Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A fast radio burst source at a complex magnetized site in a barred galaxy

An Author Correction to this article was published on 10 November 2022

This article has been updated

Abstract

Fast radio bursts (FRBs) are highly dispersed, millisecond-duration radio bursts1,2,3. Recent observations of a Galactic FRB4,5,6,7,8 suggest that at least some FRBs originate from magnetars, but the origin of cosmological FRBs is still not settled. Here we report the detection of 1,863 bursts in 82 h over 54 days from the repeating source FRB 20201124A (ref. 9). These observations show irregular short-time variation of the Faraday rotation measure (RM), which scrutinizes the density-weighted line-of-sight magnetic field strength, of individual bursts during the first 36 days, followed by a constant RM. We detected circular polarization in more than half of the burst sample, including one burst reaching a high fractional circular polarization of 75%. Oscillations in fractional linear and circular polarizations, as well as polarization angle as a function of wavelength, were detected. All of these features provide evidence for a complicated, dynamically evolving, magnetized immediate environment within about an astronomical unit (au; Earth–Sun distance) of the source. Our optical observations of its Milky-Way-sized, metal-rich host galaxy10,11,12 show a barred spiral, with the FRB source residing in a low-stellar-density interarm region at an intermediate galactocentric distance. This environment is inconsistent with a young magnetar engine formed during an extreme explosion of a massive star that resulted in a long gamma-ray burst or superluminous supernova.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal variations of the physical parameters of FRB 20201124A.
Fig. 2: Polarization profiles, dynamic spectra and frequency-dependent polarization of selected bursts.
Fig. 3: Host-galaxy properties at optical and near-infrared wavelengths.

Similar content being viewed by others

Data availability

Raw data are available from the FAST Data Center, http://fast.bao.ac.cn. Owing to the large data volume, we encourage contacting the corresponding author for the data transfer. The directly related data that support the findings of this study can be found at the PSRPKU website, https://psr.pku.edu.cn/index.php/publications/frb20201124a/ and the Figshare website, https://doi.org/10.6084/m9.figshare.19688854.

Code availability

PSRCHIVE (http://psrchive.sourceforge.net)

TransientX (https://github.com/ypmen/TransientX)

BEAR (https://psr.pku.edu.cn/index.php/publications/frb180301/)

Change history

References

  1. Petroff, E., Hessels, J. W. T. & Lorimer, D. R. Fast radio bursts. Astron. Astrophys. Rev. 27, 4 (2019).

    Article  ADS  Google Scholar 

  2. Cordes, J. M. & Chatterjee, S. Fast radio bursts: an extragalactic enigma. Annu Rev. Astron. Astrophys. 57, 417–465 (2019).

    Article  ADS  Google Scholar 

  3. Zhang, B. The physical mechanisms of fast radio bursts. Nature 587, 45–53 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. The CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54–58 (2020).

    Article  ADS  Google Scholar 

  5. Bochenek, C. D. et al. A fast radio burst associated with a Galactic magnetar. Nature 587, 59–62 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Li, C. K. et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428. Nat. Astron. 5, 378–384 (2021).

    Article  ADS  Google Scholar 

  7. Ridnaia, A. et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst. Nat. Astron. 5, 372–377 (2021).

    Article  ADS  Google Scholar 

  8. Mereghetti, S. et al. INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154. Astrophys. J. Lett. 898, L29 (2020).

    Article  ADS  CAS  Google Scholar 

  9. Lanman, A. E. et al. A sudden period of high activity from repeating fast radio burst 20201124A. Astrophys. J. 927, 59 (2022).

    Article  ADS  Google Scholar 

  10. Fong, W.-f et al. Chronicling the host galaxy properties of the remarkable repeating FRB 20201124A. Astrophys. J. Lett. 919, L23 (2021).

    Article  ADS  CAS  Google Scholar 

  11. Ravi, V. et al. The host galaxy and persistent radio counterpart of FRB 20201124A. Mon. Not. R. Astron. Soc. 513, 982–990 (2022).

    Article  ADS  Google Scholar 

  12. Piro, L. et al. The fast radio burst FRB 20201124A in a star-forming region: constraints to the progenitor and multiwavelength counterparts. Astron. Astrophys. 656, L15 (2021).

    Article  ADS  CAS  Google Scholar 

  13. Li, D. et al. A bimodal burst energy distribution of a repeating fast radio burst source. Nature 598, 267–271 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Hilmarsson, G. H., Spitler, L. G., Main, R. A. & Li, D. Z. Polarization properties of FRB 20201124A from detections with the Effelsberg 100-m radio telescope. Mon. Not. R. Astron. Soc. 508, 5354–5361 (2021).

    Article  ADS  Google Scholar 

  15. Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Luo, R. et al. Diverse polarization angle swings from a repeating fast radio burst source. Nature 586, 693–696 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kumar, P. et al. Circularly polarized radio emission from the repeating fast radio burst source FRB 20201124A. Mon. Not. R. Astron. Soc. 512, 3400–3413 (2022).

    Article  ADS  Google Scholar 

  18. Kramer, M., Stappers, B. W., Jessner, A., Lyne, A. G. & Jordan, C. A. Polarized radio emission from a magnetar. Mon. Not. R. Astron. Soc. 377, 107–119 (2007).

    Article  ADS  Google Scholar 

  19. Kumar, P., Lu, W. & Bhattacharya, M. Fast radio burst source properties and curvature radiation model. Mon. Not. R. Astron. Soc. 468, 2726–2739 (2017).

    Article  ADS  CAS  Google Scholar 

  20. Yang, Y.-P. & Zhang, B. Bunching coherent curvature radiation in three-dimensional magnetic field geometry: application to pulsars and fast radio bursts. Astrophys. J. 868, 31 (2018).

    Article  ADS  CAS  Google Scholar 

  21. Hilmarsson, G. H. et al. Rotation measure evolution of the repeating fast radio burst source FRB 121102. Astrophys. J. Lett. 908, L10 (2021).

    Article  ADS  CAS  Google Scholar 

  22. Johnston, S., Ball, L., Wang, N. & Manchester, R. N. Radio observations of PSR B1259–63 through the 2004 periastron passage. Mon. Not. R. Astron. Soc. 358, 1069–1075 (2005).

    Article  ADS  CAS  Google Scholar 

  23. Piro, A. L. & Gaensler, B. M. The dispersion and rotation measure of supernova remnants and magnetized stellar winds: application to fast radio bursts. Astrophys. J. 861, 150 (2018).

    Article  ADS  Google Scholar 

  24. Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

    Article  ADS  CAS  Google Scholar 

  25. Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  26. Chatterjee, S. et al. A direct localization of a fast radio burst and its host. Nature 541, 58–61 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Marcote, B. et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 577, 190–194 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Bhandari, S. et al. Characterizing the fast radio burst host galaxy population and its connection to transients in the local and extragalactic universe. Astron. J. 163, 69 (2022).

    Article  ADS  Google Scholar 

  29. Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Bhandari, S. et al. The host galaxies and progenitors of fast radio bursts localized with the Australian Square Kilometre Array Pathfinder. Astrophys. J. Lett. 895, L37 (2020).

    Article  ADS  CAS  Google Scholar 

  31. Li, Y. & Zhang, B. A comparative study of host galaxy properties between fast radio bursts and stellar transients. Astrophys. J. Lett. 899, L6 (2020).

    Article  ADS  CAS  Google Scholar 

  32. Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. Lett. 834, L7 (2017).

    Article  ADS  Google Scholar 

  33. Metzger, B. D., Berger, E. & Margalit, B. Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. Astrophys. J. 841, 14 (2017).

    Article  ADS  Google Scholar 

  34. Jiang, P. et al. The fundamental performance of FAST with 19-beam receiver at L band. Res. Astron. Astrophys. 20, 064 (2020).

    Article  ADS  Google Scholar 

  35. The CHIME/FRB Collaboration. Recent high activity from a repeating Fast Radio Burst discovered by CHIME/FRB. The Astronomer’s Telegram, no. 14497 (2021).

  36. Xu, H. et al. FAST detection and localization of FRB20201124A. The Astronomer’s Telegram, no. 14518 (2021).

  37. Nimmo, K. et al. Milliarcsecond localization of the repeating FRB 20201124A. Astrophys. J. Lett. 927, L3 (2022).

    Article  ADS  Google Scholar 

  38. Zhang, C. F. et al. Fast radio burst detection in the presence of coloured noise. Mon. Not. R. Astron. Soc. 503, 5223–5231 (2021).

    Article  ADS  Google Scholar 

  39. Men, Y. P. et al. Piggyback search for fast radio bursts using Nanshan 26 m and Kunming 40 m radio telescopes - I. Observing and data analysis systems, discovery of a mysterious peryton. Mon. Not. R. Astron. Soc. 488, 3957–3971 (2019).

    Article  ADS  CAS  Google Scholar 

  40. Oppermann, N., Yu, H.-R. & Pen, U.-L. On the non-Poissonian repetition pattern of FRB121102. Mon. Not. R. Astron. Soc. 475, 5109–5115 (2018).

    Article  ADS  Google Scholar 

  41. Feroz, F., Hobson, M. P. & Bridges, M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    Article  ADS  Google Scholar 

  42. The CHIME/FRB Collaboration. Periodic activity from a fast radio burst source. Nature 582, 351–355 (2020).

    Article  ADS  Google Scholar 

  43. Zou, J.-H. et al. Periodicity search on X-Ray bursts of SGR J1935+2154 using 8.5 yr of Fermi/GBM data. Astrophys. J. Lett. 923, L30 (2021).

    Article  ADS  CAS  Google Scholar 

  44. Cai, C. et al. Search for gamma-ray bursts and gravitational wave electromagnetic counterparts with High Energy X-ray Telescope of Insight-HXMT. Mon. Not. R. Astron. Soc. 508, 3910–3920 (2021).

    Article  ADS  CAS  Google Scholar 

  45. Hobbs, G. B., Edwards, R. T. & Manchester, R. N. TEMPO2, a new pulsar-timing package – I. An overview. Mon. Not. R. Astron. Soc. 369, 655–672 (2006).

    Article  ADS  Google Scholar 

  46. Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the Galactic distribution of free electrons and its fluctuations. Preprint at https://arxiv.org/abs/astro-ph/0207156 (2002).

  47. Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    Article  ADS  Google Scholar 

  48. Dolag, K., Gaensler, B. M., Beck, A. M. & Beck, M. C. Constraints on the distribution and energetics of fast radio bursts using cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 451, 4277–4289 (2015).

    Article  ADS  CAS  Google Scholar 

  49. Deng, W. & Zhang, B. Cosmological implications of fast radio burst/gamma-ray burst associations. Astrophys. J. Lett. 783, L35 (2014).

    Article  ADS  Google Scholar 

  50. Luo, R., Lee, K., Lorimer, D. R. & Zhang, B. On the normalized FRB luminosity function. Mon. Not. R. Astron. Soc. 481, 2320–2337 (2018).

    Article  ADS  CAS  Google Scholar 

  51. Hotan, A. W., van Straten, W. & Manchester, R. N. PSRCHIVE and PSRFITS: an open approach to radio pulsar data storage and analysis. Publ. Astron. Soc. Aust. 21, 302–309 (2004).

    Article  ADS  Google Scholar 

  52. Desvignes, G. et al. Radio emission from a pulsar’s magnetic pole revealed by general relativity. Science 365, 1013–1017 (2019).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  53. Sotomayor-Beltran, C. et al. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes. Astron. Astrophys. 552, A58 (2013).

    Article  Google Scholar 

  54. Welter, G. L., Perry, J. J. & Kronberg, P. P. The rotation measure distribution of QSOs and of intervening clouds: magnetic fields and column densities. Astrophys. J. 279, 19–39 (1984).

    Article  ADS  CAS  Google Scholar 

  55. Akahori, T., Ryu, D. & Gaensler, B. M. Fast radio bursts as probes of magnetic fields in the intergalactic medium. Astrophys. J. 824, 105 (2016).

    Article  ADS  Google Scholar 

  56. Xu, J. & Han, J. L. Redshift evolution of extragalactic rotation measures. Mon. Not. R. Astron. Soc. 442, 3329–3337 (2014).

    Article  ADS  Google Scholar 

  57. Noutsos, A., Karastergiou, A., Kramer, M., Johnston, S. & Stappers, B. W. Phase-resolved Faraday rotation in pulsars. Mon. Not. R. Astron. Soc. 396, 1559–1572 (2009).

    Article  ADS  Google Scholar 

  58. Cho, H. et al. Spectropolarimetric analysis of FRB 181112 at microsecond resolution: implications for fast radio burst emission mechanism. Astrophys. J. Lett. 891, L38 (2020).

    Article  ADS  Google Scholar 

  59. Mezger, P. G. & Henderson, A. P. Galactic H II regions. I. Observations of their continuum radiation at the frequency 5 GHz. Astrophys. J. 147, 471–489 (1967).

    Article  ADS  Google Scholar 

  60. Hessels, J. W. T. et al. FRB 121102 bursts show complex time–frequency structure. Astrophys. J. Lett. 876, L23 (2019).

    Article  ADS  CAS  Google Scholar 

  61. Vedantham, H. K. & Ravi, V. Faraday conversion and magneto-ionic variations in fast radio bursts. Mon. Not. R. Astron. Soc. 485, L78–L82 (2019).

    Article  ADS  CAS  Google Scholar 

  62. Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

    Article  ADS  Google Scholar 

  63. Sazonov, V. N. Generation and transfer of polarized synchrotron radiation. Soviet Astron. 13, 396–402 (1969).

    ADS  Google Scholar 

  64. Huang, L. & Shcherbakov, R. V. Faraday conversion and rotation in uniformly magnetized relativistic plasmas. Mon. Not. R. Astron. Soc. 416, 2574–2592 (2011).

    Article  ADS  Google Scholar 

  65. Beniamini, P., Kumar, P. & Narayan, R. Faraday depolarization and induced circular polarization by multipath propagation with application to FRBs. Mon. Not. R. Astron. Soc. 510, 4654–4668 (2022).

    Article  ADS  Google Scholar 

  66. Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

    Article  ADS  Google Scholar 

  67. Rockosi, C. et al. The low-resolution imaging spectrograph red channel CCD upgrade: fully depleted, high-resistivity CCDs for Keck. Proc. SPIE 7735, 77350R (2010).

    Article  Google Scholar 

  68. Sheinis, A. I. et al. ESI, a new Keck Observatory Echellette Spectrograph and Imager. Publ. Astron. Soc. Pac. 114, 851–865 (2002).

    Article  ADS  Google Scholar 

  69. Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).

    Article  ADS  Google Scholar 

  70. Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Astrophys. J. Suppl. Ser. 251, 7 (2020).

    Article  ADS  Google Scholar 

  71. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989).

    Article  ADS  CAS  Google Scholar 

  72. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  73. Filippenko, A. V. The importance of atmospheric differential refraction in spectrophotometry. Publ. Astron. Soc. Pac. 94, 715–721 (1982).

    Article  ADS  Google Scholar 

  74. Wizinowich, P. L. et al. The W. M. Keck Observatory laser guide star adaptive optics system: overview. Publ. Astron. Soc. Pac. 118, 297–309 (2006).

    Article  ADS  Google Scholar 

  75. Gaia Collaboration. Gaia Data Release 2. The celestial reference frame (Gaia-CRF2). Astron. Astrophys. 616, A14 (2018).

    Article  Google Scholar 

  76. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682 (2000).

    Article  ADS  Google Scholar 

  77. Heintz, K. E. et al. Host galaxy properties and offset distributions of fast radio bursts: implications for their progenitors. Astrophys. J. 903, 152 (2020).

    Article  ADS  CAS  Google Scholar 

  78. Belfiore, F. et al. SDSS IV MaNGA – sSFR profiles and the slow quenching of discs in green valley galaxies. Mon. Not. R. Astron. Soc. 477, 3014–3029 (2018).

    Article  ADS  CAS  Google Scholar 

  79. Blanc, G. A., Kewley, L., Vogt, F. P. A. & Dopita, M. A. IZI: inferring the gas phase metallicity (Z) and ionization parameter (q) of ionized nebulae using Bayesian statistics. Astrophys. J. 798, 99 (2015).

    Article  ADS  Google Scholar 

  80. Mingozzi, M. et al. SDSS IV MaNGA: metallicity and ionisation parameter in local star-forming galaxies from Bayesian fitting to photoionisation models. Astron. Astrophys. 636, A42 (2020).

    Article  CAS  Google Scholar 

  81. Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    Article  ADS  Google Scholar 

  82. Holmberg, E. A photographic photometry of extragalactic nebulae. Medd. Lunds Astron. Obs. Ser. II 136, 1 (1958).

    ADS  Google Scholar 

  83. Tully, R. B. & Fisher, J. R. A new method of determining distances to galaxies. Astron. Astrophys. 500, 105–117 (1977).

    ADS  Google Scholar 

  84. Ouellette, N. N. Q. et al. The spectroscopy and H-band imaging of Virgo Cluster Galaxies (SHIVir) survey: scaling relations and the stellar-to-total mass relation. Astrophys. J. 843, 74 (2017).

    Article  ADS  Google Scholar 

  85. Law, D. R. et al. SDSS-IV MaNGA: refining strong line diagnostic classifications using spatially resolved gas dynamics. Astrophys. J. 915, 35 (2021).

    Article  ADS  CAS  Google Scholar 

  86. Main, R. A. et al. Scintillation time-scale measurement of the highly active FRB20201124A. Mon. Not. R. Astron. Soc. 509, 3172–3180 (2022).

    Article  ADS  Google Scholar 

  87. Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A. & Trevena, J. Theoretical modeling of starburst galaxies. Astrophys. J. 556, 121–140 (2001).

    Article  ADS  CAS  Google Scholar 

  88. Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to L. C. Ho, H. Gao and R. Li for discussions. This work made use of data from the FAST. The FAST is a Chinese national megascience facility, built and operated by the National Astronomical Observatories, Chinese Academy of Sciences. We acknowledge the use of public data from the Fermi Science Support Center (FSSC). This work is supported by the National SKA Program of China (2020SKA0120100, 2020SKA0120200), the Natural Science Foundation of China (12041304, 11873067, 11988101, 12041303, 11725313, 11725314, 11833003, 12003028, 12041306, 12103089, U2031209, U2038105, U1831207), the National Program on Key Research and Development Project (2019YFA0405100, 2017YFA0402602, 2018YFA0404204, 2016YFA0400801), the Key Research Program of the CAS (QYZDJ-SSW-SLH021), the Natural Science Foundation of Jiangsu Province (BK20211000), the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS, the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences (grants XDA15360000, XDA15052700, XDB23040400), funding from the Max Planck Partner Group, the science research grants from the China Manned Space Project (CMS-CSST-2021-B11, CMS-CSST-2021-A11) and PKU development grant 7101502590. A.V.F.’s group at University of California, Berkeley is supported by the Christopher R. Redlich Fund, the Miller Institute for Basic Research in Science (in which A.V.F. was a Miller Senior Fellow) and many individual donors. S.D. acknowledges support from the Xplorer Prize. B.B.Z. is supported by Fundamental Research Funds for the Central Universities (14380046) and the Program for Innovative Talents, Entrepreneur in Jiangsu. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA; the observatory was made possible by the financial support of the W. M. Keck Foundation. We thank the Keck staff for their help during the observing runs.

Author information

Authors and Affiliations

Authors

Contributions

H.X., J.R.N. and P.C. contributed equally and led the data analysis. K.J.L., W.W.Z., S.D. and B.Z. coordinated the observational campaign, cosupervised data analyses and interpretations, and led the paper writing. J.C.J. conducted the polarization and RM measurements. B.J.W., J.W.X., C.F.Z. and K.J.L. performed the timing analysis, periodicity search, DM measurement, burst searching and Faraday conversion measurement. Y.P.M. contributed to the searching software development. R.N.C., M.Z.C., L.F.H., Y.X.H., Z.Y.L., Z.X.L., Y.H.X. and J.P.Y. performed software testing. D.J.Z., Y.K.Z., P.W., Y.F., C.H.N., F.Y.W., X.F.W. and S.B.Z. contributed to radio data analysis. P.C., S.D., H.F., A.V.F., E.W.P., T.G.B., S.G.D., P.G., D.S., A.S., W.K.Z. and A.E. contributed to the optical observations and data reduction; A.V.F. also edited the manuscript in detail. P.C., S.D., H.F. and Y.L. contributed to analysing and interpreting the optical data. P.J., H.Q.G., J.L.H., H.L., L.Q., J.H.S., R.Y., Y.L.Y., D.J.Y. and Y.Zhu. aided with the FAST observations. J.L.H., D.L., M.W. and N.W. helped with observation coordination. K.J.L., B.Z., D.Z.L., W.Y.W., R.X.X., W.L., Y.P.Y., W.F.Y., Z.G.D. and R.L. provided theoretical discussions. C.C., C.K.L., X.Q.L., W.X.P., L.M.S., S.X., S.L.X., J.Y., X.Y., Q.B.Y., B.B.Z., S.N.Z., J.H.Z. and Y.Zhao contributed to the high-energy observations and data analyses.

Corresponding authors

Correspondence to K. J. Lee, W. W. Zhu, S. Dong or B. Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Shami Chatterjee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Extended data

is available for this paper at https://doi.org/10.1038/s41586-022-05071-8.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Temporal variations of extra physical parameters.

a, Shape parameter (k) of Weibull distribution in event-rate inference. The error bar is at 68% confidence level. b,c, Daily burst energy and DM, in which the violin symbol indicates the distribution function, the green shaded strips indicate the 95% upper and lower bounds and the solid black curve is the median.

Extended Data Fig. 2 Fluence, equivalent width and energy distribution for detected bursts.

a,b, Cumulative distribution and histogram of the burst fluence; the dashed vertical red line at 53 mJy ms indicates the 95% completeness threshold. c, The 2D distribution of fluence and burst width. d, Histogram of burst width. e,f, Cumulative distribution and histogram of FRB 20201124A burst energy; the dashed vertical black line at 2 × 1036 erg indicates 95% completeness assuming a burst bandwidth of 185 MHz, the median of the burst bandwidths. The broken power law fit to the cumulative distribution of energy is the solid black curve, with the break point at 1.1 × 1038 erg indicated by a dot-dashed vertical line.

Extended Data Fig. 3 Waiting time distribution of FRB 20201124A.

a, The best fit using two log-normal functions (the blue curve), in which the two log-normal distributions peak at 39 ms and 106.7 s. b, The best fit (blue curve) using three log-normal functions, which are indicated with the dashed-line curves, peaking at 39 ms, 45.1 s and 162.3 s.

Extended Data Fig. 4 Apparent RM variation within individual bursts.

RM curve with 95% confidence level error bars (a), polarization profiles (b) and dynamic spectra (c). Bursts are dedispersed using corresponding structure-optimized DM values.

Extended Data Fig. 5 RM index.

a, Histogram of normalized RM index deviation defined as (β − 2)/σβ, in which σβ is the uncertainty of β with 68% confidence level. b, RM as a function of time. Orange dots are for selected bursts with (β − 2)/σβ  ≤  1 and the measurements not selected are blue dots.

Extended Data Fig. 6 Properties of the host galaxy at z = 0.098 in the optical and near-infrared.

a, i-Band and K′-band FRB 20201124A host-galaxy images by the LRIS and the NIRC2 camera, respectively, and the residual K′-band image after subtracting the disc component. The EVN localization of FRB 20201124A is indicated with the cyan circle, which is 60 mas in radius, that is, four times the uncertainty. The centre of the background galaxy (z = 0.553) is shown as the yellow asterisk. b, The Hα double-peaked profile shown in the medium-resolution ESI spectrum. Blue and red are for two different orders of the echelle spectrum. c, 2D spectroscopic image by the LRIS around the Hα emission line. A wavelength-dependent variation is clearly seen in the spatial direction. d, The Hα lines extracted from three different regions, which correspond to the three rectangles in panel c of the galaxy along the slit. e, The velocities at different projected distances in the slit direction relative to the continuum centre. The red line is the best-fit result of a simple rotation model The LRIS spectroscopic observations were taken with a seeing of 0.7″ (black bar), which sets the spatial resolution.

Extended Data Fig. 7 Properties of the galaxies and comparisons with other FRB hosts.

a, Hosts of FRB repeaters in the BPT diagram plotted with the SDSS DR8 MPA-JHU sample (black); parameter spaces of galaxies dominated by star formation and active galactic nuclei are separated by the dashed and solid black lines, respectively87,88. The host and background galaxies of FRB 20201124A are shown in red and yellow, respectively. b, The properties (FRB–galaxy offset in units of galaxy effective radius Re, gas-phase metallicity, sSFR and stellar mass) of the FRB 20201124A host galaxy (red star) compared with a literature sample of FRB hosts (available at https://web.archive.org/web/20211015143528/https://frbhosts.org/#explore) shown with dots (black, non-repeaters; red, repeaters). c, Emission lines from the background galaxy at z = 0.553 in the LRIS (blue) and ESI (red) spectra, with regions contaminated by the atmosphere of the Earth marked in green.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Niu, J.R., Chen, P. et al. A fast radio burst source at a complex magnetized site in a barred galaxy. Nature 609, 685–688 (2022). https://doi.org/10.1038/s41586-022-05071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05071-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing