 (2007).
Sethna, J. P. Statistical Mechanics: Entropy, Order Parameters, and Complexity (Oxford Univ. Press, 2006).
Aron, C. & Chamon, C. Landau theory for non-equilibrium steady states. SciPost Phys. 8, 074 (2020).
Needham, E. J., Parker, B. L., Burykin, T., James, D. E. & Humphrey, S. J. Illuminating the dark phosphoproteome. Sci. Signal. 12, eaau8645 (2019).
Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
Fey, D. et al. Signaling pathway models as biomarkers: patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Sci. Signal. 8, ra130 (2015).
Vaishnavi, A., Le, A. T. & Doebele, R. C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 5, 25 (2015).
de la Fuente, A., Brazhnik, P. & Mendes, P. Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 18, 395–398 (2002).
Yalamanchili, N. et al. Quantifying gene network connectivity in silico: scalability and accuracy of a modular approach. Syst. Biol. 153, 236–246 (2006).
Bastiaens, P. et al. Silence on the relevant literature and errors in implementation. Nat. Biotechnol. 33, 336–339 (2015).
Kholodenko, B. N., Hoek, J. B., Westerhoff, H. V. & Brown, G. C. Quantification of information transfer via cellular signal transduction pathways. FEBS Lett. 414, 430–434 (1997).
Kholodenko, B. N. & Kholodov, L. E. Individualization and optimization of dosings of pharmacological preparations; principle of maximum in the analysis of pharmacological response. Pharm. Chem. J. 14, 287–291 (1980).
Santos, S. D., Verveer, P. J. & Bastiaens, P. I. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat. Cell Biol. 9, 324–330 (2007).
Sontag, E., Kiyatkin, A. & Kholodenko, B. N. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 20, 1877–1886 (2004).
Thomaseth, C. et al. Impact of measurement noise, experimental design, and estimation methods on modular response analysis based network reconstruction. Sci. Rep. 8, 16217 (2018).
Santra, T., Rukhlenko, O., Zhernovkov, V. & Kholodenko, B. N. Reconstructing static and dynamic models of signaling pathways using modular response analysis. Curr. Opin. Syst. Biol. 9, 11–21 (2018).
Halasz, M., Kholodenko, B. N., Kolch, W. & Santra, T. Integrating network reconstruction with mechanistic modeling to predict cancer therapies. Sci. Signal. 9, ra114 (2016).
Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharm. Rev. 47, 331 (1995).
Dwane, S., Durack, E. & Kiely, P. A. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration. BMC Res. Notes 6, 366 (2013).
Korkut, A. et al. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells. eLife 4, e04640 (2015).
Xing, F. et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene 31, 446–457 (2012).
Cook, D. P. & Vanderhyden, B. C. Context specificity of the EMT transcriptional response. Nat. Commun. 11, 2142 (2020).
Chen, W. S. et al. Uncovering axes of variation among single-cell cancer specimens. Nat. Methods 17, 302–310 (2020).
Qiu, X. et al. Mapping transcriptomic vector fields of single cells. Cell 185, 690–711.e645 (2022).
Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods 19, 159–170 (2022).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Kholodenko, B. N., Rauch, N., Kolch, W. & Rukhlenko, O. S. A systematic analysis of signaling reactivation and drug resistance. Cell Rep. 35, 109157 (2021).
Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38, D355–D360 (2010).
Santra, T., Kolch, W. & Kholodenko, B. N. Integrating Bayesian variable selection with modular response analysis to infer biochemical network topology. BMC Syst. Biol. 7, 57 (2013).
Blinov, M. L., Faeder, J. R., Goldstein, B. & Hlavacek, W. S. BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3291 (2004).
Choy, C. et al. Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases. Breast Cancer Res. 19, 51 (2017).
Kennedy, S. P. et al. Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Res. 21, 43 (2019).
Kholodenko, B. N. Drug resistance resulting from kinase dimerization is rationalized by thermodynamic factors describing allosteric inhibitor effects. Cell Rep. 12, 1939–1949 (2015).
Kholodenko, B. N., Demin, O. V., Moehren, G. & Hoek, J. B. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274, 30169–30181 (1999).
Ederer, M. & Gilles, E. D. Thermodynamically feasible kinetic models of reaction networks. Biophys. J. 92, 1846–1857 (2007).
Bertelsen, V. & Stang, E. The mysterious ways of ErbB2/HER2 trafficking. Membranes 4, 424–446 (2014).
Jeong, J. et al. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc. Natl Acad. Sci. USA 113, E282 (2016).
Tsyganov, M. A., Kolch, W. & Kholodenko, B. N. The topology design principles that determine the spatiotemporal dynamics of G-protein cascades. Mol. Biosyst. 8, 730–743 (2012).
Landau, L. D. & Lifshitz, E. M. in Statistical Physics 3rd edn (eds Landau, L. D. & Lifshitz, E. M.) 446–516 (Butterworth–Heinemann, 1980).
Mitra, E. D. et al. PyBioNetFit and the biological property specification language. iScience 19, 1012–1036 (2019).
Pederson, T. M., Kramer, D. L. & Rondinone, C. M. Serine/threonine phosphorylation of IRS-1 triggers its degradation. Diabetes 50, 24 (2001).
Yoneyama, Y. et al. Serine phosphorylation by mTORC1 promotes IRS-1 degradation through SCFβ–TRCP E3 ubiquitin ligase. iScience 5, 1–18 (2018).
Borisov, N. et al. Systems-level interactions between insulin–EGF networks amplify mitogenic signaling. Mol. Syst. Biol. 5, 256 (2009).
Rukhlenko, O. S. et al. Dissecting RAF inhibitor resistance by structure-based modeling reveals ways to overcome oncogenic RAS signaling. Cell Syst. 7, 161–179.e114 (2018).
Chou, T. C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 70, 440–446 (2010).
Jung, E. J. & Kim, D. R. Control of TrkA-induced cell death by JNK activation and differential expression of TrkA upon DNA damage. Mol. Cells 30, 121–125 (2010).
Bennett, B. L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl Acad. Sci, USA 98, 13681 (2001).
Zhang, T. et al. Discovery of potent and selective covalent inhibitors of JNK. Chem. Biol. 19, 140–154 (2012).
Krishna, A. et al. Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson's disease. BMC Genomics 15, 1154 (2014).
Holbeck, S. L. et al. The National Cancer Institute ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res. 77, 3564 (2017).
Macleod, K. G., Serrels, B. & Carragher, N. O. Reverse phase protein arrays and drug discovery. Methods Mol. Biol. 1647, 153–169 (2017).
Kelstrup, C. D. et al. Performance evaluation of the Q exactive HF-X for shotgun proteomics. J. Proteome Res. 17, 727–738 (2018).
Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
Kuznetsov, Y. Elements of Applied Bifurcation Theory (Springer, 2013).
Acknowledgements
This work was supported by NIH/NCI grant R01CA244660, CRUK/Brain Tumour Charity grant C42454/A28596, EU NanoCommons grant 731032, IRC grant GOIPG/2020/1361 and Science Foundation Ireland grants 14/IA/2395 and 18/SPP/3522, the latter together with the Children's Health Foundation. We thank T. Santra for advising on Bayesian statistics, P. Cotter for IT assistance and C. Sander, B. Bodenmiller and S. Krishnaswamy for providing raw RPPA and CYTOF data.
Author information
Authors and Affiliations
Contributions
B.N.K., O.S.R. and W.K. conceived the study. M.H. generated a biological model of TrkA- and TrkB-expressing cell lines, which specify different cell fate decisions. N.R., M.H., S.M., K.W., K.M. and N.O.C. performed experiments and primary RPPA data analysis. V.Z. performed clustering analysis of RPPA data and kinase enrichment analysis of scRNA-seq data. B.N.K. and O.S.R. derived equations and developed the mathematical approach. E.K. analysed the robustness of the results with respect to noise. O.S.R. and T.P. carried out numerical calculations. B.N.K., O.S.R. and W.K. wrote the manuscript. All authors read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
A patent application (no. UK2107576.7) related to this work has been filed, with O.S.R., V.Z., W.K. and B.N.K. named as inventors. All other authors declare no competing interests.
Peer review
Peer review information
Nature thanks Dongya Jia, Michael Stumpf and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Proliferation responses of SH-SY5Y-TrkA and SH-SY5Y-TrkB cells to NGF, BDNF, and kinase inhibitors.
Proliferation of NGF-stimulated TrkA cells and BDNF-stimulated TrkB cells treated with different inhibitors was measured using the (A) ATP luminescence and (B) MTS assays following 72 h after treatment. Concentrations of inhibitors: TRKi (SP600125) – 5 μM, AKTi (AKT inhibitor IV) – 1 μM, JNKi (JNK-IN-8) – 1 μM, S6Ki (LY2584702) – 1 μM, MEKi (Trametinib) – 0.5 μM, RSKi (BI-D1870) – 1 μM. Data are presented as mean values +/− SEM for n = 3 biologically independent experiments.
Extended Data Fig. 2 RPPA phosphoproteomics data.
Heatmap of RPPA data obtained at 10 and 45 min stimulation of TrkA and TrkB cells with 100 ng/ml NGF and BDNF (the time and replicate numbers are indicated at the bottom, the proteins on the side). The data were clustered using Ward hierarchical clustering.
Extended Data Fig. 3 PCA compression of RPPA data and selection of core network components.
(A) PCA compressed RPPA data for TrkA and TrkB cells are plotted in the space of the first two principal components that are normalized by the data variance captured by these components. Following NGF or BDNF stimulation (100 ng/ml) the data points measured by RPPA were clustered in a 115-dimensional molecular dataspace using K-means clustering (K = 2). All data points from NGF-stimulated TrkA cells constitute a single cluster shown in blue, and all data points from BDNF-stimulated TrkB cells form a cluster shown in red. Unstimulated control cells are shown in black. (B) High ranked STV components determine the components of a core signaling network. The changes in individual protein activities or abundances between the centroids of the data point clouds that characterize two different cells states were projected onto the STV to determine protein ranks. Resulting high rank proteins constitute the nodes of a core signaling network.
Extended Data Fig. 4 Literature-based prior network and signaling responses to ligand stimulation.
(A) Prior topology of core network connections based on the existing knowledge16,37,62. (B) Time courses of Trk and ERK activation (measured with phosphospecific antibodies, pTrk and ppERK) in TrkA and TrkB cells after stimulation with 100 ng/ml NGF or BDNF, respectively. GAPDH staining was used as loading control. For gel source data, see Supplementary Fig. 1. Representative blot of 3 biological replicates is shown.
Extended Data Fig. 5 Reconstruction of core signaling networks by BMRA.
Inferred topologies of TrkA (A) and TrkB (B) core signaling networks. Edges that are specific to TrkA and TrkB are shown in blue and red, respectively. Arrowheads indicate activation, blunt ends indicate inhibition. Line widths indicate the absolute values of interaction strengths.
Extended Data Fig. 6 Model predicted time courses of responses to p70S6K and Trk inhibitors.
Experimental data (dots) are imposed on model predicted time course of signaling responses of TrkA and TrkB cells treated with (A) S6K inhibitor (LY2584702, 1 μM) or (B) Trk inhibitor (SP600125, 5 μM) and stimulated with 100 ng/ml NGF and BDNF, respectively. Dashed lines are the time courses in the absence of inhibitor. TrkA, blue; TrkB, red. Data are presented as mean values +/− SEM for n = 3 biologically independent experiments.
Extended Data Fig. 7 Model predicted time courses of responses to MEK and AKT inhibitors.
Experimental data are imposed on model predicted time courses of signaling responses of TrkA and TrkB cells treated with (A) MEK inhibitor (Trametinib, 0.5 μM) or (B) AKT inhibitor (AKT inhibitor IV, 1 μM) and stimulated with 100 ng/ml NGF and BDNF, respectively. Dashed lines show the time courses in the absence of inhibitor. TrkA, blue; TrkB, red. Data are presented as mean values +/− SEM for n = 3 biologically independent experiments.
Extended Data Fig. 8 Model predicted time courses of responses to JNK and RSK inhibitors.
Experimental data are imposed on model predicted time-courses of signaling responses of TrkA (blue) and TrkB (red) cells treated with (A) JNK inhibitor (1 μM) or (B) RSK inhibitor (1 μM) and stimulated with 100 ng/ml NGF and BDNF, respectively. Dashed lines show the time courses in the absence of inhibitor. TrkA, blue; TrkB, red. Data are presented as mean values +/− SEM for n = 3 biologically independent experiments.
Extended Data Fig. 9
(A) The restoring force f(S) is plotted versus the DPD output S. (B) Waddington’s landscape in the absence of the signaling driving force. The basins of attraction for differentiation and proliferation are colored blue and red, respectively. (C) Schematic diagram of the generation of cell fate decisions by the driving signaling force, which drives cell state changes, and the restoring force, which stabilizes a given cell state.
Extended Data Fig. 12 Model predicted outcomes of TrkA cell inhibitor treatments are corroborated by cell images.
(A) Model predicted DPD responses of TrkA cells to ERBB and MEK inhibitors are shown at 45 min 100 ng/ml NGF stimulation by Loewe isoboles. The ERBB inhibitor applied alone has a negligible effect. (B) The percentages of differentiated TrkA cells show that a combination of ERBB (Gefitinib, GEF) and MEK inhibitors (Trametinib, TRAM) does not change the cell state, as correctly predicted by the model. Data are presented as mean values +/- SEM for n = 3 biologically independent experiments. (C) Live cell images of NGF-stimulated TrkA cells treated with 2.5 μM Gefitinib, 0.2 μM Trametinib and a combination of 1.25 μM Gefitinib and 0.1 μM Trametinib taken at 72 h. Representative images of 3 biological replicates are shown.
Extended Data Fig. 13 Model predicted outcomes of TrkB cell inhibitor treatments are corroborated by cell images.
Live cell images of BDNF-stimulated TrkB cells treated with 2.5 μM Gefitinib, 0.2 μM Trametinib and a combination of 1.2 μM Gefitinib and 0.1 μM Trametinib at 72 h. Representative images of 3 biological replicates are shown.
Extended Data Fig. 14 Inhibition of p38 does not change the percentage of differentiated TrkA and TrkB cells.
Live cell images of NGF-stimulated TrkA (A) cells and BDNF-stimulated TrkB (B) cells treated with 10 μM p38 inhibitor SB203580 for 72 h. Representative images of 3 biological replicates are shown.
Extended Data Fig. 15 Separation of MS phosphoproteomic patterns of TrkA and TrkB cell states and the STV projection into the PCA space.
Following GF stimulation, TrkA (blue) and TrkB (red) states were separated by a SVM. Projections of data points, the separating hyperplane (grey) and the STV (dark red) are shown in the space of the first three principal components. The text in red indicates the kinases that phosphorylate the top STV components.
Extended Data Fig. 16 Separation of apoptotic and proliferation states of SKMEL-133 cells and a projection into the PCA space.
SVM separation of phosphoproteomic patterns of proliferation states in growing SKMEL-133 cells and apoptotic states after treatment with a combination of PI3K/AKT/mTOR and MEK inhibitors. The data are taken from Korkut et al.29. Projections of the separated data points, the separating hyperplane (black) and the STV (dark red) are shown in the space of the first two principal components.
Extended Data Fig. 17 Model calculated and experimentally determined DPD responses of SKMEL-133 cells to different inhibitors.
(A) The experimentally measured DPD values (dots) are calculated based on the data from the reference Korkut et al.29. Model-predicted (blue curves) DPD responses to many inhibitors exhibit abrupt DPD decreases at certain inhibitor doses caused by the loss of stability of a proliferation state and the induction of apoptosis in a threshold manner. Mathematically, an abrupt DPD decrease relates to a saddle-node bifurcation63 (a fold catastrophe) that occurs when a stable steady-state solution corresponding to a proliferation state disappears. Data are presented as mean values +/− SEM for n = 3 biologically independent experiments. (B) Synergy between MEK/ERK and PI3K/AKT inhibitors is demonstrated by concave Loewe isoboles.
Extended Data Fig. 18 Separation of scRNAseq transcriptomic patterns of epithelial and mesenchymal states and projections into the PCA states.
Single cell RNAseq data31 were separated by SVM in untreated (blue) and treated with TGFβ (red) A549 (A), DU145 (B), MCF7 (C) and OVCA420 (D) cells. Projections of data points, the separating hyperplane (grey) and the STV (dark red) are shown in the space of the first three principal components.
Extended Data Fig. 19 DPD responses of Py2T, A549, DU145, MCF7 and OVCA420 cell lines to specific inhibitors of different signaling modules.
The cell lines, ligands and inhibited modules are indicated on the horizontal and vertical axes. The normalized DPD value 1 corresponds to fully mesenchymal state, and normalized DPD value 0 corresponds to fully epithelial state.
Extended Data Fig. 20 Single-cell DPD distributions for A549, DU145, MCF7, OVCA420 cells.
Left panels show single-cell DPD distributions for cells stimulated with TGFβ, EGF or TNF for 7 days. Right panels show single-cell DPD distributions for TGFβ-stimulated cells treated with RIPK1 inhibitor for 7 days.
Extended Data Fig. 21
Single-cell DPD distribution for Py2T cells treated with TGFβ for 7 days.
Supplementary information
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rukhlenko, O.S., Halasz, M., Rauch, N. et al. Control of cell state transitions. Nature 609, 975–985 (2022). https://doi.org/10.1038/s41586-022-05194-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-022-05194-y
This article is cited by
-
Robust classification of wound healing stages in both mice and humans for acute and burn wounds based on transcriptomic data
BMC Bioinformatics (2023)
-
Critical transition and reversion of tumorigenesis
Experimental & Molecular Medicine (2023)
-
Identifying key factors in cell fate decisions by machine learning interpretable strategies
Journal of Biological Physics (2023)
-
Systems biology of protein network
Biophysical Reviews (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.