Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Africa’s oldest dinosaurs reveal early suppression of dinosaur distribution

Abstract

The vertebrate lineages that would shape Mesozoic and Cenozoic terrestrial ecosystems originated across Triassic Pangaea1,2,3,4,5,6,7,8,9,10,11. By the Late Triassic (Carnian stage, ~235 million years ago), cosmopolitan ‘disaster faunas’ (refs. 12,13,14) had given way to highly endemic assemblages12,13 on the supercontinent. Testing the tempo and mode of the establishment of this endemism is challenging—there were few geographic barriers to dispersal across Pangaea during the Late Triassic. Instead, palaeolatitudinal climate belts, and not continental boundaries, are proposed to have controlled distribution15,16,17,18. During this time of high endemism, dinosaurs began to disperse and thus offer an opportunity to test the timing and drivers of this biogeographic pattern. Increased sampling can test this prediction: if dinosaurs initially dispersed under palaeolatitudinal-driven endemism, then an assemblage similar to those of South America4,19,20,21 and India19,22—including the earliest dinosaurs—should be present in Carnian deposits in south-central Africa. Here we report a new Carnian assemblage from Zimbabwe that includes Africa’s oldest definitive dinosaurs, including a nearly complete skeleton of the sauropodomorph Mbiresaurus raathi gen. et sp. nov. This assemblage resembles other dinosaur-bearing Carnian assemblages, suggesting that a similar vertebrate fauna ranged high-latitude austral Pangaea. The distribution of the first dinosaurs is correlated with palaeolatitude-linked climatic barriers, and dinosaurian dispersal to the rest of the supercontinent was delayed until these barriers relaxed, suggesting that climatic controls influenced the initial composition of the terrestrial faunas that persist to this day.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The new Zimbabwean assemblage is on the same palaeolatitudinal climatic belt as other Carnian dinosaur-bearing assemblages and has a similar taxonomic composition.
Fig. 2: Skeletal anatomy of the Mbiresaurusraathi holotype (NHMZ 2222) and paratype (NHMZ 2547).
Fig. 3: The tempo and mode of Triassic dinosaur dispersal.

Data availability

All data files used for analyses are hosted on Dryad (https://doi.org/10.5061/dryad.pg4f4qrqd). All fossils are reposited in recognized natural history institutions. To preserve the integrity of the fossil localities and the natural history resources of Zimbabwe, we do not present the geographic coordinate data here. Geographic coordinate data are available on request from the NHMZ and are recorded in the specimen catalogue and records of the NHMZ for full reproducibility. This publication and associated nomenclatural acts have been registered in ZooBank as urn:lsid:zoobank.org:pub:BE5720A6-9CE6-48A0-A232-32A01CC551B0.

Code availability

All code used in this study has been deposited in Dryad (https://doi.org/10.5061/dryad.pg4f4qrqd).

References

  1. Debuysschere, M., Gheerbrant, E. & Allain, R. Earliest known European mammals: a review of the Morganucodonta from Saint-Nicolas-de-Port (Upper Triassic, France). J. Syst. Paleontol. 13, 825–855 (2015).

    Article  Google Scholar 

  2. Irmis, R., Nesbitt, S. J. & Sues, H.-D. in Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and Their Kin Vol. 239 (eds Nesbitt, S. J. et al.) 275–302 (2013).

  3. Jones, M. E. H. et al. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol. 13, 208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Langer, M. C., Ramezani, J. & Da Rosa, Á. A. S. U–Pb age constraints on dinosaur rise from south Brazil. Gondwana Res. 57, 133–140 (2018).

    Article  CAS  ADS  Google Scholar 

  5. Li, C., Wu, X.-C., Rieppel, O., Wang, L.-T. & Zhao, L.-J. An ancestral turtle from the Late Triassic of southwestern China. Nature 456, 497–501 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Lyson, T. R. & Bever, G. S. Origin and evolution of the turtle body plan. Ann. Rev. Ecol. Evol. Syst. 51, 143–166 (2020).

    Article  Google Scholar 

  7. Mao, F., Zhang, C., Liu, C. & Meng, J. Fossoriality and evolutionary development in two Cretaceous mammaliamorphs. Nature 592, 577–582 (2021).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Schoch, R. R., Werneburg, R. & Voigt, S. A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders. Proc. Natl Acad. Sci. USA 117, 11584–11588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simões, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706–709 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Stocker, M. R. et al. The earliest equatorial record of frogs from the Late Triassic of Arizona. Biol. Lett. 15, 20180922 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Martínez, R. N., Simões, T. R., Sobral, G. & Apesteguía, S. A Triassic stem lepidosaur illuminates the origin of lizard-like reptiles. Nature 597, 235–238 (2021).

  12. Button, D. J., Lloyd, G. T., Ezcurra, M. D. & Butler, R. J. Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea. Nat. Commun. 8, 733 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012).

    Article  CAS  ADS  Google Scholar 

  14. Roopnarine, P. D., Angielczyk, K. D., Wang, S. C. & Hertog, R. Trophic network models Eeplain instability of Early Triassic terrestrial communities. Proc. Biol. Sci. 274, 2077–2086 (2007).

    PubMed  PubMed Central  Google Scholar 

  15. Ezcurra, M. D. Biogeography of Triassic tetrapods: evidence for provincialism and driven sympatric cladogenesis in the early evolution of modern tetrapod lineages. Proc. R. Soc. B 277, 2547–2552 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kent, D. V. & Clemmensen, L. B. Northward dispersal of dinosaurs from Gondwana to Greenland at the mid-Norian (215–212 Ma, Late Triassic) dip in atmospheric pCO2. Proc. Natl Acad. Sci. USA 118, e2020778118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whiteside, J. H., Grogan, D. S., Olsen, P. E. & Kent, D. V. Climatically driven biogeographic provinces of Late Triassic tropical Pangea. Proc. Natl Acad. Sci. USA 108, 8972–8977 (2011).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  18. Whiteside, J. H. et al. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. Proc. Natl Acad. Sci. USA 112, 7909–7913 (2015).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  19. Langer, M. C. Studies on continental Late Triassic tetrapod biochronology. II. The Ischigualastian and a Carnian global correlation. J. South Amer. Earth Sci. 19, 219–239 (2005).

    Article  ADS  Google Scholar 

  20. Martínez, R. N. et al. Vertebrate succession in the Ischigualasto Formation. J. Vertebr. Paleontol. 32, 10–30 (2012).

    Article  Google Scholar 

  21. Colombi, C. et al. A high-precision U–Pb zircon age constraints the timing of the faunistic and palynofloristic events of the Carnian Ischigualasto Formation, San Juan, Argentina. J. South Amer. Earth Sci. 111, 103433 (2021).

    Article  CAS  Google Scholar 

  22. Novas, F. E., Ezcurra, M. D., Chatterjee, S. & Kutty, T. S. New dinosaur species from the Upper Triassic Upper Maleri and Lower Dharmaram formations of Central India. Earth Environ. Sci. Trans. R. Soc. Edin. 101, 333–349 (2010).

    Google Scholar 

  23. Sellwood, B. W. & Valdes, P. J. Mesozoic climates: general circulation models and the rock record. Sediment Geol. 190, 269–287 (2006).

    Article  ADS  Google Scholar 

  24. Kligman, B. T., Marsh, A. D., Sues, H.-D. & Sidor, C. A. A new non-mammalian eucynodont from the Chinle Formation (Triassic: Norian), and implications for the early Mesozoic equatorial cynodont record. Biol. Lett. 16, 20200631 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Irmis, R. B. Evaluating hypotheses for the early diversification of dinosaurs. Earth Environ. Sci. Trans. R. Soc. Edin. 101, 397–426 (2010).

    Google Scholar 

  26. Cabreira, S. F. et al. A unique Late Triassic dinosauromorph assemblage reveals dinosaur ancestral anatomy and diet. Curr. Biol. 26, 3090–3095 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Irmis, R. B., Mundil, R., Martz, J. W. & Parker, W. G. High-resolution U–Pb ages from the Upper Triassic Chinle Formation (New Mexico, USA) support a diachronous rise of dinosaurs. Earth Planet. Sci. Lett. 309, 258–267 (2011).

    Article  CAS  ADS  Google Scholar 

  28. Langer, M. C., Ezcurra, M. D., Bittencourt, J. S. & Novas, F. E. The origin and early evolution of dinosaurs. Biol. Rev. 85, 55–110 (2010).

    Article  PubMed  Google Scholar 

  29. Raath, M. A., Oesterlen, P. M. & Kitching, J. W. First record of Triassic Rhynchosauria (Reptilia: Diapsida) from the Lower Zambezi Valley, Zimbabwe. Palaeontologia Africana 29, 1–10 (1992).

    Google Scholar 

  30. Oesterlen, P. M. The geology of the Dande West Area, Lower Zambezi Valley. Zimbabwe Geol. Soc. Bull. 98, 1–85 (1998).

    Google Scholar 

  31. Sciscio, L. et al. Sedimentology and palaeontology of the Upper Karoo Group in the Mid-Zambezi Basin, Zimbabwe: new localities and their implications for interbasinal correlation. Geol. Mag. 158, 1035–1058 (2021).

  32. Griffin, C. T. Developmental patterns and variation among early theropods. J. Anat. 232, 604–640 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Griffin, C. T. & Nesbitt, S. J. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds. Proc. Natl Acad. Sci. USA 113, 14757–14762 (2016).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  34. Griffin, C. T. et al. Assessing ontogenetic maturity in extinct saurian reptiles. Biol. Rev. 96, 470–525 (2021).

    Article  Google Scholar 

  35. Prieto-Márquez, A. & Norell, M. A. Redescrip tion of a nearly complete skull of Plateosaurus (Dinosauria: Sauropodomorpha) from the Late Triassic of Trossingen (Germany). in American Museum Novitates 1–58 (American Museum of Natural History, 2011).

  36. Yates, A. M. The species taxonomy of the sauropodomorph dinosaurs from the Löwenstein Formation (Norian, Late Triassic) of Germany. Palaeontology 46, 317–337 (2003).

    Article  Google Scholar 

  37. Pretto, F. A., Langer, M. C. & Schultz, C. L. A new dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Brazil provides insights on the evolution of sauropodomorph body plan. Zool. J. Linnean Soc. 185, 388–416 (2018).

    Article  Google Scholar 

  38. Ezcurra, M. D. A new early dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Argentina: a reassessment of dinosaur origin and phylogeny. J. Syst. Paleontol. 8, 371–425 (2010).

    Article  Google Scholar 

  39. Baron, M. G., Norman, D. B. & Barrett, P. M. A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543, 501–506 (2017).

    Article  CAS  ADS  PubMed  Google Scholar 

  40. Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. in Bulletin of the American Museum Natural History 1–292 (American Museum of Natural History, 2011).

  41. Langer, M. C., McPhee, B. W., Marsola, J. C. D. A., Roberto-da-Silva, L. & Cabreira, S. F. Anatomy of the dinosaur Pampadromaeus barberenai (Saurischia—Sauropodomorpha) from the Late Triassic Santa Maria Formation of southern Brazil. PLoS ONE 14, e0212543 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martinez, R. N. & Alcober, O. A. A basal sauropodomorph (Dinosauria: Saurischia) from the Ischigualasto Formation (Triassic, Carnian) and the early evolution of Sauropodomorpha. PLoS ONE 4, e4397 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sereno, P. C., Martínez, R. N. & Alcober, O. A. Osteology of Eoraptor lunensis (Dinosauria, Sauropodomorpha). J. Vertebr. Paleontol. 32, 83–179 (2012).

    Article  Google Scholar 

  44. Stefanic, C. M. & Nesbitt, S. J. The evolution and role of the hyposphene–hypantrum articulation in Archosauria: phylogeny, size and/or mechanics? R. Soc. Open Sci. 6, 190258 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  45. Marsola, J. C. A. et al. A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, south Brazil. J. Vertebr. Paleontol. 38, e1531878 (2019).

    Article  Google Scholar 

  46. Langer, M. C. The pelvic and hind limb anatomy of the stem-sauropodomorph Saturnalia tupiniquim (Late Triassic, Brazil). PaleoBios 23, 1–30 (2003).

    Google Scholar 

  47. Moro, D., Kerber, L., Müller, R. T. & Pretto, F. A. Sacral co-ossification in dinosaurs: the oldest record of fused sacral vertebrae in Dinosauria and the diversity of sacral co-ossification patterns in the group. J. Anat. 238, 828–844 (2021).

    Article  PubMed  Google Scholar 

  48. Sereno, P. C. The pectoral girdle and forelimb of the basal theropod Herrerasaurus ischigualastensis. J. Vertebr. Paleontol. 13, 425–450 (1994).

    Article  Google Scholar 

  49. Langer, M. C., França, M. A. G. & Gabriel, S. The pectoral girdle and forelimb anatomy of the stem-sauropodomorph Saturnalia tupiniquim (Upper Triassic, Brazil). Spec. Papers Palaeontol. 77, 113–137 (2007).

    Google Scholar 

  50. Langer, M. C., Bittencourt, J. S. & Schultz, C. L. A reassessment of the basal dinosaur Guaibasaurus candelariensis, from the Late Triassic Caturrita Formation of south Brazil. Earth Environ. Sci. Trans. R. Soc. Edin. 101, 301–332 (2010).

    Google Scholar 

  51. Yates, A. M. A new species of the primitive dinosaur Thecodontosaurus (Saurischia: Sauropodomorpha) and its implications for the systematics of early dinosaurs. J. Syst. Paleontol. 1, 1–42 (2003).

    Article  Google Scholar 

  52. Novas, F. E. New information on the systematics and postcranial skeleton of Herrerasaurus ischigualastensis (Theropoda: Herrerasauridae) from the Ischigualasto Formation (Upper Triassic) of Argentina. J. Vertebr. Paleontol. 13, 400–423 (1994).

    Article  Google Scholar 

  53. Langer, M. C. et al. Untangling the dinosaur family tree. Nature 551, E1–E3 (2017).

    Article  PubMed  Google Scholar 

  54. Desojo, J. B. et al. The Late Triassic Ischigualasto Formation at Cerro Las Lajas (La Rioja, Argentina): fossil tetrapods, high-resolution chronostratigraphy, and faunal correlations. Sci. Rep. 10, 12782 (2020).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  55. Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).

    Article  PubMed  Google Scholar 

  56. Fitch, A. J., Lovelace, D. M. & Stocker, M. R. The oldest dinosaur from the northern hemisphere and the origins of Theropoda. in Program and Abstracts 80th Annual Meeting of the Society of Vertebrate Paleontology 140–141 (2020).

  57. Evans, S. E. At the feet of the dinosaurs: the early history and radiation of lizards. Biol. Rev. 78, 513–551 (2003).

    Article  PubMed  Google Scholar 

  58. Huttenlocker, A. K., Grossnickle, D. M., Kirkland, J. I., Schultz, J. A. & Luo, Z.-X. Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature 558, 108–112 (2018).

    Article  CAS  ADS  PubMed  Google Scholar 

  59. Lee, M. S. Y., Baron, M. G., Norman, D. B. & Barrett, P. M. Dynamic biogeographic models and dinosaur origins. Earth Environ. Sci. Trans. R. Soc. Edin. 109, 325–332 (2018).

    Google Scholar 

  60. Schaller, M. F., Wright, J. D. & Kent, D. V. A 30 Myr record of Late Triassic atmospheric pCO2 variation reflects a fundamental control of the carbon cycle by changes in continental weathering. GSA Bull. 127, 661–671 (2015).

    Article  CAS  Google Scholar 

  61. Baron, M. G., Norman, D. B. & Barrett, P. M. Baron et al. reply. Nature 551, E4–E5 (2017).

    Article  ADS  PubMed  Google Scholar 

  62. Nesbitt, S. J. & Sues, H.-D. The osteology of the early-diverging dinosaur Daemonosaurus chauliodus (Archosauria: Dinosauria) from the Coelophysis Quarry (Triassic: Rhaetian) of New Mexico and its relationships to other early dinosaurs. Zool. J. Linnean Soc. 191, 0150–179 (2020).

    Article  Google Scholar 

  63. Baron, M. G. Pisanosaurus mertii and the Triassic ornithischian crisis: could phylogeny offer a solution? Hist. Biol. 31, 967–981 (2019).

    Article  Google Scholar 

  64. Benton, M. J. & Walker, A. D. Saltopus, a dinosauriform from the Upper Triassic of Scotland. Earth Environ. Sci. Trans. R. Soc. Edin. 101, 285–299 (2010).

    Google Scholar 

  65. Nesbitt, S. J., Barrett, P. M., Werning, S., Sidor, C. A. & Charig, A. J. The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania. Biol. Lett. 9, 20120949 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Agnolin, F. L. & Ezcurra, M. D. The validity of Lagosuchus talampayensis Romer, 1971 (Archosauria, Dinosauriformes), from the Late Triassic of Argentina. Breviora 565, 1–21 (2019).

    Article  Google Scholar 

  67. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Article  Google Scholar 

  68. Mesquite: a modular system for evolutionary analysis v.3.70 (2021).

  69. Goloboff, P. A. & Szumik, C. A. Identifying unstable taxa: efficient implementation of triplet-based measures of stability, and comparison with Phyutility and RogueNaRok. Mol. Phylogenet. Evol. 88, 93–104 (2015).

    Article  PubMed  Google Scholar 

  70. Wagner, P. J. A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa. Paleobiology 24, 430–449 (1998).

    Article  Google Scholar 

  71. Kolaczkowski, B. & Thornton, J. W. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431, 980–984 (2004).

    Article  CAS  ADS  PubMed  Google Scholar 

  72. Goloboff, P. A., Pittman, M., Pol, D. & Xu, X. Morphological data sets fit a common mechanism much more poorly than DNA sequences and call into question the Mkv model. Syst. Biol. 68, 494–504 (2019).

    CAS  PubMed  Google Scholar 

  73. Goloboff, P. A., Torres, A. & Arias, J. S. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34, 407–437 (2018).

    Article  PubMed  Google Scholar 

  74. Goloboff, P. A., Torres Galvis, A. & Arias, J. S. Parsimony and model-based phylogenetic methods for morphological data: comments on O’Reilly et al. Palaeontology 61, 625–630 (2018).

    Article  Google Scholar 

  75. Kammerer, C. F., Nesbitt, S. J., Flynn, J. J., Ranivoharimanana, L. & Wyss, A. R. A tiny ornithodiran archosaur from the Triassic of Madagascar and the role of miniaturization in dinosaur and pterosaur ancestry. Proc. Natl Acad. Sci. USA 117, 17932–17936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ezcurra, M. D. et al. Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria. Nature 588, 445–449 (2020).

    Article  CAS  ADS  PubMed  Google Scholar 

  77. Parry, L. A., Baron, M. G. & Vinther, J. Multiple optimality criteria support Ornithoscelida. R. Soc. Open Sci. 4, 170833 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  78. O’Reilly, J. E. et al. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biol. Lett. 12, 20160081 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Koch, N. M., Garwood, R. J. & Parry, L. A. Fossils improve phylogenetic analyses of morphological characters. Proc. Royal Soc. B Biol. Sci. 288, 20210044 (2021).

  80. Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Drummond, A. J. & Suchard, M. A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8, 114 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Landis, M., Edwards, E. J. & Donoghue, M. J. Modeling phylogenetic biome shifts on a planet with a past. Syst. Biol. 70, 86–107 (2020).

    Article  Google Scholar 

  85. Landis, M. J., Freyman, W. A. & Baldwin, B. G. Retracing the Hawaiian silversword radiation despite phylogenetic, biogeographic, and paleogeographic uncertainty. Evolution 72, 2343–2359 (2018).

    Article  PubMed  Google Scholar 

  86. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  87. Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).

    Article  Google Scholar 

  88. Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).

    Article  PubMed  Google Scholar 

  89. Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).

    Article  Google Scholar 

  90. Aberhan, M. Bivalve palaeobiogeography and the Hispanic Corridor: time of opening and effectiveness of a proto-Atlantic seaway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 165, 375–394 (2001).

    Article  Google Scholar 

  91. Schöllhorn, I. et al. Climate and environmental response to the break-up of Pangea during the Early Jurassic (Hettangian-Pliensbachian); the Dorset coast (UK) revisited. Glob. Planet. Change 185, 103096 (2020).

    Article  Google Scholar 

  92. Xiang, Y., Gubian, S., Suomela, B. & Hoeng, J. Generalized simulated annealing for global optimization: the GenSA package. R J. 5, 13–28 (2013).

    Article  Google Scholar 

  93. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  94. Apaldetti, C., Martínez, R. N., Cerda, I. A., Pol, D. & Alcober, O. An early trend towards gigantism in Triassic sauropodomorph dinosaurs. Nat. Ecol. Evol. 2, 1227–1232 (2018).

    Article  PubMed  Google Scholar 

  95. Pol, D., Otero, A., Apaldetti, C. & Martínez, R. N. Triassic sauropodomorph dinosaurs from South America: the origin and diversification of dinosaur dominated herbivorous faunas. J. South Amer. Earth Sci. 107, 103145 (2021).

    Article  Google Scholar 

  96. Melo, T. P., Abdala, F. & Soares, M. B. The Malagasy cynodont Menadon besairiei (Cynodontia; Traversodontidae) in the Middle–Upper Triassic of Brazil. J. Vertebr. Paleontol. 35, e1002562 (2015).

    Article  Google Scholar 

  97. Parker, W. G. Revised phylogenetic analysis of the Aetosauria (Archosauria: Pseudosuchia); assessing the effects of incongruent morphological character sets. PeerJ 4, e1583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Parker, W. G. Redescription of Calyptosuchus (Stagonolepis) wellesi (Archosauria: Pseudosuchia: Aetosauria) from the Late Triassic of the Southwestern United States with a discussion of genera in vertebrate paleontology. PeerJ 6, e4291 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Roberto-da-Silva, L. et al. A new aetosaur from the Upper Triassic of the Santa Maria Formation, southern Brazil. Zootaxa 3764, 240–278 (2014).

    Article  PubMed  Google Scholar 

  100. Alcober, O. A. & Martinez, R. N. A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina. Zookeys 19, 55–81 (2010).

    Google Scholar 

  101. Brinkman, D. B. & Sues, H.-D. A staurikosaurid dinosaur from the Upper Triassic Ischigualasto Formation of Argentina and the relationships of the Staurikosauridae. Palaeontology 30, 493–503 (1987).

    Google Scholar 

  102. Pacheco, C. et al. Gnathovorax cabreirai: a new early dinosaur and the origin and initial radiation of predatory dinosaurs. PeerJ 7, e7963 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Angielczyk, K. D., Hancox, P. J. & Nabavizadeh, A. A redescription of the Triassic kannemeyeriiform dicynodont Sangusaurus (Therapsida, Anomodontia), with an analysis of its feeding system. J. Vertebr. Paleontol. 37, 189–227 (2017).

    Article  Google Scholar 

  104. Langer, M. C., da Rosa, Á. A. S. & Montefeltro, F. C. Supradapedon revisited: geological explorations in the Triassic of southern Tanzania. PeerJ 5, e4038 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Montefeltro, F. C., Langer, M. C. & Schultz, C. L. Cranial anatomy of a new genus of hyperodapedontine rhynchosaur (Diapsida, Archosauromorpha) from the Upper Triassic of southern Brazil. Earth Environ. Sci. Trans. R. Soc. Edin. 101, 27–52 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank M. Fitzpatrick and the NHMZ for access to collections and for fieldwork logistics, National Museums and Monuments of Zimbabwe for field logistic assistance, the Research Council of Zimbabwe for foreign researcher permits and the Zimbabwe Geological Survey for mapping information. We acknowledge the Broderick family for help with field logistics. We thank local and regional Zimbabwean authorities (Communal Areas Management Programme for Indigenous Resources (CAMPFIRE), Mushumbi Pools Police, Mbire Rural Council, Mbire District Tsetse Control, Mbire District Development Coordinator) for accommodating fieldwork. We acknowledge the people of Dande, on whose Communal Land this research was conducted. We thank K. Rose, T. Oishi, B. Chermak, D. Chermak, G. Iannaccone and V. Yarborough for fossil preparation. We thank E. Mbambo, K. Madzana and G. Malunga for fieldwork assistance and Z. Murphy and L. Broderick for documentary assistance. We thank M. Stocker, S. Xiao, J. Uyeda, M. Raath, M. Landis, A. Bhullar, J. Gauthier, the Virginia Tech Paleobiology Research Group, J. Choiniere, W. Parker, K. Angielczyk, T. Melo, V. Paes-Neto, L. Corecco, C. Schultz, M. Bronzati, J. Marsola, M. Garcia, B. McPhee, F. Montefeltro and the other students/postdocs of USP Ribeirão Preto and UFRGS for discussion. We thank the following collections managers and institutions: M. Bamford, B. Zipfel, BPI (now ESI); Z. Skosan Erasmus, N. Mtalana, SAM; C. Schultz, UFRGS; A.M. Ribeiro, MCN; M.B. de Andrade, MCP. The Willi Hennig Society provided TNT software free of charge. We acknowledge Advanced Research Computing at Virginia Tech (https://arc.vt.edu/) for providing computational resources and technical support that contributed to our results. This work was supported by a National Geographic Society Early Career Grant (CP-R004-17), a National Science Foundation Graduate Research Fellowship, a Geological Society of America Graduate Student Research Grant, a Paleontological Society Arthur J. Boucot Student Research Award, two Virginia Tech Graduate School Graduate Research Development Program awards, a Virginia Tech Department of Geosciences Summer Scholarship (all to C.T.G.), a National Geographic Society Exploration Grant (NGS-157R-18, to C.T.G. and S.J.N.) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2020/07997-4, to M.C.L.).

Author information

Authors and Affiliations

Authors

Contributions

C.T.G. and S.J.N. designed the research project; C.T.G., D.M., T.J.B., S.T. and S.J.N. designed the field project; D.M. conducted fieldwork and permit logistics with C.T.G.; C.TG., D.M., T.J.B., M.Z., S.T., S.J.N. and H.R.T. conducted fieldwork; B.M.W. conducted the phylogenetic analyses and the ancestral state estimation and constructed the biogeographic dispersal model with input from C.T.G., M.C.L. and S.J.N.; D.M. and T.J.B. conducted geological and stratigraphic mapping; C.T.G. conducted histological analysis; C.T.G., M.C.L. and S.J.N. assembled the differential diagnosis; D.M. composed the Shona-language summary and M.Z. composed the Ndebele-language summary; C.T.G. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Christopher T. Griffin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Martin Ezcurra, Diego Pol and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Map of individual fossil localities from the most productive region of the Pebbly Arkose Fm., Dande Communal Area, Zimbabwe.

Localities without an accompanying silhouette represent unidentified bone fragments. Version of map with latitude and longitude available on request through C.T.G. and the NHMZ.

Extended Data Fig. 2 Stratigraphic columns and detrital zircon dating information from the Pebbly Arkose Fm., Dande Communal Area, Zimbabwe.

a, Stratigraphic columns of three transects (Extended Data Fig. 1) showing that taxa from the Dande assemblage are present in multiple stratigraphic layers in this region. b, Concordia plot of 238U–206Pb ratios against 235U–207Pb ratios of detrital zircons from the Pebbly Arkose Fm., Dande Communal Area, Zimbabwe. Error ellipses are error at 2σ. c, Detrital zircon age distribution, indicating the youngest grains in the sample are ~534 Ma. d, Best maximum age for the detrital zircon distribution is ~534 Ma, indicating the processes that created these zircons occurred long before the deposition of our Carnian locality. Error bars are standard error at 2σ; n = 275 independent measurements.

Extended Data Fig. 3 Bone histology of Mbiresaurus raathi, gen. et sp. nov.

a, Right tibia of Mbiresaurus raathi holotype (NHMZ 2222) in medial view (red element in skeletal reconstruction). Arrow indicates location of histological sampling. b, Whole-slide image of tibial histology of NHMZ 2222 under cross-polarized light with waveplate. c, Posterolateral portion of the tibial cortex under cross-polarized light with waveplate. d, Sub-periosteal tissue of the anteromedial portion of the cortex under cross-polarized light with waveplate. e, Internal portion of the cortex showing original endosteal lamellae and compact coarse cancellous bone formed via cortical drift under cross-polarized light with waveplate. Arrow indicates endosteal lamellae (i.e., inner circumferential layer). ant, anterior; cccb, compact coarse cancellous bone; prox, proximal; lat, lateral. Scale bars, a, 1 cm, b, 1 mm, c, 500 μm, d, 250 μm, e, 500 μm.

Extended Data Fig. 4 Maximum clade credibility trees returned by Bayesian phylogenetic inference, and strict and reduced strict consensus trees returned by parsimony-based phylogenetic analyses.

a, Maximum clade credibility (MCC) tree of the Bayesian analysis of the Baron et al.39,61,62,63 matrix. Posterior probabilities for each node reported in the online supplement. b, MCC tree of the Bayesian analysis of the Cabreira et al.26 matrix. Posterior probabilities for each node reported in the online supplement. c, MCC tree of the Bayesian Langer et al.53 matrix, including Saltopus. Posterior probabilities for each node reported in the online supplement. d, Reduced strict consensus of the Langer et al.53 parsimony analysis, excluding character 217 (61,408 MPTs of 1,958 steps; CI = 0.269, RI = 0.617). Strict consensus and supporting synapomorphies reported in the online supplement. e, Reduced strict consensus of the Langer et al.53 parsimony analysis, excluding character 217 and the taxa Saltopus, Agnosophitys, and Nyasasaurus (99,999 [memory overflow] MPTs of 1,942 steps; CI = 0.271, RI = 0.621). Strict consensus and supporting synapomorphies reported in the online supplement. f, Reduced strict consensus of the Baron et al.39,61,62,63 parsimony analysis, excluding character 217 (99,999 [memory overflow] MPTs of 1,923 steps; CI = 0.274, RI = 0.615). Strict consensus and supporting synapomorphies reported in the online supplement. g, Reduced strict consensus of the Baron et al.39,61,62,63 parsimony analysis, excluding character 217 and the taxa Saltopus, Agnosophitys, and Nyasasaurus (61,680 MPTs of 1,907 steps; CI = 0.276, RI = 0.619). Strict consensus and supporting synapomorphies reported in the online supplement. h, Reduced strict consensus of the Cabreira et al.26 parsimony analysis (336 MPTs of 866 steps; CI = 0.336, RI = 0.631). Strict consensus and supporting synapomorphies reported in the online supplement. i, Reduced strict consensus of the Cabreira et al.26 parsimony analysis excluding Saltopus (84 MPTs of 861 steps; CI = 0.338, RI = 0.634). Strict consensus and supporting synapomorphies reported in the online supplement.

Extended Data Fig. 5 Diagnostic features of the Pebbly Arkose Fm. assemblage, Dande Communal Area.

ac, Gomphodontosuchine traversodontid cynodont, right dentary, a, lateral, b, medial, c, occlusal view. Gomphodontosuchine synapomorphies96 include: anterolingual cusp of lower postcanines strongly posteriorly inclined, procumbent lower incisors, reduced lower canine, labial cusp widest in transverse row of lower postcanines. de, Aetosaur, d, left paramedian osteroderm in dorsal view, e, left ilium in lateral view. Aetosaurian synapomorphies97 include: anterior bar on paramedian osteoderm, radiate pattern of ornamentation on paramedian osteoderm. The triangular preacetabular process of the ilium is similar to many early aetosaurs97,98,99. fh, Herrerasaurid dinosaur, coracoid, f, lateral, g, medial, h, posterodorsal view. As in other herrerasaurids48,100,101,102, there is a long hook-like posteroventral process and the coracoid foramen is anteroventral to the glenoid. ik, Possible dicynodont, highly weathered trunk vertebra centrum, i, ?anterior, j, ?posterior, k, ?left lateral view. The size and general shape of the centrum (amphicoelous, anteroposteriorly compressed, articular surfaces taller and wider than body) is consistent with those of kannemeyeriiform dicynodonts103. l, Hyperodapedontine rhynchosaur, large left maxilla in occlusal view. mo, Hyperodapedontine rhynchosaur, smaller articulated maxillae and premaxillae originally reported by Raath et al.29, m, occlusal n, anterior o, left lateral view. The maxillary groove is a rhynchosaurid synapomorphy104. Hyperodapedontine synapomorphies104 include: broader than deep tooth-bearing area of maxilla; ‘Hyperodapedon clade’ synapomorphies104 include: > 2 tooth rows medial to maxillary groove. This rhynchosaur lacks synapomorphies of the Teyumbaita clade of hyperodapedontine rhynchosaurs (T. sulcognathus105 and T. sp54): two maxillary grooves that extend anteriorly beyond the posterior third of the tooth plate (the Zimbabwean form has only one maxillary groove); maxillary area lateral to main groove narrower than the medial area (also present in H. hunei; proportions reversed in Zimbabwean form). Scale bars 1 cm. ant, anterior; dor, dorsal; lat, lateral.

Extended Data Fig. 6 Full ornithodiran phylogeny and ancestral state estimations.

The entire ornithodiran phylogeny recovered by Bayesian analysis of the Langer et al.53 dataset. We follow Ezcurra et al.76 and Kammerer et al.75 in considering lagerpetids as early pterosauromorphs, such that the Lagerpetidae + Dinosauria node is considered Ornithodira. Numbers at nodes indicate posterior probabilities to two significant digits. a. Ancestral state estimation if a Bagualosaurus-aged early theropod is recovered from southern Pangaea (e.g., South America). Note that the theropod dispersal northward from southern Pangaea remains latest Carnian–early Norian in age, preceding the northward dispersal of sauropodomorphs. b. Ancestral state estimation if a Guaibasaurus-aged early theropod is recovered from southern Pangaea (e.g., South America). Note that the theropod dispersal northward from southern Pangaea remains early Norian in age, preceding the northward dispersal of sauropodomorphs.

Extended Data Fig. 7 Biogeographic dispersal model with individual results of sampling sensitivity tests.

a, The dispersal pattern of early dinosaurs from high-latitude southern Pangaea is robust to the possibility of increased sampling of Carnian dinosaurs in other regions of Pangaea; the same general pattern of restriction, dispersal, and later restriction holds with the addition of hypothetical sampling elsewhere in Pangaea. b, The dispersal pattern of early dinosaurs from high-latitude southern Pangaea is consistent among differing phylogenetic topologies—20 trees taken from the posterior distribution of trees from the Langer et al. Bayesian analysis show consistent patterns even given a wide variety of topologies. c, The dispersal pattern of early dinosaurs from high-latitude southern Pangaea is consistent among differing phylogenetic topologies and sensitivity analyses, including the Baron et al. and Cabreira et al. Bayesian trees, if Mbiresaurus raathi is Norian in age, if Lessemsaurus and Ingentia are included in the analysis, and if Bagualosaurus or Guaibasaurus-aged theropods are recovered from South America. Our hypothesis will be falsified if an extremely diverse dinosaurian assemblage is recovered from the Carnian of northern Pangaea (northern Carnian dinosaur assemblage). d, Results of the model variant simulating arid belts in the tropics of both northern and southern Pangaea (see Methods); the same general pattern holds, and this pattern is disrupted a diverse hypothetical northern dinosaurian assemblage, and three hypothetical northern sauropodomorphs.

Extended Data Fig. 8 Dispersal rates for the biogeographic dispersal model.

a, Overall dispersal rates, shown between the different regions of Pangaea. b, The dispersal rates used to define the stepping stone model. c, The dispersal rates used to test for differential dispersal in response to low-latitude climatic barrier and the breakup of northern Pangaea. Note that in our model variant simulating a northern Pangaean arid belt (see Methods), the E↔EP and W↔EP rates were changed from 1 to 0.5.

Extended Data Fig. 9 Further skeletal anatomy of Mbiresaurus raathi, gen. et sp. nov.

Except where noted, all specimens are the holotype (NHMZ 2222). a, Left femur, lateral view. b, Left femur, distal view c, Left femur, potentially referable to M raathi (NHMZ 2223), lateral view. d, Right femur, potentially referable to M raathi (NHMZ 2242), lateral view. e, Left maxilla, occlusomedial view, teeth are numbered. f, Left premaxilla, occlusomedial view. g, Scanning electron microscope image of premaxillary tooth 4. h, Right articular, dorsal view. i, Unprepared right frontal, dorsal view, showing frontal proportions (NHMZ 2222). j, Right tibia, lateral view. k, Right tibia, distal view. l, left scapula and coracoid (NHMZ 2547), lateral view. m, left scapula and coracoid (NHMZ 2547), posterior view. n, Left humerus, proximal view. o, Right astragalus, proximal view. p, Left ilium (NHMZ 2547), medial view. q, Left metatarsal I, proximal (top), anterior (middle), distal (bottom) views. r, Left metatarsal II, proximal (top), anterior (middle), distal (bottom) views. s, Left metatarsal III, proximal (top), anterior (middle), distal (bottom) views. t, Left metatarsal IV, proximal (top), anterior (middle), distal (bottom) views. Scale bars, af, ht, 1 cm; g, 1 mm. 4th, fourth trochanter; a., articulates with; adb, dorsal basin of astragalus; amc, anteromedial corner; ap, ascending process; at, anterior trochanter; ant, anterior; cc, cnemial crest; cf, coracoid foramen; cor, coracoid; ctf, crista tibiofibularis; dlt, dorsolateral trochanter; dpc, deltopectoral crest; dsr, sacral rib of dorsosacral; fc, fibular crest; g, glenoid of scapula and coracoid; gf, glenoid fossa of the articular; lat, lateral; lc, lateral condyle; mc, medial condyle; mt#, metatarsal #; or, orbital rim; plf, posterolateral flange; ppm, palatal process of the maxilla; rap, retroarticular process; ru, rugosity; sa, surangular; sca, scapula; sr1, sacral rib of primordial sacral 1; sr2, sacral rib of primordial sacral 2; stp, transverse processes of sacral vertebrae; ts, trochanteric shelf.

Extended Data Fig. 10 Further comparative skeletal anatomy of Mbiresaurus raathi, gen. et sp. nov.

a, Left ilium, Mbiresaurus raathi (NHMZ 2547), lateral view. b, Right ilium (reversed), Buriolestes schultzi (ULBRA-PVT280), lateral view. c, Right ilium (reversed), Saturnalia tupiniquim (MCP 3846-PV), lateral view. d, Left ilium, Panphagia protos (PVSJ 874), lateral view. e, Left ilium, Adeopapposaurus mognai (PVSJ 569), lateral view. f, Left ilium, Plateosaurus engelhardti (SMNS 91310), lateral view. g, Right dentary, Mbiresaurus raathi (NHMZ 2222), medial view. h, Left dentary (reversed), Mbiresaurus raathi (NHMZ 2222), medial view. i, Left dentary (reversed), Mbiresaurus raathi (NHMZ 2222), lateral view. j, Right dentary, Mbiresaurus raathi (NHMZ 2222), lateral view. k, Right premaxilla, maxilla, and dentary, Eoraptor lunensis (PVSJ 512), lateral view. l, Right dentary, Saturnalia tupiniquim (UFSM 17614), lateral view. m, Left ulna, Mbiresaurus raathi (NHMZ 2222), lateral view. n, Right ulna (reversed), Saturnalia tupiniquim (MCP 3844-PV); Institutional abbreviations in online supplement. o, Right scapula, Mbiresaurus raathi (NHMZ 2547), lateral view. p, Left scapula (reversed), Panphagia protos (PVSJ 874), lateral view. q, Left femur, proximal end, Mbiresaurus raathi (NHMZ 2222), anterolateral view. q, Left femur, proximal end, Saturnalia tupiniquim (MCP 3844-PV), anterolateral view. Scale bars 1 cm. a., articulates with; at, anterior trochanter; bs, brevis shelf; dlt, dorsolateral trochanter; emg, external mandibular groove; g, glenoid; lia, linea intrmuscularis cranialis; ol, olecranon process; sp, splenial; ts, trochanteric shelf.

Supplementary information

Supplementary Information

This file contains Supplementary Text 1–10, Supplementary Figs. 1–17 and Supplementary Tables 1–13.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Griffin, C.T., Wynd, B.M., Munyikwa, D. et al. Africa’s oldest dinosaurs reveal early suppression of dinosaur distribution. Nature 609, 313–319 (2022). https://doi.org/10.1038/s41586-022-05133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05133-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing