Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

P-type electrical contacts for 2D transition-metal dichalcogenides


Digital logic circuits are based on complementary pairs of n- and p-type field effect transistors (FETs) via complementary metal oxide semiconductor technology. In three-dimensional (3D) or bulk semiconductors, substitutional doping of acceptor or donor impurities is used to achieve p- and n-type FETs. However, the controllable p-type doping of low-dimensional semiconductors such as two-dimensional (2D) transition-metal dichalcogenides (TMDs) has proved to be challenging. Although it is possible to achieve high-quality, low-resistance n-type van der Waals (vdW) contacts on 2D TMDs1,2,3,4,5, obtaining p-type devices by evaporating high-work-function metals onto 2D TMDs has not been realized so far. Here we report high-performance p-type devices on single- and few-layered molybdenum disulfide and tungsten diselenide based on industry-compatible electron beam evaporation of high-work-function metals such as palladium and platinum. Using atomic resolution imaging and spectroscopy, we demonstrate near-ideal vdW interfaces without chemical interactions between the 2D TMDs and 3D metals. Electronic transport measurements reveal that the Fermi level is unpinned and p-type FETs based on vdW contacts exhibit low contact resistance of 3.3 kΩ µm, high mobility values of approximately 190 cm2 V−1 s−1 at room temperature, saturation currents in excess of 10−5 A μm1 and an on/off ratio of 107. We also demonstrate an ultra-thin photovoltaic cell based on n- and p-type vdW contacts with an open circuit voltage of 0.6 V and a power conversion efficiency of 0.82%.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atomic resolution imaging and chemical analyses of the metal–semiconductor interface.
Fig. 2: Multilayer MoS2 and WSe2 devices with Pd and Pt contacts.
Fig. 3: CVD-grown monolayer MoS2 and WSe2 with high-work-function metal contacts.
Fig. 4: MSM photodiode with asymmetric electrodes for MoS2 and WSe2.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Liu, Y. et al. Approaching the Schottky-Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Wang, J. et al. Steep slope p-type 2D WSe2 field-effect transistors with van der Waals contact and negative capacitance. In 64th Annual IEEE International Electron Devices Meeting 22.3.1–22.3.4 (IEDM, 2018).

  4. Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Article  Google Scholar 

  5. Kim, B. K. et al. Origins of genuine Ohmic van der Waals contact between indium and MoS2. npj 2D Mater. Appl. 5, 9 (2021).

    Article  CAS  Google Scholar 

  6. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  ADS  CAS  Google Scholar 

  8. Gao, H. et al. Tuning electrical conductance of MoS2 monolayers through substitutional doping. Nano Lett. 20, 4095–4101 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Suh, J. et al. Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14, 6976–6982 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Kim, C. et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Das, S., Chen, H. Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Telford, E. J. et al. Via method for lithography free contact and preservation of 2D materials. Nano Lett. 18, 1416–1420 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Kong, L. et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 11, 1866 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rasmussen, F. A. & Thygesen, K. S. Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13183 (2015).

    Article  CAS  Google Scholar 

  15. Bonifas, A. P. & McCreery, R. L. Soft Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition. Nat. Nanotechnol. 5, 612–617 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wu, R. J. et al. Visualizing the metal-MoS2 contacts in two-dimensional field-effect transistors with atomic resolution. Phys. Rev. Mater. 3, 111001 (2019).

    Article  CAS  Google Scholar 

  17. Derry, G. N., Kern, M. E. & Worth, E. H. Recommended values of clean metal surface work functions. J. Vac. Sci. Technol. A 33, 060801 (2015).

    Article  Google Scholar 

  18. Mirabelli, G. et al. Effects of annealing temperature and ambient on metal/PtSe2 contact alloy formation. ACS Omega 4, 17487–17493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Das, S. & Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 103, 103501 (2013).

    Article  ADS  Google Scholar 

  21. Liu, Y., Stradins, P. & Wei, S. H. Van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, e1600069 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Went, C. M. et al. A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics. Sci. Adv. 5, eaax6061 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y. et al. An ultrafast WSe2 photodiode based on a lateral p-i-n homojunction. ACS Nano 15, 4405–4415 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, X. et al. Molecule-upgraded van der Waals contacts for Schottky-barrier-free electronics. Adv. Mater. 33, 2104935 (2021).

    Article  CAS  Google Scholar 

  26. Xu, S. et al. Universal low-temperature ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Mater. 3, 021007 (2016).

    Article  Google Scholar 

  27. Movva, H. C. P. et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9, 10402–10410 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, C. et al. Carrier type control of WSe2 field-effect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater. 26, 4223–4230 (2016).

    Article  CAS  Google Scholar 

  29. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  ADS  CAS  Google Scholar 

  30. Zhang, L. et al. High-performance multilayer WSe2 p-type field effect transistors with Pd contacts for circuit applications. J. Mater. Sci. Mater. Electron. 32, 17427–17435 (2021).

    Article  CAS  Google Scholar 

  31. Yang, S., Lee, G. & Kim, J. Selective p-doping of 2D WSe2 via UV/ozone treatments and its application in field-effect transistors. ACS Appl. Mater. Interfaces 13, 955–961 (2020).

    Article  PubMed  Google Scholar 

  32. Allain, A. & Kis, A. Electron and hole mobilities in single-layer WSe2. ACS Nano 8, 7180–7185 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Yeh, C.-H. et al. Graphene–transition metal dichalcogenide heterojunctions for scalable and low-power complementary integrated circuits. ACS Nano 14, 985–992 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Zhang, R., Drysdale, D., Koutsos, V. & Cheung, R. Controlled layer thinning and p-type doping of WSe2 by vapor XeF2. Adv. Funct. Mater. 27, 1702455 (2017).

    Article  Google Scholar 

  36. Yamamoto, M., Nakaharai, S., Ueno, K. & Tsukagoshi, K. Self-limiting oxides on WSe2 as controlled surface acceptors and low-resistance hole contacts. Nano Lett. 16, 2720–2727 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Zhao, P. et al. Air stable p-doping of WSe2 by covalent functionalization. ACS Nano 8, 10808–10814 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, P. et al. Mechanism of alkali metal compound-promoted growth of monolayer MoS2: eutectic intermediates. Chem. Mater. 31, 873–880 (2019).

    Article  Google Scholar 

  39. Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Ji, H. G. et al. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 31, 1903613 (2019).

    Article  CAS  Google Scholar 

  42. Liu, B. et al. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9, 6119–6127 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Ma, Y. et al. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 9, 7383–7391 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, X. et al. Defect-controlled nucleation and orientation of WSe2 on hBN: a route to single-crystal epitaxial monolayers. ACS Nano 13, 3341–3352 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Vu, V. T. et al. One-step synthesis of NbSe2/Nb-doped-WSe2 metal/doped-semiconductor van der Waals heterostructures for doping controlled ohmic contact. ACS Nano 15, 13031–13040 (2021).

    Article  CAS  Google Scholar 

  46. Fan, S. et al. Tailoring quantum tunneling in a vanadium-doped WSe2/SnSe2 heterostructure. Adv. Sci. 7, 1902751 (2020).

    Article  CAS  Google Scholar 

  47. Sata, Y. et al. N- and p-type carrier injections into WSe2 with van der Waals contacts of two-dimensional materials. Jpn J. Appl. Phys. 56, 04CK09 (2017).

    Article  Google Scholar 

  48. Si, M. et al. Steep-slope WSe2 negative capacitance field-effect transistor. Nano Lett. 18, 3682–3687 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Smyth, C. M. et al. Engineering the palladium–WSe2 interface chemistry for field effect transistors with high-performance hole contacts. ACS Appl. Nano Mater. 2, 75–88 (2018).

    Article  Google Scholar 

  50. Abuzaid, H., Cheng, Z., Li, G., Cao, L. & Franklin, A. D. Unanticipated polarity shift in edge-contacted tungsten-based 2D transition metal dichalcogenide transistors. IEEE Electron Device Lett. 42, 1563–1566 (2021).

    Article  ADS  CAS  Google Scholar 

  51. Pang, C.-S. et al. Atomically controlled tunable doping in high-performance WSe2 devices. Adv. Electron. Mater. 6, 1901304 (2020).

    Article  CAS  Google Scholar 

  52. Chuang, S. et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Liu, X. et al. P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 28, 2345–2351 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Chen, M. et al. Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Appl. Phys. Lett. 103, 142110 (2013).

    Article  ADS  Google Scholar 

  55. Das, S., Demarteau, M. & Roelofs, A. Nb-doped single crystalline MoS2 field effect transistor. Appl. Phys. Lett. 106, 173506 (2015).

    Article  ADS  Google Scholar 

  56. Lin, C. Y. et al. Polarity-controllable MoS2 transistor for adjustable complementary logic inverter applications. Nanoscale Horiz. 5, 163–170 (2019).

    Article  ADS  Google Scholar 

  57. Lan, Y. W. et al. Scalable fabrication of a complementary logic inverter based on MoS2 fin-shaped field effect transistors. Nanoscale Horiz. 4, 683–688 (2019).

    Article  ADS  CAS  Google Scholar 

Download references


M.C. and Y.W. received funding from the European Research Council (ERC) Advanced Grant under the European Union’s Horizon 2020 research and innovation programme (grant agreement GA 101019828-2D- LOTTO]), Leverhulme Trust (RPG-2019-227), EPSRC (EP/ T026200/1, EP/T001038/1) and Royal Society Wolfson Merit Award (WRM\FT\180009). H.Y.J. acknowledges support from the National R&D Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (2022M3H4A1A01013228).

Author information

Authors and Affiliations



M.C. conceived the idea, supervised the project and wrote the paper with Y.W. Y.W. synthesized all the samples, measured all devices and analysed the results. J.C.K. and H.Y.J. performed and analysed the STEM and EELS measurements with Y.W. and M.C. Y.L. assisted in photoresponse measurements. K.Y.M, S.H. and H.S.S. performed hBN growth. M.K. assisted in Raman and photoluminescence characterization.

Corresponding author

Correspondence to Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Yang Chai, Henry Medina and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Au contacts on MoS2 and WSe2.

a, Cross-sectional STEM image of a Au-WSe2 device showing cleaning van der Waals interface. Scale bar = 5 nm. b, Transfer curves of WSe2 device with Au contact showing p-type results. W = 4 µm, L = 1.5 µm. c, Output curves of WSe2 device with Au contacts. The non-linear I-V curves indicate high Schottky barrier with Au contacts for WSe2. d, Transfer curves of MoS2 device with Au contacts on PMMA/SiO2 substrate showing ambipolar behavior with dominant electron current. W = 8 µm, L = 10 µm. e, Output curves of MoS2 device with Au contacts.

Extended Data Fig. 2 Pd contacts on WSe2.

a, Left and right, cross-sectional STEM of the Pd-WSe2 interface. Scale bar = 1 nm. b, XPS of Pd-WSe2 interface showing the presence of PdSe2 peaks, indicating reaction between the deposited metal and the Se atoms.

Extended Data Fig. 3 Low temperature measurements.

a, Transfer curves of MoS2 device with Pd contacts on PMMA/SiO2 substrate at different temperatures. The hole transport part showed a more obvious temperature dependence compared to the electron branch, indicating thermally activated transport for holes and tunnel dominant transport for electrons due to higher Schottky barrier for electrons. b, Transfer curves from a plotted linearly. c, Schottky barrier extraction for holes in multilayer MoS2 with Pd contacts. d, Transfer curves of WSe2 device with Pt contacts at different temperatures. e, Transfer curves from d plotted linearly. f, Schottky barrier extraction for holes in multilayer WSe2 with Pt contacts.

Extended Data Fig. 4 Hysteresis in WSe2 FETs.

Forward (red) and reverse (black) scans for multi-layer (a) and monolayer (b) WSe2 FETs with Pt electrodes on SAM treated SiO2. c, Transfer characteristics of the same monolayer WSe2 FET measured in air and vacuum. It can be clearly seen that the hysteresis decreases in vacuum suggesting it is caused by adsorbates and not any defects at the contacts.

Extended Data Fig. 5 Pt on WSe2 without optimized deposition parameters.

a, Cross-sectional STEM of Pt/WSe2 interface without optimization of the deposition conditions. b, Transfer curve of WSe2 FET with damaged interface showing very poor p-type characteristics.

Extended Data Fig. 6 Device performance of MoS2 with Pt contacts and WSe2 with Pd contacts.

a, Transfer curves for MoS2 device with Pt contacts showing ambipolar characteristics with higher electron branch. W = 4 µm, L = 10 µm. b, Output curves of MoS2 device with Pt contacts. c, Transfer curves of WSe2 device with Pd contacts showing ambipolar characteristics with higher hole branch. W = 38 µm, L = 10 µm. d, Output curves of WSe2 device with Pd contacts showing non-ideal characteristics.

Extended Data Fig. 7 Work function measurements of Pd and Pt thin films on TMDs.

a, AFM image of ~3 nm Pt deposited on cleaved MoS2 crystal. b, Height profile of the blue line in the AFM image showing uniform growth of Pt on MoS2. c, UPS result of Pd thin film on MoS2 showing work function ~5.2 eV. d, UPS result of Pt thin film on WSe2 showing work function ~5.0 eV.

Extended Data Fig. 8 Properties of MoS2 FETs with Pd (a-f) and Pt (g-l) contacts on different substrates.

a, b, Transfer and output curves of MoS2 FET with Pd contacts on SiO2. W = 4 µm, L = 1 µm. c, d, Transfer curves of MoS2 FET with Pd contacts on hBN. W = 3 µm, L = 1.5 µm. e, f, Transfer and output curves of MoS2 FETs with Pd contacts on PMMA. W = 16 µm, L = 10 µm. g, h, Transfer and output curves of MoS2 FET with Pt contacts on SiO2. W = 6 µm, L = 0.8 µm. i, j, Transfer and output curves of MoS2 FET with Pt contacts on hBN. W = 2.5 µm, L = 1 µm. k, l, Transfer and output curves of MoS2 FET with Pt contacts on PMMA. W = 25 µm, L = 10 µm. It can be seen that Pd contacts lead to higher hole current for MoS2 FETs compared to Pt contacts and the substrates have some influence on the hole injection level.

Extended Data Fig. 9 Properties of WSe2 FETs with Pd (a-f) and Pt (g-l) contacts on different substrates.

a, b, Transfer and output curves of WSe2 FET with Pd contacts on SiO2. W = 6.5 µm, L = 1 µm. c, d, Transfer and output curves of WSe2 FET with Pd contacts on hBN. W = 6.5 µm, L = 0.8 µm. e, f, Transfer and output curves of WSe2 FET with Pd contacts on PMMA. W = 25 µm, L = 10 µm. g, h, Transfer and output curves of WSe2 FET with Pt contacts on SiO2. W = 4 µm, L = 0.8 µm. i, j, Transfer and output curves of WSe2 FET with Pt contacts on hBN. W = 1.8 µm, L = 2.5 µm k, l, Transfer and output curves of WSe2 FET with Pt contacts on PMMA. W = 5 µm, L = 10 µm. The results show poor p-type performance of WSe2 FETs with Pd contacts on all different substrates.

Extended Data Fig. 10 WSe2 FETs with different contacts on different substrates.

The scatter plots show the ratio of electron to hole current (Ielectron/Ihole) of WSe2 FETs fabricated on different substrates (SiO2, hBN, PMMA and SAM treated SiO2 substrate) using different contacts (In, Au, Pd and Pt). The results excluded the p-type characteristics originate from SAM doping as the trend shows the polarity clearly varies with different contacts.

Extended Data Fig. 11 CVD grown WSe2 and MoS2.

a, Optical image of CVD grown WSe2 on SiO2. Scale bar = 10 μm. b, Raman of WSe2 showing pristine WSe2. c, PL of monolayer WSe2 showing a peak at ~ 1.65 eV. d, Optical image of CVD grown MoS2 on SiO2. Scale bar = 20 μm. e, Raman of MoS2 showing pristine MoS2. f, PL of MoS2 with a peak at ~1.83 eV.

Extended Data Fig. 12 Schottky barrier height for monolayer WSe2.

a, Transfer curves of monolayer WSe2 FET device with Pt contacts on SAM treated SiO2 substrate measured at different temperatures. b, Transfer curves from a plotted linearly. c, The extracted Schottky barrier height for the monolayer WSe2 is ~400 meV, which is 200 meV higher than multilayer WSe2 FETs due to higher valence band edge of monolayer WSe2.

Extended Data Fig. 13 The influence of deposition rate on metal/2D TMD interface.

a, Optical microscope image of a device where the metal (Au in this case) was deposited at a deposition rate of 0.1 Å/s. To achieve 50 Å, the deposition was conducted for just over eight minutes. The radiative heat emitted from the evaporation crucible causes severe damage to the device. b, Cross-sectional atomic resolution ADF STEM image shows that the interface is damaged in this case (arrow indicating mixing of Au atoms with the S atoms of MoS2. c, d, In contrast, when the deposition is done quickly (deposition rate = 2 Å/s) and in multiple steps, the device is undamaged and the interface shown in panel d is ultra-clean.

Extended Data Fig. 14 Evaporation procedures for clean high work function contacts.

a, Summary of e-beam evaporation current and voltage applied to deposit Au, Pd and Pt at 0.1 Å/s and 2 Å/s. The irradiation energy supplied to the device for high rate deposition is much lower than for low rate deposition. b, Comparison of substrate temperature versus time for 300 Å Pt depositions done in single and multiple steps. The left figure (single step deposition) shows that during deposition, the temperature of the holder gradually increases with time. For deposition with steps, the chamber and substrate holder were allowed to cool to room temperature before running the next deposition. Thus, the temperature of the sample remained lower than deposition without steps.

Extended Data Table 1 P-type characteristics of monolayer WSe2 FETs
Extended Data Table 2 P-type characteristics of multilayer WSe2 FETs
Extended Data Table 3 P-type characteristics of multilayer MoS2 FETs

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Kim, J.C., Li, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing