Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Delayed use of bioenergy crops might threaten climate and food security

Abstract

The potential of mitigation actions to limit global warming within 2 °C (ref. 1) might rely on the abundant supply of biomass for large-scale bioenergy with carbon capture and storage (BECCS) that is assumed to scale up markedly in the future2,3,4,5. However, the detrimental effects of climate change on crop yields may reduce the capacity of BECCS and threaten food security6,7,8, thus creating an unrecognized positive feedback loop on global warming. We quantified the strength of this feedback by implementing the responses of crop yields to increases in growing-season temperature, atmospheric CO2 concentration and intensity of nitrogen (N) fertilization in a compact Earth system model9. Exceeding a threshold of climate change would cause transformative changes in social–ecological systems by jeopardizing climate stability and threatening food security. If global mitigation alongside large-scale BECCS is delayed to 2060 when global warming exceeds about 2.5 °C, then the yields of agricultural residues for BECCS would be too low to meet the Paris goal of 2 °C by 2200. This risk of failure is amplified by the sustained demand for food, leading to an expansion of cropland or intensification of N fertilization to compensate for climate-induced yield losses. Our findings thereby reinforce the urgency of early mitigation, preferably by 2040, to avoid irreversible climate change and serious food crises unless other negative-emission technologies become available in the near future to compensate for the reduced capacity of BECCS.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Climate–yield feedbacks owing to reduced biomass feedstocks of crop residues for BECCS and the potential impacts on food supply and LUC.
Fig. 2: Relationships between crop yield, climate and land management.
Fig. 3: Impact of agricultural feedbacks on climate warming and food supply.
Fig. 4: The nexus of bioenergy, climate warming and food security.
Fig. 5: Agricultural feedbacks affect the relationship between warming and cumulative CO2 emissions.
Fig. 6: Contribution of climate mitigation to reduce the regional food gap.

Data availability

Further material is available in the Supplementary Materials. Code and data used for our analyses are available on the GitHub repository: https://github.com/rongwang-fudan/OSCAR_Agriculture_Global.

References

  1. United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement - Status of Ratification https://unfccc.int/process/the-paris-agreement/status-of-ratification (2021).

  2. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) https://www.ipcc.ch/assessment-report/ar6/ (Cambridge Univ. Press, 2021).

  3. Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    Article  ADS  CAS  Google Scholar 

  4. Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Article  ADS  CAS  Google Scholar 

  5. Muratori, M. et al. EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Clim. Change 163, 1621–1637 (2020).

    Article  ADS  CAS  Google Scholar 

  6. Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhao, C. et al. Field warming experiments shed light on the wheat yield response to temperature in China. Nat. Commun. 7, 13530 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Su, Y., Gabrielle, B. & Makowski, D. The impact of climate change on the productivity of conservation agriculture. Nat. Clim. Change 11, 628–633 (2021).

    Article  ADS  Google Scholar 

  9. Gasser, T. et al. The compact Earth system model OSCAR v2.2: description and first results. Geosci. Model Dev. 10, 271–319 (2017).

    Article  ADS  CAS  Google Scholar 

  10. Meinshausen, M. et al. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604, 304–309 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Jones, M. B. & Albanito, F. Can biomass supply meet the demands of bioenergy with carbon capture and storage (BECCS)? Glob. Change Biol. 26, 5358–5364 (2020).

    Article  ADS  Google Scholar 

  12. Creutzig, F. et al. Considering sustainability thresholds for BECCS in IPCC and biodiversity assessments. Glob. Change Biol. Bioenergy 13, 510–515 (2021).

    Article  Google Scholar 

  13. Johansson, D. J. A. The question of overshoot. Nat. Clim. Change 11, 1021–1022 (2021).

    Article  ADS  Google Scholar 

  14. Hasegawa, T. et al. Land-based implications of early climate actions without global net-negative emissions. Nat. Sustain. 4, 1052–1059 (2021).

    Article  Google Scholar 

  15. Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 592–595 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).

    Article  ADS  Google Scholar 

  17. Rickels, W., Merk, C., Reith, F., Keller, D. P. & Oschlies, A. (Mis)conceptions about modeling of negative emissions technologies. Environ. Res. Lett. 14, 104004 (2019).

    Article  ADS  CAS  Google Scholar 

  18. Lu, X. et al. Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China. Proc. Natl Acad. Sci. USA 116, 8206–8213 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xing, X. et al. Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. Nat. Commun. 12, 3159 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schyns, J. F. et al. Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proc. Natl Acad. Sci. USA 116, 4893–4898 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanssen, S. V. et al. Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Clim. Change 163, 1569–1586 (2020).

    Article  ADS  PubMed  Google Scholar 

  22. Kukal, M. S. & Irmak, S. Climate-driven crop yield and yield variability and climate change impacts on the U.S. Great Plains agricultural production. Sci Rep. 8, 3450 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Yoshida, R. et al. Adaptation of rice to climate change through a cultivar-based simulation: a possible cultivar shift in eastern Japan. Clim. Res. 64, 275–290 (2015).

    Article  Google Scholar 

  24. Spinoni, J. et al. How will the progressive global increase of arid areas affect population and land-use in the 21st century? Glob. Planet. Change 205, 103597 (2021).

    Article  Google Scholar 

  25. Lade, S. J. et al. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3, 119–128 (2020).

    Article  Google Scholar 

  26. Milkoreit, M. et al. Defining tipping points for social-ecological systems scholarship—an interdisciplinary literature review. Environ. Res. Lett. 13, 033005 (2018).

    Article  ADS  Google Scholar 

  27. Hausfather, Z. & Peters, G. Emissions – the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).

    Article  Google Scholar 

  29. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Fajardy, M. & Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 10, 1389–1426 (2017).

    Article  CAS  Google Scholar 

  31. Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Article  ADS  Google Scholar 

  32. Moore, C. E. et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72, 2822–2844 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

    Article  ADS  Google Scholar 

  34. Asseng, S. et al. The upper temperature thresholds of life. Lancet Planet. Health 5, e378–e385 (2021).

    Article  PubMed  Google Scholar 

  35. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).

    Article  PubMed  Google Scholar 

  36. Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Broberg, M. C. et al. Effects of elevated CO2 on wheat yield: non-linear response and relation to site productivity. Agronomy 9, 243 (2019).

    Article  CAS  Google Scholar 

  38. Makowski, D. et al. A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agric. For. Meteorol. 7, 483–493 (2015).

    Article  ADS  Google Scholar 

  39. Wang, D. et al. Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat–soil system. Acta Agric. Scand. B Soil Plant Sci. 61, 681–692 (2011).

    Google Scholar 

  40. Food and Agriculture Organization of the United Nations (FAO). FAOSTAT https://www.fao.org/faostat/en/#data (2021).

  41. Food and Agriculture Organization of the United Nations (FAO). Human Energy Requirements https://www.fao.org/3/y5686e/y5686e.pdf (2001).

  42. Muratori, M. et al. Carbon capture and storage across fuels and sectors in energy system transformation pathways. Int. J. Greenh. Gas Control. 57, 34–41 (2017).

    Article  CAS  Google Scholar 

  43. Fajardy, M., Koeberle, A., MacDowell, N. & Fantuzzi, A. BECCS Deployment: A Reality Check. Grantham Institute Briefing paper No 28 https://www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/briefing-papers/BECCS-deployment---a-reality-check.pdf (2019).

  44. Peñuelas, J. & Sardans, J. The global nitrogen-phosphorus imbalance. Science 375, 266–267 (2022).

    Article  ADS  PubMed  Google Scholar 

  45. Ye, Y. et al. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements. PLoS One 9, e101776 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Gasser, T., Guivarch, C., Tachiiri, K., Jones, C. D. & Ciais, P. Negative emissions physically needed to keep global warming below 2 °C. Nat. Commun. 6, 7958 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Boas, I. et al. Climate migration myths. Nat. Clim. Change 9, 901–903 (2019).

    Article  ADS  Google Scholar 

  48. Riahi, K. et al. Cost and attainability of meeting stringent climate targets without overshoot. Nat. Clim. Change 11, 1063–1069 (2021).

    Article  ADS  Google Scholar 

  49. Drouet, L. et al. Net zero-emission pathways reduce the physical and economic risks of climate change. Nat. Clim. Change 11, 1070–1076 (2021).

    Article  ADS  Google Scholar 

  50. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  51. van Zeist, W. J. et al. Are scenario projections overly optimistic about future yield progress? Glob. Environ. Change 64, 102120 (2020).

    Article  Google Scholar 

  52. Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

    Article  ADS  Google Scholar 

  53. Thilakarathna, S. K. et al. Nitrous oxide emissions and nitrogen use efficiency in wheat: nitrogen fertilization timing and formulation, soil nitrogen, and weather effects. Soil Sci. Soc. Am. J. 84, 1910–1927 (2020).

    Article  ADS  CAS  Google Scholar 

  54. Wang, R., Saunders, H., Moreno-Cruz, J. & Caldeira, K. Induced energy-saving efficiency improvements amplify effectiveness of climate change mitigation. Joule 3, 2103–2119 (2019).

    Article  Google Scholar 

  55. Li, B. et al. The contribution of China’s emissions to global climate forcing. Nature 531, 357–361 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).

    Article  ADS  CAS  Google Scholar 

  57. Fu, B. et al. Short-lived climate forcers have long-term climate impacts via the carbon–climate feedback. Nat. Clim. Change 10, 851–855 (2020).

    Article  ADS  CAS  Google Scholar 

  58. Boden, T. A., Andres, R. J. & Marland, G. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2010) (V. 2013) https://doi.org/10.3334/CDIAC/00001_V2013 (Oak Ridge National Laboratory (ORNL), 2013).

  59. European Commission, Joint Research Centre/Netherlands Environmental Assessment Agency. EDGAR - Emissions Database for Global Atmospheric Research, release EDGARv4.2 http://edgar.jrc.ec.europa.eu/ (2011).

  60. Lamarque, J. F. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).

    Article  ADS  CAS  Google Scholar 

  61. van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  ADS  Google Scholar 

  62. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Article  ADS  Google Scholar 

  63. Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5314 (2013).

    Article  ADS  Google Scholar 

  64. Li, W., Ciais, P., Makowski, D. & Peng, S. A global yield dataset for major lignocellulosic bioenergy crops based on field measurements. Sci. Data 5, 180169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth generation global fire emissions database (GFED4). J. Geophys. Res. 118, 317–328 (2013).

    Article  Google Scholar 

  67. Zhou, F. et al. A new high-resolution N2O emission inventory for China in 2008. Environ. Sci. Technol. 48, 8538–8547 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2, 659–662 (2009).

    Article  ADS  CAS  Google Scholar 

  69. Hoben, J. P. et al. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob. Change Biol. 17, 1140–1152 (2010).

    Article  ADS  Google Scholar 

  70. Prather, M. et al. in Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds Houghton, J. T. et al.) Ch. 4 (Cambridge Univ. Press, 2001).

  71. U.S. Department of Agriculture (USDA). World Agricultural Production (WAP) Circular Dataset https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=CH&crop=Barley (2021).

  72. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article  ADS  Google Scholar 

  73. Cai, X., Zhang, X. & Wang, D. Land availability for biofuel production. Environ. Sci. Technol. 45, 334–339 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Bajželj, B. et al. The importance of food demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

    Article  ADS  Google Scholar 

  75. Food and Agriculture Organization of the United Nations (FAO). Annual Population https://www.fao.org/faostat/en/#data/OA (2020).

  76. Dawson, I. G. & Johnson, J. E. Does size matter? A study of risk perceptions of global population growth. Risk Anal. 37, 65–81 (2017).

    Article  PubMed  Google Scholar 

  77. Food and Agriculture Organization of the United Nations (FAO). Fertilizers by Nutrient https://www.fao.org/faostat/en/#data/RFN (2020).

  78. Lipinski, B. et al. Reducing Food Loss and Waste. Working Paper, Installment 2 of “Creating a Sustainable Food Future” https://www.wri.org/research/reducing-food-loss-and-waste (World Resources Institute, 2013).

  79. Gustavsson, J., Cederberg, C., Sonnesson, U., van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste https://www.fao.org/3/mb060e/mb060e00.htm (Food and Agriculture Organization of the United Nations (FAO), 2011).

  80. Food and Agriculture Organization of the United Nations (FAO). Food Balances (2014–2019) https://www.fao.org/faostat/en/#data/FBS (2020).

  81. Calories.info. Calories in Food: Calorie Chart Database https://www.calories.info/ (2021).

  82. Kumar, A., Cameron, J. B. & Flynn, P. C. Biomass power cost and optimum plant size in western Canada. Biomass Bioenergy 24, 445–464 (2003).

    Article  Google Scholar 

  83. Ghugare, S. B. & Tambe, S. S. Genetic programming based high performing correlations for prediction of higher heating value of coals of different ranks and from diverse geographies. J. Energy Inst. 90, 476–484 (2017).

    Article  CAS  Google Scholar 

  84. Brander, M., Sood, A., Wylie, C., Haughton, A. & Lovell, J. Technical Paper | Electricity-specific Emission Factors for Grid Electricity https://ecometrica.com/assets/Electricity-specific-emission-factors-for-grid-electricity.pdf (2011).

  85. Schakel, W., Meerman, H., Talaei, A., Ramírez, A. & Faaij, A. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage. Appl. Energy 131, 441–467 (2014).

    Article  CAS  Google Scholar 

  86. Graus, W. H. J., Voogt, M. & Worrell, E. International comparison of energy efficiency of fossil power generation. Energy Policy 35, 3936–3951 (2007).

    Article  Google Scholar 

  87. RTE France. eCO2mix - CO2 emissions per kWh of electricity generated in France https://www.rte-france.com/en/eco2mix/co2-emissions (2022).

  88. Hao, H. et al. Biofuel for vehicle use in China: current status, future potential and policy implications. Renew. Sustain. Energy Rev. 82, 645–653 (2018).

    Article  Google Scholar 

  89. Hyrchenko, Y. et al. World market of liquid biofuels: trends, policy and challenges. E3S Web Conf. 280, 05005 (2021).

    Article  CAS  Google Scholar 

  90. Sharma, S. & Maréchal, F. Carbon dioxide capture from internal combustion engine exhaust using temperature swing adsorption. Front Energy Res. 7, 143 (2019).

    Article  CAS  Google Scholar 

  91. Ardebili, S. M. S. & Khademalrasoul, A. An analysis of liquid-biofuel production potential from agricultural residues and animal fat (case study: Khuzestan Province). J. Clean. Product. 204, 819–831 (2018).

    Article  Google Scholar 

  92. Yang, Y. et al. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China. Renew. Sustain. Energy Rev. 14, 3050–3058 (2010).

    Article  Google Scholar 

  93. Wolf, J. et al. Biogenic carbon fluxes from global agricultural production and consumption. Global Biogeochem. Cycles 29, 1617–1639 (2015).

    Article  ADS  CAS  Google Scholar 

  94. Gustavsson, J. et al. Food and Agriculture Organization. Global Food Losses and Food Waste – Extent, Causes and Prevention (2011).

  95. Ji, L. An assessment of agricultural residue resources for liquid biofuel production in China. Renew. Sustain. Energy Rev. 44, 561–575 (2015).

    Article  CAS  Google Scholar 

  96. Gao, J. et al. An integrated assessment of the potential of agricultural and forestry residues for energy production in China. Glob. Change Biol. Bioenergy 8, 880–893 (2016).

    Article  Google Scholar 

  97. Zhao, G. et al. Sustainable limits to crop residue harvest for bioenergy: maintaining soil carbon in Australia’s agricultural lands. Glob. Change Biol. Bioenergy 7, 479–487 (2015).

    Article  CAS  Google Scholar 

  98. Sokal, R. R. & Rohlf, F. J. Biometry. The Principles and Practice of Statistics in Biological Research (W. H. Freeman, 1981).

Download references

Acknowledgements

R.W. appreciates the provision of funds from the National Natural Science Foundation of China (41877506) and the Chinese Thousand Youth Talents Program. R.Z., X.T., J. Chen and R.W. acknowledge support from the Shanghai International Science and Technology Partnership Project (21230780200). X.T. and R.W. acknowledge support from the Fudan-Sinar Mas Think Tank Fund (JGSXK2014). P.C. acknowledges support from the ANR CLAND Convergence Institute 16-CONV-0003. J.P. and J.S. acknowledge the financial support from the Catalan Government grants SGR 2017-1005 and AGAUR-2020PANDE00117, the Spanish Government grant PID2019-110521GB-I00 and the Fundación Ramón Areces grant ELEMENTAL-CLIMATE. T.G. acknowledges support from the Austrian Science Fund (FWF) under grant agreement P31796-N29 (ERM project).

Author information

Authors and Affiliations

Authors

Contributions

R.W. conceived the research, designed the study and wrote the first version of manuscript. S.X. compiled data, performed the research and prepared graphs. T.G. provided the OSCAR model. P.C., T.G., J.P., Y.B., O.B., I.A.J., J.S., J.H.C., J. Cao and R.Z. provided tools analysing the relationship between climate change and food security. J.P., P.C., I.A.J. and J.S. provided tools analysing the ecological impact of using bioenergy. J.H.C. and X.F.X. provided tools analysing the measures of using green energy. J. Cao, J. Chen, L.W., X.T. and R.Z. provided tools analysing the impact of climate change on the agronomy. All co-authors interpreted the results and contributed to the writing.

Corresponding author

Correspondence to Rong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Gernot Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1–16, Supplementary Tables 1–6 and further references.

Peer Review File

Supplementary Data Set 1

The data used for yield–climate fitting. The data of crop yields with the growing-season temperature, carbon dioxide concentration and nitrogen fertilization intensity are compiled from the literature.

Supplementary Data Set 2

The data of crop yields, nitrogen (N) fertilization, carbon dioxide (CO2) concentration and the average growing-season temperature and precipitation over cropland. The crop yield by species, N fertilization, CO2 concentrations, average growing-season temperature and precipitation for 167 countries in 2019 used in the model are listed in this extended dataset.

Supplementary Data Set 3

The global cropping calendar data. The cropping calendar data in different countries are compiled for wheat, rice and maize from the literature.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Wang, R., Gasser, T. et al. Delayed use of bioenergy crops might threaten climate and food security. Nature 609, 299–306 (2022). https://doi.org/10.1038/s41586-022-05055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05055-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing