Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An asymmetric sp3sp3 cross-electrophile coupling using ‘ene’-reductases


The catalytic asymmetric construction of Csp3–Csp3 bonds remains one of the foremost challenges in organic synthesis1. Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C–C bond formation2,3,4,5. However, coupling two distinct Csp3 electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective Csp3–Csp3 XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent ‘ene’-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C–C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Photoenzymatic asymmetric XEC reactions.
Fig. 2: Scope of the photoenzymatic XECs.
Fig. 3: Derivatization of the enzymatic products.
Fig. 4: Mechanistic experiments.

Data availability

The data supporting the findings in this study are available within the paper and its Supplementary Information. Crystallographic models and structure factors have been deposited in the Protein Data Bank with accession number 7TNB for CsER.


  1. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  Google Scholar 

  2. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    CAS  Article  Google Scholar 

  3. Gu, J., Wang, X., Xue, W. & Gong, H. Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations. Org. Chem. Front. 2, 1411–1421 (2015).

    CAS  Article  Google Scholar 

  4. Lucas, E. L. & Jarvo, E. R. Stereospecific and stereoconvergent cross-couplings between alkyl electrophiles. Nat. Rev. Chem. 1, 0065 (2017).

    Article  Google Scholar 

  5. Poremba, K. E., Dibrell, S. E. & Reisman, S. E. Nickel-catalyzed enantioselective reductive cross-coupling reactions. ACS Catal. 10, 8237–8246 (2020).

    CAS  Article  Google Scholar 

  6. Biffis, A., Centomo, P., Del Zotto, A. & Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev. 118, 2249–2295 (2018).

    CAS  Article  Google Scholar 

  7. Magano, J. & Dunetz, J. R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 111, 2177–2250 (2011).

    CAS  Article  Google Scholar 

  8. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  Article  Google Scholar 

  9. Lovering, F. Escape from Flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    CAS  Article  Google Scholar 

  10. Qian, X., Auffrant, A., Felouat, A. & Gosmini, C. Cobalt-catalyzed reductive allylation of alkyl halides with allylic acetates or carbonates. Angew. Chem. Int. Edn 50, 10402–10405 (2011).

    CAS  Article  Google Scholar 

  11. Liu, J. H. et al. Copper-catalyzed reductive cross-coupling of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides. Chem. Eur. J. 20, 15334–15338 (2014).

    CAS  Article  Google Scholar 

  12. Sanford, A. B. et al. Nickel-catalyzed alkyl–alkyl cross-electrophile coupling reaction of 1,3-dimesylates for the synthesis of alkylcyclopropanes. J. Am. Chem. Soc. 142, 5017–5023 (2020).

    CAS  Article  Google Scholar 

  13. Yu, X., Yang, T., Wang, S., Xu, H. & Gong, H. Nickel-catalyzed reductive cross-coupling of unactivated alkyl halides. Org. Lett. 13, 2138–2141 (2011).

    CAS  Article  Google Scholar 

  14. Xu, H., Zhao, C., Qian, Q., Deng, W. & Gong, H. Nickel-catalyzed cross-coupling of unactivated alkyl halides using bis(pinacolato)diboron as reductant. Chem. Sci. 4, 4022–4029 (2013).

    CAS  Article  Google Scholar 

  15. Erickson, L. W., Lucas, E. L., Tollefson, E. J. & Jarvo, E. R. Nickel-catalyzed cross-electrophile coupling of alkyl fluorides: stereospecific synthesis of vinylcyclopropanes. J. Am. Chem. Soc. 138, 14006–14011 (2016).

    CAS  Article  Google Scholar 

  16. Tollefson, E. J., Erickson, L. W. & Jarvo, E. R. Stereospecific intramolecular reductive cross-electrophile coupling reactions for cyclopropane synthesis. J. Am. Chem. Soc. 137, 9760–9763 (2015).

    CAS  Article  Google Scholar 

  17. Smith, R. T. et al. Metallaphotoredox-catalyzed cross-electrophile Csp3–Csp3 coupling of aliphatic bromides. J. Am. Chem. Soc. 140, 17433–17438 (2018).

    CAS  Article  Google Scholar 

  18. Zhang, W. et al. Electrochemically driven cross-electrophile coupling of alkyl halides. Nature 604, 292–297 (2022).

    ADS  CAS  Article  Google Scholar 

  19. Jana, S. K., Maiti, M., Dey, P. & Maji, B. Photoredox/nickel dual catalysis enables the synthesis of alkyl cyclopropanes via C(sp3)–C(sp3) cross electrophile coupling of unactivated alkyl electrophiles. Org. Lett. 24, 1298–1302 (2022).

    CAS  Article  Google Scholar 

  20. Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Primers 1, 46 (2021).

    CAS  Article  Google Scholar 

  21. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes. Science 374, 1612–1616 (2021).

    ADS  CAS  Article  Google Scholar 

  22. Chatterjee, A. et al. An enantioselective artificial Suzukiase based on the biotin–streptavidin technology. Chem. Sci. 7, 673–677 (2015).

    Article  Google Scholar 

  23. Pierron, J. et al. Artificial metalloenzymes for asymmetric allylic alkylation on the basis of the biotin–avidin technology. Angew. Chem. Int. Edn 47, 701–705 (2008).

    CAS  Article  Google Scholar 

  24. Ballini, R., Bosica, G., Fiorini, D., Palmieri, A. & Petrini, M. Conjugate additions of nitroalkanes to electron-poor alkenes: recent results. Chem. Rev. 105, 933–972 (2005).

    CAS  Article  Google Scholar 

  25. Gildner, P. G., Gietter, A. A. S., Cui, D. & Watson, D. A. Benzylation of nitroalkanes using copper-catalyzed thermal redox catalysis: toward the facile C-alkylation of nitroalkanes. J. Am. Chem. Soc. 134, 9942–9945 (2012).

    CAS  Article  Google Scholar 

  26. Gietter, A. A. S., Gildner, P. G., Cinderella, A. P. & Watson, D. A. General route for preparing β-nitrocarbonyl compounds using copper thermal redox catalysis. Org. Lett. 16, 3166–3169 (2014).

    CAS  Article  Google Scholar 

  27. Rezazadeh, S., Devannah, V. & Watson, D. A. Nickel-catalyzed C-alkylation of nitroalkanes with unactivated alkyl iodides. J. Am. Chem. Soc. 139, 8110–8113 (2017).

    CAS  Article  Google Scholar 

  28. Devannah, V., Sharma, R. & Watson, D. A. Nickel-catalyzed asymmetric C-alkylation of nitroalkanes: synthesis of enantioenriched β-nitroamides. J. Am. Chem. Soc. 141, 8436–8440 (2019).

    CAS  Article  Google Scholar 

  29. Kornblum, N., Carlson, S. C. & Smith, R. G. Replacement of the nitro group by hydrogen. J. Am. Chem. Soc. 100, 289–290 (1978).

    CAS  Article  Google Scholar 

  30. Tanner, D. D. et al. The mechanism of the radical chain transformation of nitroalkanes to alkanes using triaryl- or trialkyltin hydrides. J. Org. Chem. 55, 3321–3325 (1990).

    CAS  Article  Google Scholar 

  31. Roth, H. G., Roth, H. G., Romero, N. A. & Nicewicz, D. A. Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. Synlett 27, 714–723 (2016).

    CAS  Google Scholar 

  32. Durchschein, K. et al. Reductive biotransformation of nitroalkenes via nitroso-intermediates to oxazetes catalyzed by xenobiotic reductase A (XenA). Org. Biomol. Chem. 9, 3364–3369 (2011).

    CAS  Article  Google Scholar 

  33. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    ADS  CAS  Article  Google Scholar 

  34. Page, C. G. et al. Quaternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. J. Am. Chem. Soc. 143, 97–102 (2020).

    Article  Google Scholar 

  35. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    ADS  CAS  Article  Google Scholar 

  36. Fu, H. et al. Ground-state electron transfer as an initiation mechanism for biocatalytic C–C bond forming reactions. J. Am. Chem. Soc. 143, 9622–9629 (2021).

    CAS  Article  Google Scholar 

  37. Sandoval, B. A., Meichan, A. J. & Hyster, T. K. Enantioselective hydrogen atom transfer: discovery of catalytic promiscuity in flavin-dependent ‘ene’-reductases. J. Am. Chem. Soc. 139, 11313–11316 (2017).

    CAS  Article  Google Scholar 

  38. Fukuyama, M. et al. Thermodynamic and kinetic acidity properties of nitroalkanes. Correlation of the effects of structure on the ionization constants and the rate constants of neutralization of substituted 1-phenyl-1-nitroethanes. J. Am. Chem. Soc. 92, 4689–4699 (1970).

    CAS  Article  Google Scholar 

  39. Cai, S., Zhang, S., Zhao, Y. & Wang, D. Z. New approach to oximes through reduction of nitro compounds enabled by visible light photoredox catalysis. Org. Lett. 15, 2660–2663 (2013).

    CAS  Article  Google Scholar 

Download references


We thank P. Jeffrey for assistance with X-ray structure determination and the staff of NSLS-II beamline AMX (17-ID-1) for help with data collection. We thank the Stache group and the Musser group for use of their equipment and the Collum group for use of their computational resources. We thank Y. Zheng for assistance with docking and S. Sun and J. Turek-Herman for discussion. The research reported here was supported by the NIH National Institute of General Medical Sciences (R01GM127703). This work made use of the Cornell University NMR Facility, which is supported, in part, by the NSF through MRI award CHE-1531632.

Author information

Authors and Affiliations



H.F. and J.C. performed and analysed the experiments. T.Q. performed the DFT calculations. Y.Q. and S.J.C. performed metagenomic mining and prepared the CsER enzyme. S.G. collected the crystallographic data of CsER. H.F. and T.K.H. designed the experiments. T.K.H. directed the project. The manuscript was prepared with feedback from all the authors.

Corresponding author

Correspondence to Todd K. Hyster.

Ethics declarations

Competing interests

S.J.C. and Y.Q. are employed by Prozomix, the company that provided the sequence for CsER. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Cao, J., Qiao, T. et al. An asymmetric sp3sp3 cross-electrophile coupling using ‘ene’-reductases. Nature (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing